
Administration Guide PUBLIC

SAP Adaptive Server Enterprise 16.0 SP02
Document Version: 1.0 – 2015-09-03

Transact-SQL Users Guide

Content

1 SQL Building Blocks. .20
1.1 Tables, Columns, and Rows. .20
1.2 Queries, Data Modification, and Commands. 21
1.3 Relational Operations. 21
1.4 Compiled Objects. 22

Save or Restore Source Text. 22
Verify and Encrypt Source Text. .23
Replacing Object Definitions. 23

1.5 Compliance to ANSI Standards. 24
Federal Information Processing Standards (FIPS) Flagger. 25
Chained Transactions and Isolation Levels. 25
Identifier Compliance to ANSI Standards. 25
SQL Standard-Style Comments. 26
Right Truncation of Character Strings. 26
Permissions Required for update and delete Statements. 26
Arithmetic Errors. .26
Synonymous Keywords. 27
Treatment of Nulls. 27

1.6 Data and Language Characters. 27
Naming Convention Identifiers. 29

1.7 Expressions in SAP ASE. 35
Arithmetic Operators. 35
Bitwise Operators. 36
The String Concatenation Operator. .38
The Comparison Operators. 38
Nonstandard Operators. 39
Character Expression Comparisons. 39
Empty Strings. 39
Quotation Marks .40
Relational and Logical Expressions. 41

1.8 Transact-SQL Extensions. 42
compute Clause. 42
Control-of-Flow Language. 42
Stored Procedures. 43
Extended Stored Procedures. 44
Triggers. 44

2 P U B L I C
Transact-SQL Users Guide

Content

Defaults and Rules. .45
Error Handling and set Options. 45
Additional SAP ASE Extensions to SQL. 45

1.9 SAP ASE Login Accounts. .47
1.10 isql Utility. .47

Default Databases. 48
Network-Based Security Services with isql. 48

1.11 Displaying SQL Text. 49

2 Databases and Tables. 50
2.1 Databases. 50
2.2 Create a User Database . 51

The on Clause. 52
The log on Clause. 53
for load Option. 53

2.3 Choose a Database. .53
2.4 Permissions Within Databases. .54
2.5 Initialize Databases Asynchronously. .55

Determine If There is Space to be Initialized. 55
Restrictions for Initializing Databases Asynchronously . 56

2.6 Drop Databases. 57
2.7 Change the Database Size. 57
2.8 Enforce Data Integrity in Databases. 58
2.9 quiesce database Command. 59
2.10 Tables. 59
2.11 Designing and Creating a Table. 61

Table Names. .62
Create the User-Defined Datatypes. 62
Choose Columns That Accept Null Values. 63
Sample Table Design Sketch. 63

2.12 Create Tables in Different Databases. 64
2.13 Create New Tables from Query Results: select into. 65

Check for Errors. 68
2.14 Temporary Tables Usage. 68

Unique Temporary Table Names . 69
Manipulate Temporary Tables in Stored Procedures. .69
General Rules for Temporary Tables. 70

2.15 Deferred Table Creation. .71
Deferred Table Creation at the Database Level. 71
Create Deferred Tables. .71
Explicitly Materialize Deferred Tables. 72
Identify Deferred Tables. 72

Transact-SQL Users Guide
Content P U B L I C 3

Roll Back for Deferred Tables. 73
Command Behavior in Deferred Tables. 73

2.16 IDENTITY Columns Usage. 74
Create IDENTITY Columns with User-Defined Datatypes. 75
Reference IDENTITY Columns. .75
Refer to IDENTITY Columns with syb_identity. 76
Automatically Create “hidden” IDENTITY Columns. 76
Using select into with IDENTITY Columns. .77

2.17 Allow Null Values in a Column. 79
Constraints and Rules Used with Null Values. 80
Defaults and Null Values. 80
Nulls Require Variable-Length Datatypes. 81
text, unitext, and image Columns. 82

2.18 Alter Existing Tables. 82
Objects Using select * Do Not List Changes to Table. 83
Use alter table on Remote Tables. 83
Add Columns. 84
Drop Columns. 85
Modify Columns. 88
Add IDENTITY Columns. 92
Drop IDENTITY Columns. 92
Modify IDENTITY Columns. 93
Data Copying. 93
Modifying Locking Schemes and Table Schema. 95
Add, Drop, or Modify Columns with User-Defined Datatypes. 95
Errors and Warnings from alter table. 96
Rename Tables and Other Objects. 98

2.19 Drop Tables. 99
2.20 Manage Identity Gaps in Tables. 100

Parameters for Controlling Identity Gaps. 100
Comparison of identity burning set factor and identity_gap. 101
Set the Table-Specific Identity Gap. 102
Change the Table-Specific Identity Gap. 103
Display Table-Specific Identity Gap Information. 103
Gaps from Other Causes. 104
IDENTITY Column Maximum Value. 105

2.21 Define Integrity Constraints for Tables. 105
Table and Column Level Constraints. 106
Create Error Messages for Constraints. .107
Check Constraints. 107
Default Column Values. 108

4 P U B L I C
Transact-SQL Users Guide

Content

unique and primary key Constraints. 109
Referential Integrity Constraints. 110

2.22 Computed Columns. .114
Computed Columns Usage. 115
Indexes on Computed Columns. 118
Deterministic Property. 118

2.23 Retrieve Information About Databases and Tables. 122
Help on Databases. 123
Help on Database Objects. 124

3 SQL-Derived Tables. 129
3.1 SQL-Derived Tables and Optimization. .130
3.2 SQL-Derived Table Syntax. 130

Derived Column Lists. 131
Correlated SQL-Derived Tables Are Not Supported. 132

3.3 SQL-Derived Tables Usage. .132
Nesting. 132
Subqueries Using SQL-Derived Tables. 133
Unions in Derived-Table Expressions .133
Unions in Subqueries. 133
Rename Columns with SQL-Derived Tables. 134
Constant Expressions. .134
Aggregate Functions. 135
Joins with SQL-Derived Tables. 135
Create a Table From a SQL-Derived Table. 136
Views with SQL-Derived Tables. 136
Correlated Attributes. 137

4 Partition Tables and Indexes. .138
4.1 Partitioning Types. .140

Range Partitioning. 140
Hash Partitioning. 140
List Partitioning . 141
Round-Robin Partitioning. 141

4.2 Partition Pruning. 141
4.3 Composite Partitioning Keys. 142
4.4 Indexes and Partitions. 143

Global Indexes. 143
Local Indexes. .145
Guarantee a Unique Index. 146

4.5 Create and Manage Partitions. 147
Partitioning Tasks. 148

Transact-SQL Users Guide
Content P U B L I C 5

Create a Range-Partitioned Table. 149
Create a Hash-Partitioned Table. 151
Create a List-Partitioned Table. .151
Create a Round-Robin–Partitioned Table. 151
Create Partitioned Indexes. 152
Create a Partitioned Table From an Existing Table. .152

4.6 Change Data Partitions. 153
Split, Merge, and Move Partitions. 154
Add Partitions to a Partitioned Table. 158
Change the Partitioning Type or Key. 158
Unpartition Round-Robin–Partitioned Tables. 159
partition Parameter Usage. 159
Change Partition-Key Columns. 160

4.7 Configure Partitions. 160
4.8 update, delete, and insert in Partitioned Tables. 161
4.9 Update Values in Partition-Key Columns. 161
4.10 Display Information About Partitions. .162

Function Usage. 162
4.11 Truncate a Partition. .163
4.12 Using Partitions to Load Table Data. 163
4.13 Update Partition Statistics. 164
4.14 Improved Concurrency for Partition-Level Online Operations. 165

Partition-Level Online Operation Syntax. 165
Concurrency with Partition-Level Online Operations. 166
Partition-Level Online Operations with Global Index. .167

5 Virtually Hashed Tables. 168
5.1 Structure of a Virtually Hashed Table. 168
5.2 Create a Virtually Hashed Table. 169
5.3 Limitations for Virtually Hashed Tables. 171
5.4 Commands that Support Virtually Hashed Tables. 172
5.5 Query Processor Support. .172
5.6 Monitor Counter Support. 173
5.7 System Procedure Support. 173

6 Create Indexes on Tables. 174
6.1 Guidelines for Using Indexes. .175
6.2 Methods of Creating Indexes. 175
6.3 Create Indexes. 176

Issue create index in Parallel. 177
Function-Based Indexes. 179
Create Indexes Without Blocking Access to Data. .179

6 P U B L I C
Transact-SQL Users Guide

Content

Unique Indexes. 180
IDENTITY Columns in Nonunique Indexes. 181
Ascending and Descending Index-Column Values. 182
Using fillfactor, max_rows_per_page, and reservepagegap. .182

6.4 Indexes on Computed Columns. 183
6.5 Clustered or Nonclustered Index Usage. 184

Create Clustered Indexes on Segments. 185
6.6 Deferred Recovery of create index Commands. 185

Manually Re-creating Deferred Recovery Indexes. 186
Interactions Between Deferred Recovery and Database Options. .187

6.7 Index Options. 189
ignore_dup_key Option . 189
ignore_dup_row and allow_dup_row . 190
sorted_data Option . 190
on segment_name Option. 191

6.8 Drop Indexes. .191
6.9 Identifying the Indexes on a Table. 192
6.10 Update Statistics for Indexes. 193

7 Datatypes. 194
7.1 System-Supplied Datatypes. .194

Exact Numeric Types: Integers. 197
Exact Numeric Types: Decimal Numbers. 198
Approximate Numeric Datatypes. .198
Money Datatypes. 199
Date and Time Datatypes. 199
Character Datatypes. 200
Binary Datatypes. .204
bit Datatype. 205
timestamp Datatype. 206
sysname and longsysname Datatype. 206

7.2 LOB Locators in Transact-SQL Statements. .206
Implicitly Create a Locator. 207
Explicitly Create a Locator. 208
Convert the Locator Value to the LOB Value. .209
Locator Scope. .209

7.3 Convert Between Datatypes. .210
7.4 Mixed-Mode Arithmetic and Datatype Hierarchy. 210

Working with money Datatypes .212
Determine Precision and Scale. 212

7.5 User-Defined Datatypes. .213
Length, Precision, and Scale. 214

Transact-SQL Users Guide
Content P U B L I C 7

Null Type. .214
Associate Rules and Defaults with User-Defined Datatypes. 214
Create User-Defined Datatype with IDENTITY Property. 215
Create IDENTITY Columns from User-Defined Datatypes. .215
Drop a User-Defined Datatype. 215

7.6 Datatype Entry Rules. .216
char, nchar, unichar, univarchar, varchar, nvarchar, unitext, and text. 216
Date and Time. 217
binary, varbinary, and image. 221
money and smallmoney. 221
float, real, and double precision. .222
decimal and numeric. 222
Integer Types and Their Unsigned Counterparts. 223
timestamp. 223

7.7 Get Information About Datatypes. .223

8 Queries: Selecting Data from a Table. 225
8.1 select Syntax. 225

Check for Identifiers in a select Statement. 226
8.2 Choose Columns Using the select Clause. 227

Choose all Columns Using select * . 227
Choose Specific Columns. 228
Rearrange the Column Order. 228
Rename Columns in Query Results. 229
Expressions. 229
Select Text, Unitext, and Image Values. 234
select List Summary. 235

8.3 select for update. 236
Use select for update in Cursors and DML. 237
Concurrency Issues. 237

8.4 Eliminate Duplicate Query Results with Distinct. 238
8.5 Specify Tables with the from Clause. 239
8.6 Select Rows Using the where Clause. 240

Comparison Operators in where Clauses. 241
Ranges (between and not between). .242
Lists (in and not in). 243
Matching Character Strings: like. 245
“Unknown” Values: NULL. 251
Connect Conditions with Logical Operators. 256

8.7 Multiple select Items in a Nested exists Query. 258
8.8 Use a Column Alias in Nested select Statements. 259

8 P U B L I C
Transact-SQL Users Guide

Content

9 Subqueries: Queries Within Other Queries. 260
9.1 Subquery Restrictions. 261
9.2 Qualify Column Names. 262
9.3 Subqueries with Correlation Names. 263
9.4 Multiple Levels of Nesting. 264
9.5 Using an Asterisk in Nested select Statements . 264

Use Table-Name Qualifiers. 265
Use Nested Queries with group by. .265
Usage and Examples of Asterisks in select Statements. 266

9.6 Subqueries in update, delete, and insert Statements. 268
9.7 Subqueries in Conditional Statements. 268
9.8 Subqueries Instead of Expressions. .269
9.9 Types of Subqueries. 270

Expression Subqueries. .270
Quantified Predicate Subqueries. 273
Subqueries Used with in. 277
Subqueries Used with not in. 279
Subqueries Using not in with NULL. 280
Subqueries Used with exists. 280
Subqueries Used with not exists. 282
Find Intersection and Difference with exists. 283
Subqueries Using SQL Derived Tables. 284

9.10 Correlated Subqueries. 284
Correlated Subqueries with Correlation Names. 285
Correlated Subqueries with Comparison Operators. 286
Correlated Subqueries in a having Clause. .287

10 Aggregates, Grouping, and Sorting. 288
10.1 Aggregate Functions and Datatypes. 289
10.2 count versus count (*). 290
10.3 Aggregate Functions with distinct. .291
10.4 Null Values and the Aggregate Functions. 292
10.5 Using Statistical Aggregates. 293
10.6 Organize Query Results into Groups: the group by Clause. 293

group by and SQL Standards. 295
Nest Groups with group by. 295
Reference Other Columns in Queries Using group by. 296
Expressions and group by. 298
group by in Nested Aggregates . 299
Null Values and group by. 299
where Clause and group by. 300
group by and all. .302

Transact-SQL Users Guide
Content P U B L I C 9

Aggregates Without group by. 303
10.7 Select Groups of Data: the having Clause. 304

Interactions between having, group by, and where Clauses .305
having Without group by. .307

10.8 Sort Query Results: the order by Clause. 308
order by and group by. 311
order by and group by Used with select distinct. 311

10.9 Summarize Groups of Data: the compute Clause. 312
Row Aggregates and compute. .314
Specify More Than One Column After compute. .316
Use More Than One compute Clause. 316
Apply an Aggregate to More Than One Column. 317
Use Different Aggregates in the Same compute Clause. 317
Generate Totals: compute Without by. 318

10.10 Combine Queries: the union Operator. 319
Guidelines for union Queries. 320

11 Joins: Retrieve Data from Several Tables. 323
11.1 Join Syntax. 324
11.2 Joins and the Relational Model. 324
11.3 How Joins are Structured. 325

The from Clause. 326
The where Clause. 327

11.4 How Joins are Processed. .329
11.5 Equijoins and Natural Joins. 330
11.6 Joins with Additional Conditions. 331
11.7 Joins Not Based on Equality. 331
11.8 Self-Joins and Correlation Names. 332
11.9 The Not-Equal Join. 333

Not-Equal Joins and Subqueries. 335
11.10 Join More Than Two Tables. 336
11.11 Star Joins. .337
11.12 Outer Joins. 337

Inner and Outer Tables. .338
Outer Join Restrictions. .338
Views Used with Outer Joins. 338
ANSI Inner and Outer Joins. .339
ANSI outer joins. 344
Transact-SQL Outer Joins. .351

11.13 Relocated Joins. 355
Configuring Relocated Joins. 355

11.14 How Null Values Affect Joins. 356

10 P U B L I C
Transact-SQL Users Guide

Content

11.15 Determine Which Table Columns to Join. 356

12 Managing Data. 358
12.1 Referential Integrity. 358
12.2 Transactions. 359
12.3 Sample Databases. 360
12.4 Add New Data. 360

Add New Rows with Values. 361
Insert Data into Specific Columns. 361
Add New Rows with select. 369

12.5 Create Nonmaterialized, Non-Null Columns. 372
Add Nonmaterialized Columns. 372
Tables That Already Have Nonmaterialized Columns. .373
Nonmaterialized Column Storage. 373
Alter Nonmaterialized Columns. .374
Limitations for Nonmaterialized Columns . 374

12.6 Change Existing Data. 374
Use the set Clause with Update. 375
Use the where Clause with update. 376
Use the from Clause with update. .376
Perform updates with joins. 377
Update IDENTITY Columns. 377

12.7 Change text, unitext, and image data. 378
12.8 Truncate Trailing Zeros. 379
12.9 Transfer Data Incrementally. 382

Mark Tables for Incremental Transfer. 382
Transfer Tables from a Destination File. 383
Convert SAP ASE Datatypes to SAP IQ. 383
Store Transfer Information. 385
Exceptions and Errors. 387
Sample Incremental Transfer. 388

12.10 Delete Data. 392
Use the from Clause with delete. 392
Delete from IDENTITY Columns. 393

12.11 Delete All Rows from a Table. 394
truncate table Syntax. .394

13 Views: Limit Access to Data. 395
13.1 Advantages of Views. 395
13.2 Security. .396
13.3 Logical Data Independence. 397
13.4 Create Views. 397

Transact-SQL Users Guide
Content P U B L I C 11

create view Syntax. .398
select Statement Usage with create view. 399
Validate a View’s Selection Criteria. 403

13.5 Retrieve Data Through Views. .405
View Resolution. .406
Redefine Views. 406
Rename Views. .407
Alter or Drop Underlying Objects. 408

13.6 Modify Data Through Views. .408
Restrictions on Updating Views. 409

13.7 Drop Views. 412
13.8 Use Views as Security Mechanisms. 412
13.9 Get Information About Views. 413

14 Defining Defaults and Rules for Data. 415
14.1 Create Defaults. .415

Bind Defaults. 416
Unbind Defaults. 418
How Defaults Affect NULL Values. 419

14.2 Drop Defaults. 419
14.3 Create Rules. 420

Bind Rules. 421
Rules and NULL Values. 423
Unbind Rules. .423

14.4 Drop Rules. 424
14.5 Retrieve Information About Defaults and Rules. 425
14.6 Share Inline Defaults. 425

Create an Inline Shared Default. .425
Unbind a Shared Inline Default. 426
Limitations for Shared Inline Defaults . 426

15 Precomputed Result Sets. .428
15.1 Benefits of Precomputed Result Sets. 428
15.2 Configuring SAP ASE for Precomputed Result Sets. 429
15.3 Creating Precomputed Result Sets. 430
15.4 Identifying Precomputed Result Sets. 430
15.5 Refreshing Precomputed Result Sets. 431
15.6 Altering Precomputed Result Sets. 433
15.7 Dropping or Truncating Precomputed Result Sets. 434
15.8 Configuring Staleness. 435
15.9 Querying Precomputed Result Sets. 435
15.10 Rewriting Queries. 436

12 P U B L I C
Transact-SQL Users Guide

Content

15.11 Replicating Precomputed Result Sets. 437
15.12 Restrictions for Precomputed Result Sets . 437

16 Batches and Control-of-Flow Language. 439
16.1 Rules Associated with Batches. 439

Examples of Using Batches. 440
Batches Submitted as Files. 443

16.2 Control-of-Flow Language Usage. 443
if...else. 444
case Expression. 446
begin...end. 455
while and break...continue. 456
declare and Local Variables. 458
goto. 458
return. 458
print. 459
raiserror. 460
Create Messages for print and raiserror. 461
waitfor. 462
Comments. 463

16.3 Local Variables. .465
Local Variables and select Statements. 465
Local Variables and update Statements. 467
Local Variables and Subqueries. 467
Local Variables and while Loops and if…else Blocks. 467
Variables and Null Values. 468
Declaring a Table as a Variable. 469

16.4 Global Variables. 471
Transactions and Global Variables. 471

17 Transact-SQL Functions. 475
17.1 Built-In Functions. 475

System Functions. 475
String Functions. 476
Text and Image Functions . 479
Aggregate Functions. 480
Statistical Aggregate Functions. 485
Mathematical Functions. .486
Date Functions. 487
Datatype Conversion Functions. 488
Security Functions. 500
XML Functions. 500

Transact-SQL Users Guide
Content P U B L I C 13

17.2 User-Created Functions. .501
Table User-Defined Functions. 501

18 Stored Procedures . 504
18.1 Examples. .505
18.2 Permissions. 507
18.3 Performance. 507
18.4 Create and Execute Stored Procedures. 508

Deferred Name Resolution Usage. 508
Parameters. .509
Default Parameters. .511
Using Multiple Parameters. 514
LOB Datatypes in Stored Procedures. 515
Procedure Groups. 516
Compiling Individual Statements in a Stored Procedure. .516
with recompile in create procedure. 520
with recompile in execute. 520
Nesting Procedures. 521
Temporary Tables in Stored Procedures. 521
Set Options in Stored Procedures. 522
Execution of Stored Procedures. 524

18.5 Deferred Compilation in Stored Procedures. 529
18.6 Information Returned From Stored Procedures. 529

Return Status. 530
Check Roles in Procedures. 532
Return Parameters. 533

18.7 Restrictions Associated with Stored Procedures. 536
Qualify Names Inside Procedures. 537

18.8 Rename Stored Procedures. .538
Rename Objects Referenced by Procedures. .538

18.9 Stored Procedures as Security Mechanisms. 538
18.10 Dropping Stored Procedures. 539
18.11 System Procedures. 539

Execute System Procedures. 539
Permissions on System Procedures. 540
Types of System Procedures. 540
Other SAP ASE-Supplied Stored Procedures. 540

18.12 Get Information About Stored Procedures. .541
Get a Report with sp_help. 541
View the Source Text of a Procedure with sp_helptext. 541
Identify Dependent Objects with sp_depends. 542
Identify Permissions with sp_helprotect. .543

14 P U B L I C
Transact-SQL Users Guide

Content

19 Extended Stored Procedures Usage. 544
19.1 XP Server. 544

sybesp_dll_version . 545
19.2 Dynamic Link Library Support. 545
19.3 Open Server API. 546
19.4 ESPs and Permissions. .547
19.5 ESPs and Performance. 548
19.6 Create Functions for ESPs. .548

Files for ESP Development. 548
Open Server Data Structures. 549
Open Server Return Codes. 549
Outline of a Simple ESP Function. 549
ESP Function Example. 550
Building the DLL. 553

19.7 Registering ESPs. 555
create procedure Usage. 555
sp_addextendedproc Usage. 556

19.8 Remove ESPs. 557
Renaming ESPs. 557

19.9 Execute ESPs. 557
19.10 System ESPs. 558
19.11 Get Information About ESPs. 559
19.12 ESP Exceptions and Messages. .559

20 Cursors: Accessing Data. 560
20.1 Types of Cursors. .561
20.2 Cursor Scope. 561
20.3 Cursor Scans and the Cursor Result Set. 562
20.4 Make Cursors Updatable. 563

Determine Which Columns Can Be Updated. .564
20.5 How SAP ASE Processes Cursors. .565
20.6 Monitor Cursor Statements. 567
20.7 declare cursor . 568

cursor_scrollability. 569
Cursor Sensitivity. 569
read_only Option. 570

20.8 Open Cursors. .570
20.9 Fetch Data Rows Using Cursors. 570

fetch Syntax. 571
into Clause Usage. 572
Check Cursor Status. 572
Get Multiple Rows With Each Fetch. 574

Transact-SQL Users Guide
Content P U B L I C 15

Check the Number of Rows Fetched. 575
20.10 Update and Delete Rows Using Cursors. 576

Update Cursor Result Set Rows. 576
Delete Cursor Result Set Rows. 577

20.11 Close and Deallocate Cursors. 578
20.12 Cursor Examples. 578
20.13 Cursors in Stored Procedures. 583
20.14 Cursors and Locking. 585

Cursor-Locking Options. 586
20.15 Transaction Support for Updatable Cursors. 586
20.16 Get Information About Cursors. 587
20.17 Browse Mode Versus Cursors. 588

21 Triggers: Enforce Referential Integrity. 591
21.1 Use Triggers Versus Integrity Constraints. 592
21.2 Create Triggers. 592

create trigger Syntax. 593
21.3 Use Triggers to Maintain Referential Integrity. 593

Test Data Modifications Against the Trigger Test Tables. 594
Insert Trigger Example. 596
Delete Trigger Examples. 596
Update Trigger Examples. 598

21.4 Multirow Considerations. 602
Insert Trigger Example Using Multiple Rows. .602
Delete Trigger Example Using Multiple Rows. 603
Update Trigger Example Using Multiple Rows. 604
Conditional Insert Trigger Example Using Multiple Rows. 604

21.5 Roll Back Triggers. 605
21.6 Global Login Triggers. 607
21.7 Nesting Triggers. .607

Trigger Self-Recursion. 608
21.8 Rules Associated with Triggers. .610

Triggers and Permissions. 610
Trigger Restrictions. 610
Implicit and Explicit Null Values. 611
Triggers and Performance. 612
set Commands in Triggers. 612
Renaming and triggers. 612

21.9 Disable Triggers. 612
21.10 Drop Triggers. 613
21.11 Multiple Triggers. 613

Changing the Order of When a Trigger Is Fired. 614

16 P U B L I C
Transact-SQL Users Guide

Content

Order of Triggers in Merge Statements. 614
Transactional Behavior with Multiple Triggers. .615
Disabling and Reenabling Triggers. 615

21.12 Get Information About Triggers. 616
sp_help. 617
sp_helptext. 617
sp_depends. .618

21.13 instead of Triggers. 618
Inserted and Deleted Logical Tables. .619
Triggers and Transactions. 620
Nesting. .620
Recursion. 621
instead of insert Triggers. 621
instead of update Trigger. 623
instead of delete Trigger. .624
Searched and Positioned update and delete. .624
Get Information About instead of Triggers. .626

22 In-Row Off-Row LOB. .628
22.1 In-Row LOB Columns Compression . 628
22.2 Migrate Off-Row LOB Data to In-Row Storage .629

In-Row LOB Columns and Bulk Copy. 629
Methods for Migrating Existing Data. 630
Guidelines for Selecting the In-Row LOB Length. 638
Identifying In-Row LOB Length Selection. 638

22.3 Downgrading Tables Containing In-Row LOB Columns. 639

23 Transactions: Maintain Data Consistency and Recovery. 640
23.1 Transactions and Consistency. 641
23.2 Transactions and Recovery. 642
23.3 Transaction Usage. 642

Allow Data Definition Commands in Transactions. 642
System Procedures That Are Not Allowed in Transactions. .644
Begin and Commit Transactions. 644
Roll Back and Save Transactions. .645
Transaction States. 647
Nested Transactions. 649
Example of a Transaction. 649

23.4 Transaction Mode and Isolation Level. .650
Choose a Transaction Mode. 650
Choose an Isolation Level. 652
Compliance with SQL Standards. 658

Transact-SQL Users Guide
Content P U B L I C 17

Use the Lock Table Command to Improve Performance. 659
23.5 Transactions in Stored Procedures and Triggers. 659

Errors and Transaction Rollbacks. 660
Transaction Modes and Stored Procedures. 663

23.6 Use Cursors in Transactions. 665
23.7 Issues to Consider When Using Transactions. 666
23.8 Backup and Recovery of Transactions. 667
23.9 Using select into in Multistatement Transactions. .668

24 Locking Commands and Options. 669
24.1 wait/nowait Option of the Lock Table Command. 669
24.2 Session-Level Lock-Wait Limit. 670
24.3 Server-Wide Lock-Wait Limit. 671
24.4 Information on the Number of Lock-Wait Timeouts. 671
24.5 Readpast Locking for Queue Processing. 671

Incompatible Locks During readpast Queries. 672
Allpages-Locked Tables and readpast Queries. 672
Effects of Isolation Levels Select Queries with readpast. .673
Data Modification Commands with readpast and Isolation Levels. 674
text, unitext, and image columns and readpast. 674

25 The pubs2 Database. 675
25.1 Tables in the pubs2 Database. 675

publishers Table. 675
authors Table. 676
titles Table. 676
titleauthor Table. 678
salesdetail Table. 679
sales Table. 680
stores Table. 680
roysched Table. 681
discounts Table. 681
blurbs Table. 682
au_pix Table. 682

25.2 Diagram of the pubs2 Database. 683

26 The pubs3 Database. 684
26.1 Tables in the pubs3 Database. 684

publishers Table. 684
authors Table. 685
titles Table. 685
titleauthor Table. 687

18 P U B L I C
Transact-SQL Users Guide

Content

salesdetail Table. 687
sales Table. 688
stores Table. 689
store_employees Table. 689
roysched Table. 689
discounts Table. .690
blurbs Table. 690

26.2 Diagram of the pubs3 Database. 691

Transact-SQL Users Guide
Content P U B L I C 19

1 SQL Building Blocks

SQL includes commands for querying (retrieving data from) a database, and for creating new databases and
database objects, adding new data, modifying existing data, and other functions.

Originally developed by the IBM San Jose Research Laboratory in the late 1970s, SQL (Structured Query
Language) has been adopted by, and adapted for, many relational database management systems. It has been
approved as the official relational query language by the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO).

Transact-SQL, the SAP extension of SQL, is compatible with IBM SQL and most other commercial
implementations of SQL. It provides important extra capabilities and functions, such as summary calculations,
stored procedures (predefined SQL statements), and error handling.

Note
If Java is enabled on your server, you can install and use Java classes in the database. You can invoke Java
operations and store Java classes using standard Transact-SQL commands.

Related Information

The pubs2 Database [page 675]
The pubs3 Database [page 684]

1.1 Tables, Columns, and Rows

In relational database management systems, users access and modify data that is stored in tables. SQL is
specifically designed for the relational model of database management.

Each row, or record, in a table describes one occurrence of a piece of data—a person, a company, a sale, or
some other thing. Each column, or field, describes one characteristic of the data—a person’s name or address,
a company’s name or president, quantity of items sold.

A relational database is made up of a set of tables that can be related to each other. The database usually
contains many tables.

20 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

1.2 Queries, Data Modification, and Commands

In SQL, a query requests data using the select command.

For example, this query asks for authors who live in the state of California:

select au_lname, city, state from authors where state = "CA"

Data modification refers to adding, deleting, or changing data using the insert, delete, or update
commands. For example:

insert into authors (au_lname, au_fname, au_id) values ("Smith", "Gabriella", "999-03-2346")

Other SQL commands, such as dropping tables or adding users, perform administrative operations. For
example:

drop table authors

Each command or SQL statement begins with a keyword, such as insert, that names the basic operation
performed. Many SQL commands also have one or more keyword phrases, or clauses, that tailor the
command to meet a particular need. When you run a query, Transact-SQL displays the results. If no data
meets the criteria specified in the query, you see a message to that effect. Data modification statements and
administrative statements do not retrieve data, and therefore, do not display results. Transact-SQL provides a
message to let you know whether the data modification or other command has been performed.

1.3 Relational Operations

The basic query operations in a relational system include selection (also called restriction), projection, and
join. These can all be combined in the SQL select command.

A selection is a subset of the rows in a table. Specify the limiting conditions in the select query. For example,
to look only at the rows for all authors who live in California, enter:

select * from authors where state = "CA"

A projection is a subset of the columns in a table. For example, this query displays only the name and city of all
authors, omitting the street address, the phone number, and other information:

select au_fname, au_lname, city from authors

A join links the rows in two or more tables by comparing the values in specified fields. For example, suppose
you have one table containing information about authors, including the columns au_id (author identification
number) and au_lname (author’s last name). A second table contains title information about books, including

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 21

a column that gives the ID number of the book’s author (au_id). You might join the authors table and the
titles table, testing for equality of the values in the au_id columns of each table. Whenever there is a match,
a new row—containing columns from both tables—is created and appears as part of the result of the join. Joins
are often combined with projections and selections so that only selected columns of selected matching rows
appear.

select * from authors, publishers where authors.city = publishers.city

1.4 Compiled Objects

SAP Adaptive Server Enterprise (SAP ASE) uses compiled objects to hold vital information about each
database and to help you access and manipulate data.

A compiled object requires entries in the sysprocedures table and includes:

● Check constraints
● Defaults
● Rules
● Stored procedures
● Extended stored procedures
● Triggers
● Views
● Functions
● Computed columns
● Partition conditions

Compiled objects are created from source text, which are SQL statements that describe and define the
compiled object. When a compiled object is created, SAP® ASE:

1. Parses the source text, catching any syntactic errors, to generate a parsed tree.
2. Normalizes the parsed tree to create a normalized tree, which represents the user statements in a binary

tree format. This is the compiled object.
3. Stores the compiled object in the sysprocedures table.
4. Stores the source text in the syscomments table.

1.4.1 Save or Restore Source Text

If a compiled object does not have matching source text in the syscomments table, you can restore the source
text to syscomments.

Use any of the following methods:

● Load the source text from a backup.
● Manually re-create the source text.

22 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

● Reinstall the application that created the compiled object.

1.4.2 Verify and Encrypt Source Text

Use these commands to verify the existence of source text and encrypt the source text of a compiled object.

● sp_checkresource – verifies that source text is present in syscomments for each compiled object.
● sp_hidetext – encrypts the source text of a compiled object in the syscomments table.
● sp_helptext – displays the source text if it is present in syscomments, or notifies you of missing source

text.
● dbcc checkcatalog – notifies you of missing source text.

1.4.3 Replacing Object Definitions

Replace existing compiled object definitions with new definitions while preserving the original names, object
IDs, security attributes—such as auditing options and permissions— and replication attributes.

The create or replace functionality creates a new object if it does not exist, or replaces an existing object
with the same name. The or replace clause implicitly drops and re-creates an existing object of the same
name and type within the database, changing the definition of the object, while preserving the existing security
and replication attributes. If the text of the compiled object was hidden before it was replaced, it will remain
hidden after being replaced.

The or replace functionality is supported only for objects that do not contain data. Check constraints,
computed columns, and partition conditions cannot be replaced.

If the object is in use while being replaced, error 3702 is raised:

"Cannot drop or replace the %S_MSG '%.*s' because it is currently in use."

When an object is replaced, SAP ASE replaces its definition in the following system tables: sysprocedures,
syscomments, sysdepends, and syscolumns. Some fields in the sysobjects table are also updated. The
query tree for the object is normalized before being replaced in sysprocedures.

The replaced object may be used in other object definitions. SAP ASE recompiles the replaced object when it is
used, however, in some cases, you may need to replace the calling object when the interface of the replaced
object does not match with that used in the calling object. You can run sp_depends on the replaced object to
verify whether there are calling objects and then replace them. For details, see Objects Dependent on Replaced
Objects, in Reference Manual: Commands:

● create procedure
● create view
● create function

With granular permissions enabled or disabled, you must be the object owner to replace a compiled object.
You cannot replace a compiled object by impersonating the object owner through an alias or setuser.
However, if you are the owner through set proxy, you can replace a compiled object.

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 23

Note
The create or replace functionality performs an implicit drop followed by create in the same
transaction. Because of this, additional transaction log space is required. If you use create or replace
instead of dropping an object and then creating the object, you may need to increase the size of the
transaction log.

1.5 Compliance to ANSI Standards

Certain behaviors defined by the SQL standards are incompatible with SAP ASE applications. Transact-SQL
provides set options that allow you to toggle these behaviors.

By default, compliant behavior is enabled for all Embedded SQL™ precompiler applications.

Option Setting

ansi_permissions on

ansinull on

arithabort off

arithabort numeric_truncation on

arithignore off

chained on

close on endtran on

fipsflagger on

quoted_identifier on

string_rtruncation on

transaction isolation level 3

24 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

1.5.1 Federal Information Processing Standards (FIPS)
Flagger

For customers writing applications that must conform to the ANSI SQL standard, SAP ASE provides a set
fipsflagger option.

When this option is turned on, all commands containing Transact-SQL extensions that are not allowed in
entry-level ANSI SQL generate an informational message. This option does not disable the extensions.
Processing completes when you issue the non-ANSI SQL command.

1.5.2 Chained Transactions and Isolation Levels

SAP ASE provides SQL standard-compliant “chained” transaction behavior as an option.

In chained mode, all data retrieval and modification commands (delete, insert, open, fetch, select, and
update) implicitly begin a transaction. Since such behavior is incompatible with many Transact-SQL
applications, Transact-SQL style (or “unchained”) transactions remain the default.

You can initiate chained transaction mode using the set chained option. The set transaction
isolation level option controls transaction isolation levels.

Related Information

Transactions: Maintain Data Consistency and Recovery [page 640]

1.5.3 Identifier Compliance to ANSI Standards

To be compliant with entry-level ANSI SQL, identifiers cannot begin with a pound sign (#), have more than 18
characters, or contain lowercase letters. SAP ASE supports delimited identifiers for table, view, and column
names which can be used to avoid certain restrictions on object names.

Delimited identifiers are object names enclosed in double quotation marks. Use the set
quoted_identifier option to recognize delimited identifiers. When this option is on, all characters enclosed
in double quotes are treated as identifiers. Because this behavior is incompatible with many existing
applications, the default setting for this option is off.

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 25

1.5.4 SQL Standard-Style Comments

In Transact-SQL, comments are delimited by “/*” and “*/”, and can be nested. Transact-SQL also supports
SQL standard-style comments, which consist of any string beginning with two connected minus signs, a
comment, and a terminating new line.

select "hello" -- this is a comment

The Transact-SQL “/*” and “*/” comment delimiters are fully supported, but “--” within Transact-SQL
comments is not recognized.

1.5.5 Right Truncation of Character Strings

The string_rtruncation set option controls silent truncation of character strings for SQL standard
compatibility. Enable this option to prohibit silent truncation and enforce SQL standard behavior.

1.5.6 Permissions Required for update and delete
Statements

The ansi_permissions set option determines permissions that are required for delete and update
statements.

When enabled, SAP ASE uses the more stringent ANSI SQL permission requirements for these statements. By
default, this option is disabled because this behavior is incompatible with many existing applications.

1.5.7 Arithmetic Errors

The arithabort and arithignore options for set allow compliance with the ANSI SQL standard.

● arithabort arith_overflow specifies behavior following a divide-by-zero error or a loss of precision.
The default setting, arithabort arith_overflow on, rolls back the entire transaction in which the
error occurs. If the error occurs in a batch that does not contain a transaction, arithabort
arith_overflow on does not roll back earlier commands in the batch, but SAP ASE does not execute
statements in the batch that follow the error-generating statement.
If you set arithabort arith_overflow off, SAP ASE aborts the statement that causes the error but
continues to process other statements in the transaction or batch.

● arithabort numeric_truncation specifies behavior following a loss of scale by an exact numeric
type. The default setting, on, aborts the statement that causes the error but continues to process other
statements in the transaction or batch. If you set arithabort numeric_truncation off, the query
results is truncated and processing continues. For compliance with the ANSI SQL standard, enter set
arithabort numeric_truncation on.

● arithignore arith_overflow determines whether SAP ASE displays a message after a divide-by-zero
error or a loss of precision. The default setting, off, displays a warning message after these errors. Setting

26 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

arithignore arith_overflow on suppresses warning messages after these errors. For compliance
to the ANSI SQL standard, enter set arithignore off.

1.5.8 Synonymous Keywords

Several keywords added for SQL standard compatibility are synonymous with existing Transact-SQL
keywords.

Current Syntax Additional Syntax

commit tran, commit transaction,
rollback tran, rollback transaction

commit work, rollback work

any some

grant all grant all privileges

revoke all revoke all privileges

max (<expression>) max ([all | distinct]) <expression>

min (<expression>) min ([all | distinct]) <expression>

user_name <function> user <keyword>

1.5.9 Treatment of Nulls

The set option ansinull determines whether or not evaluation of null-valued operands in SQL equality (=)
or inequality (!=) comparisons and aggregate functions is SQL-standard-compliant.

This option does not affect how null values are evaluated in other kinds of SQL statements such as create
table.

1.6 Data and Language Characters

The characters recognized by SAP ASE are limited in part by the language of the installation and the default
character set.

Therefore, the characters allowed in SQL statements and in the data contained in the server vary from
installation to installation and are determined in part by definitions in the default character set.

SQL statements must follow precise syntactical and structural rules, and can contain operators, constants,
SQL keywords, special characters, and identifiers. Identifiers are database objects within the server, such as

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 27

database names or table names. Naming conventions vary for some parts of the SQL statement. Operator,
constants, SQL keywords, and Transact-SQL extensions must adhere to stricter naming restrictions than
identifiers, which themselves cannot contain operators and special characters. However, identifiers, the data
contained within the server, can be named following more permissive rules.

SQL Data Characters

The set of SQL data characters is the larger set from which both SQL language characters and identifier
characters are taken. Any character in an SAP ASE character set, including both single-byte and multibyte
characters, can be used for data values.

SQL Language Characters

SQL keywords, Transact-SQL extensions, and special characters, such as the comparison operators > and <,
can be represented only by 7-bit ASCII values A – Z, a – z, 0 – 9, and certain ASCII characters.

These are the ASCII characters used in SQL:

Character Description

; (semicolon)

((open parenthesis)

) (close parenthesis)

, (comma)

: (colon)

% (percent sign)

- (minus sign)

? (question mark)

’ (single quote)

" (double quote)

+ (plus sign)

_ (underscore)

* (asterisk)

/ (slash)

28 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

Character Description

(space)

< (less than operator)

> (greater than operator)

= (equals operator)

& (ampersand)

| (vertical bar)

^ (circumflex)

[(left bracket)

] (right bracket)

@ (at sign)

~ (tilde)

! (exclamation point)

$ (dollar sign)

(number sign)

. (period)

1.6.1 Naming Convention Identifiers

Conventions for naming database objects apply throughout SAP ASE software and documentation. Most user-
defined identifiers can be up to 255 bytes in length; other identifiers can be only up to 30 bytes. In either case,
the byte limit is independent of whether or not multibyte characters are used.

255-Byte-Limit Identifiers 30-Byte-Limit Identifiers

table name cursor name

column name server name

index name host name

view name login name

user-defined datatype password

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 29

255-Byte-Limit Identifiers 30-Byte-Limit Identifiers

trigger name host process identification

default name application name

rule name initial language name

constraint name character set name

stored procedure name user name

variable name group name

JAR name database name

Lightweight processes (LWPs) or dynamic statement name cache name

function name logical device name

time range name segment name

function name session name

application context name execution class name

engine name

quiesce tag name

You must declare the first character of an identifier as an alphabetic character in the character set definition in
use on SAP ASE. You can also use the @ sign or _ (underscore character). The @ sign as the first character of
an identifier indicates a local variable.

Temporary table names must either begin with # (the pound sign), if they are created outside tempdb, or be
preceded by “tempdb.” If you create a temporary table with a name requiring fewer than 238 bytes, SAP ASE
adds a 17-byte suffix to ensure that the table name is unique. If you create a temporary table with a name of
more than 238 bytes, SAP ASE uses only the first 238 bytes, and then adds the 17-byte suffix.

After the first character, identifiers can include characters declared as alphabetic, numeric, or the character $,
#, @, _, ¥ (yen), or £ (pound sterling). However, you cannot use two @@ symbols together at the beginning of a
named object, as in “@@myobject.” This naming convention is reserved for global variables, which are system-
defined variables that are automatically updated.

Case sensitivity is set during server installation and can be changed only by a system administrator. To see the
setting for your server, execute:

sp_helpsort

On a server that is not case-sensitive, the identifiers MYOBJECT, myobject, and MyObject (and all
combinations of case) are considered identical. You can create only one of these objects, but you can use any
combination of case to refer to that object.

30 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

You cannot use embedded spaces, or SQL reserved words in identifiers. Use valid_name to determine if an
identifier you have created is acceptable to SAP ASE:

select valid_name ("@name", 255)

See Reserved Words and Transact-SQL Functions, in Reference Manual: Building Blocks

1.6.1.1 Multibyte Character Sets

In multibyte character sets, a wider range of characters is available for use in identifiers.

For example, on a server that has the Japanese language installed, you can use the following types of
characters as the first character of an identifier: Zenkaku or Hankaku Katakana, Hiragana, Kanji, Romaji,
Cyrillic, Greek, or ASCII.

Although Hankaku Katakana characters are allowed in identifiers on Japanese systems, SAP recommends that
you do not use them in heterogeneous systems. These characters cannot be converted between the EUC-JIS
and Shift-JIS character sets.

The same is true for some 8-bit European characters. For example, the character “Œ,” the OE ligature, is part
of the Macintosh character set (code point 0xCE), but does not exist in the ISO 8859-1 (iso_1) character set. If
“Œ” exists in data being converted from the Macintosh to the ISO 8859-1 character set, it causes a conversion
error.

If an object identifier contains a character that cannot be converted, the client loses direct access to that
object.

1.6.1.2 Delimited Identifiers

Delimited identifiers are object names enclosed in double quotes. Using delimited identifiers allows you to
avoid certain restrictions on object names.

You can use double quotes to delimit table, view, and column names; you cannot use them for other database
objects.

Delimited identifiers can be reserved words, can begin with nonalphabetic characters, and can include
characters that would not otherwise be allowed. They cannot exceed 253 bytes. A pound sign (#) is illegal as a
first character of any quoted identifier.

Before you create or reference a delimited identifier, execute:

set quoted_identifier on

This allows SAP ASE to recognize delimited identifiers. Each time you use the quoted identifier in a statement,
you must enclose it in double quotes. For example:

create table "1one"(col1 char(3)) select * from "1one" create table "include spaces" (col1 int)

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 31

Note
You cannot use delimited identifiers with bcp, as these identifiers may not be supported by all front-end
products, and may produce unexpected results when used with system procedures.

While the quoted_identifier option is turned on, use single quotes around character or date strings.
Delimiting these strings with double quotes causes SAP ASE to treat them as identifiers. For example, to insert
a character string into <col1> of <1onetable>, use:

insert "1one"(col1) values ('abc')

rather than:

insert "1one"(col1) values ("abc")

To insert a single quote into a column, use two consecutive single quotation marks. For example, to insert the
characters “a’b” into col1, use:

insert "1one"(col1) values('a''b')

Syntax that Includes Quotes

When you set the quoted_identifier option to on for a session, use double quotes to delimit object names
that may cause syntax errors. Use single quotes for character strings. When you set the quoted_identifier
option to off for a session (the default), use double or single quotes to delimit character strings (you cannot
quote identifiers).

This example creates table 1one, which, because its name starts with a digit, fails the rules for identifiers and
must be set in quotes:

set quoted identifier on go create table "1one" (c1 int)

Although create table and most other SQL statements require an identifier to name a table or other SQL
object, some commands, functions, and so on require that you supply an object name as a string, whether or
not you set the quoted_identifier option to on. For example

select object_id('1one')

----------------------- 896003192

You can include an embedded double quote in a quoted identifier by doubling the quote. This creates a table
named embedded”quote:

create table "embedded""quote" (c1 int)

32 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

However, you need not double the quote when the statement syntax requires the object name to be expressed
as a string:

select object_id('embedded"quote')

Bracketed Delimited Identifiers

Bracketed identifiers are supported. The behavior is identical to that of quoted identifiers, with the exception
that you need not set the quoted_identifier option to on to use them.

create table [bracketed identifier](c1 int)

Support for brackets with delimited identifiers increases platform compatibility.

1.6.1.3 Uniqueness and Qualification Conventions

The names of database objects need not be unique in a database. However, column names and index names
must be unique within a table, and other object names must be unique for each owner within a database.
Database names must be unique.

If you try to create a column using a name that is not unique in the table, or to create another database object,
such as a table, a view, or a stored procedure, with a name that you have already used in the same database,
SAP ASE responds with an error message.

You can uniquely identify a table or column by adding other names that qualify it. The database name, the
owner’s name, and, for a column, the table name or view name may be used to create a unique ID. Each of
these qualifiers is separated from the next by a period.

For example, if the user “sharon” owns the authors table in the pubs2 database, the unique identifier of the
city column in that table is:

pubs2.sharon.authors.city

The same naming syntax applies to other database objects. You can refer to any object in a similar fashion:

pubs2.dbo.titleview

dbo.postalcoderule

If the quoted_identifier option of the set command is on, you can use double quotes around individual
parts of a qualified object name. Use a separate pair of quotes for each qualifier that requires quotes. For
example, use:

database.owner."table_name"."column_name"

rather than:

database.owner."table_name.column_name"

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 33

The full naming syntax is not always allowed in create statements because you cannot create a view,
procedure, rule, default, or trigger in a database other than the one you are currently in. The naming
conventions are indicated in the syntax as:

[[database.]owner.]object_name

or:

[owner.]object_name

The default value for <owner> is the current user, and the default value for <database> is the current
database. When you reference an object in any SQL statement, other than a create statement, without
qualifying it with the database name and owner name, SAP ASE first looks at all the objects you own, and then
at the objects owned by the database owner. As long as there is enough information to identify an object, you
need not type every element of its name. You can omit intermediate elements and indicate their positions with
periods:

<database>..<table_name>

In the example above, you must include the starting element if you are using this syntax to create tables. If you
omit the starting element, a table named ..mytable is created. The naming convention prevents you from
performing certain actions on such a table, such as cursor updates.

When qualifying a column name and a table name in the same statement, use the same naming abbreviations
for each; they are evaluated as strings and must match, or an error is returned. Here are two examples with
different entries for the column name. The second example is incorrect, and cannot execute, because the
syntax for the column name does not match the syntax for the table name.

select pubs2.dbo.publishers.city from pubs2.dbo.publishers

city -----------------------
Boston
Washington Berkeley

select pubs2.sa.publishers.city from pubs2..publishers

The column prefix "pubs2.sa.publishers" does not match a table name or alias name used in the query.

1.6.1.4 Remote Servers

You can execute stored procedures on a remote SAP ASE server. The results from the stored procedure
appear on the terminal that calls the procedure.

The syntax for identifying a remote server and the stored procedure is:

[execute] server.[database].[owner].procedure_name

34 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

You can omit the execute keyword when the remote procedure call (RPC) is the first statement in a batch. If
other SQL statements precede the RPC, you must use execute or exec. You must include both the server
name and the stored procedure name. If you omit the database name, a search is performed for
procedure_name in your default database. If you give the database name, you must also give the procedure
owner’s name, unless you own the procedure or the procedure is owned by the database owner.

The following statements execute the stored procedure byroyalty in the pubs2 database located on the
GATEWAY server:

Statement Notes

GATEWAY.pubs2.dbo.byroyalty
GATEWAY.pubs2..byroyalty

byroyalty is owned by the database owner.

GATEWAY...byroyalty Use if pubs2 is the default database.

declare @var int exec
GATEWAY...byroyalty

Use when the statement is not the first statement in a batch.

See, Managing Remote Servers, in the System Administration Guide: Volume 1 for information about
configuring an SAP ASE server for remote access. A remote server name (GATEWAY in the previous example)
must match a server name in your local interfaces file. If the server name in interfaces is in uppercase
letters, you must also use uppercase letters in the RPC to match the server name.

1.7 Expressions in SAP ASE

An expression is a combination of one or more constants, literals, functions, column identifiers, and variables,
separated by operators, that returns a single value.

Expressions can be of several types, including arithmetic, relational, logical (or Boolean), and character string.
In some Transact-SQL clauses, a subquery can be used in an expression. A case expression can be used in an
expression.

Use parentheses to group the elements in an expression. When you provide “<expression>” as a variable in a
syntax statement, a simple expression is assumed. Use logical_expression when only a logical expression is
acceptable.

1.7.1 Arithmetic Operators

SAP ASE uses certain arithmetic operators.

Operator Meaning

+ Addition

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 35

Operator Meaning

– Subtraction

* Multiplication

/ Division

% Modulo (Transact-SQL extension)

Operators have certain precedence levels among arithmetic operators. In order of precedence (from lowest to
highest):

1. unary (single argument) - + ~
2. * /%
3. binary (two argument) + - & | ^
4. not
5. and
6. or

Use addition, subtraction, division, and multiplication on exact numeric, approximate numeric, and money
type columns.

A modulo operator, which can be used on exact numeric columns except money and numeric, finds the
remainder after a division involving two numbers. For example, using integers: 21 % 11 = 10 because 21 divided
by 11 equals 1, with a remainder of 10. You can obtain a noninteger result with numeric or decimal datatypes:
1.2 % 0.07 = 0.01 because 1.2 / 0.07 = 17 * 0.07 + 0.01. You receive similar results from float and real
datatype calculations: 1.2e0 % 0.07 = 0.010000.

When you perform arithmetic operations on mixed datatypes (for example, float and int) SAP ASE follows
specific rules for determining the type of the result.

Related Information

Datatypes [page 194]

1.7.2 Bitwise Operators

The bitwise operators are a Transact-SQL extension for use with the integer datatype.

These operators convert each integer operand into its binary representation and then evaluate the operands
column by column. A value of 1 corresponds to true; a value of 0 corresponds to false. The following table
summarize the results for operands of 0 and 1. If either operand is NULL, the bitwise operator returns NULL.

& (and) 1 0

36 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

1 1 0

0 0 0

| (or) 1 0

1 1 1

0 1 0

^ (exclusive or) 1 0

1 0 1

0 1 0

~ (not)

1 FALSE

0 0

The following examples use two tinyint arguments: A = 170 (10101010 in binary form) and B = 75 (01001011
in binary form).

Operation Binary Form Result Explanation

(A & B) 10101010
01001011

00001010

10 Result column equals 1 if both A and B are 1. Otherwise, re
sult column equals 0.

(A | B) 10101010
01001011

11101011

235 Result column equals 1 if either A or B, or both, is 1. Other
wise, result column equals 0.

(A ^ B) 10101010
01001011

11100001

225 Result column equals 1 if either A or B, but not both, is 1.

(~A) 10101010

01010101

85 All 1s are changed to 0s and all 0s to 1s.

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 37

1.7.3 The String Concatenation Operator

The string operator + can concatenate two or more character or binary expressions.

For example:

1. select Name = (au_lname + ", " + au_fname) from authors

Displays author names under the column heading “Name” in last-name, first-name order, with a comma
after the last name; for example, “Bennett, Abraham.”

2. select "abc" + "" + "def"

Returns the string “abc def”. The empty string is interpreted as a single space in all char, varchar,
nchar, nvarchar, and text concatenation, and in varchar insert and assignment statements.

When concatenating noncharacter, nonbinary expressions, use convert:

select "The date is " + convert(varchar(12), getdate())

1.7.4 The Comparison Operators

SAP ASE uses certain comparison operators.

Operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

!= Not equal to (Transact-SQL extension)

!> Not greater than (Transact-SQL extension)

!< Not less than (Transact-SQL extension)

In comparing character data, < means closer to the beginning of the server’s sort order and > means closer to
the end of the sort order. Uppercase and lowercase letters are equal in a sort order that is case-insensitive.
Use sp_helpsort to see the sort order for your server. For comparison purposes, trailing blanks are ignored.

In comparing dates, < means earlier than and > means later than.

38 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

Put single or double quotes around all character and date and time data used with a comparison operator:

= "Bennet" "May 22 1947"

1.7.5 Nonstandard Operators

SAP ASE supports certain nonstandard operators that are Transact-SQL extensions.

● Modulo operator: %
● Negative comparison operators: !>, !<, !=
● Bitwise operators: ~, ^, |, &
● Join operators: *= and =*

1.7.6 Character Expression Comparisons

SAP ASE treats character constant expressions as varchar. If they are compared with non-varchar
variables or column data, the datatype precedence rules are used in the comparison (that is, the datatype with
lower precedence is converted to the datatype with higher precedence).

If implicit datatype conversion is not supported, you must use the convert function. See the Reference
Manual: Building Blocks for more information on supported and unsupported conversions.

Comparison of a char expression to a varchar expression follows the datatype precedence rule; the “lower”
datatype is converted to the “higher” datatype. All varchar expressions are converted to char (that is,
trailing blanks are appended) for the comparison.

1.7.7 Empty Strings

An empty string (“”) or (‘’) is interpreted as a single blank in insert or assignment statements on varchar
data.

When varchar, char, nchar, or nvarchar data is concatenated, the empty string is interpreted as a single
space. For example, this statement is stored as “abc def”:

"abc" + "" + "def"

An empty string is never evaluated as NULL.

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 39

1.7.8 Quotation Marks

You can specify literal quotes by using an additional quote with a quote of the same type, or by enclosing a
quote in the opposite kind of quotation mark.

The first method is to use an additional quote with a quote of the same type. This is called “escaping” the
quote. For example, if you begin a character entry with a single quote, but you want to include a single quote as
part of the entry, use two single quotes:

’I don’’t understand.’

Here is an example containing internal double and single quotes. The single quote does not have to be
escaped, but the double quote does:

"He said, ""It’s not really confusing."""

The second method is to enclose a quote in the opposite kind of quotation mark. In other words, surround an
entry containing a double quote with single quotes (or vice versa). Here are some examples:

’George said, "There must be a better way."’ "Isn’t there a better way?" ’George asked, "Isn”t there a better way?"’

To continue a character string that would go off the end of one line on your screen, enter a backslash (\)
before going to the following line.

Note
If the quoted_identifier option is set to on, do not use double quotes around character or date data.
You must use single quotes, or the data is treated as an identifier.

Related Information

Delimited Identifiers [page 31]

40 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

1.7.9 Relational and Logical Expressions

A logical expression or relational expression returns TRUE, FALSE, or UNKNOWN.

The general patterns are:

expression <comparison_operator> [any | all] <expression>

expression [not] in <expression>

[not] exists <expression>

expression [not] between <expression> and <expression>

expression [not] like "<match_string>" [escape "<escape_character>"]

not expression like "<match_string>" [escape "<escape_character>"]

<expression> is [not] null

not <logical_expression>

logical_expression {and | or} <logical_expression>

● any is used with <, >, =, and a subquery. It returns results when any value retrieved in the subquery
matches the value in the where or having clause of the outer statement.

● all is used with < or > and a subquery. It returns results when all values retrieved in the subquery are less
than (<) or greater than (>) the value in the where or having clause of the outer statement.

● in returns results when any value returned by the second expression matches the value in the first
expression. The second expression must be a subquery or a list of values enclosed in parentheses. in is
equivalent to = any.

● and connects two expressions and returns results when both are true.
● or connects two or more conditions and returns results when either condition is true.

When more than one logical operator is used in a statement, and is evaluated before or. Use parentheses to
change the order of execution.

This truth table shows the results of logical operations, including those that involve null values:

and TRUE FALSE NULL

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

NULL UNKNOWN FALSE UNKNOWN

or TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 41

NULL TRUE UNKNOWN UNKNOWN

not

TRUE FALSE

FALSE TRUE

NULL UNKNOWN

The result UNKNOWN indicates that one or more of the expressions evaluates to NULL, and that the result of
the operation cannot be determined to be either TRUE or FALSE.

1.8 Transact-SQL Extensions

Transact-SQL enhances the power of SQL, and minimizes the occasions on which users must resort to a
programming language to accomplish a desired task. Transact-SQL capabilities go beyond the ISO standards
and the many commercial versions of SQL.

See, Reference Manual: Commands for the Transact-SQL extensions for each command.

1.8.1 compute Clause

The Transact-SQL compute clause extension is used with the row aggregate functions sum, max, min, avg,
count, and count_big to calculate summary values.

Queries that include a compute clause display results with both detail and summary rows. These reports
resemble those produced by almost any database management system (DBMS) with a report generator.
compute displays summary values as additional rows in the results, instead of as new columns.

Related Information

Aggregates, Grouping, and Sorting [page 288]

1.8.2 Control-of-Flow Language

Transact-SQL provides control-of-flow language that you can use as part of any SQL statement or batch.

These constructs are available:

● begin...end
● break

42 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

● continue
● declare
● goto label
● if...else
● print
● raiserror
● return
● waitfor
● while.

You can define local variables with declare and assigned values. A number of predefined global variables are
supplied by the system.

Transact-SQL also supports case expressions, which include the keywords case, when, then, coalesce, and
nullif. case expressions replace the if statements of standard SQL. case expressions are allowed
anywhere a value expression is used.

1.8.3 Stored Procedures

One of the most important Transact-SQL extensions is the ability to create stored procedures. A stored
procedure is a collection of SQL statements and optional control-of-flow statements stored under a name.

The creator of a stored procedure can also define parameters to be supplied when the stored procedure is
executed.

The ability to write your own stored procedures greatly enhances the power, efficiency, and flexibility of the
SQL database language. Since the execution plan is saved after stored procedures are run, stored procedures
can subsequently run much faster than standalone statements.

Stored procedures supplied by SAP ASE, called system procedures, aid in SAP ASE system administration.

You can execute stored procedures on remote servers. All Transact-SQL extensions support return values
from stored procedures, user-defined return statuses from stored procedures, and the ability to pass
parameters from a procedure to its caller.

Related Information

Stored Procedures [page 504]

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 43

1.8.4 Extended Stored Procedures

An extended stored procedure (ESP) uses the same interface as a stored procedure, but instead of containing
SQL statements and control-of-flow statements, it executes procedural language code that has been compiled
into a dynamic link library (DLL).

The procedural language in which an ESP function is written can be any language capable of calling C language
functions and manipulating C datatypes.

ESPs allow SAP ASE to perform a task outside the relational database management system (RDBMS), in
response to an event occurring within the database. For example, you could use an ESP to send an e-mail
notification or network-wide broadcast in response to an event occurring within the RDBMS.

There are some SAP ASE-supplied ESPs, called system extended stored procedures. One of these,
xp_cmdshell, allows you to execute an operating system command from within SAP ASE.

ESPs are implemented by an Open Server™ application called XP Server™, which runs on the same machine as
your SAP ASE server. Remote execution of a stored procedure is called a remote procedure call (RPC). Your
SAP ASE server and XP Server communicate through RPCs. XP Server is automatically installed with SAP
ASE.

See, System Extended Stored Procedures, in the Reference Manual: Procedures.

Related Information

Extended Stored Procedures Usage [page 544]

1.8.5 Triggers

A trigger is a stored procedure that instructs the system to take one or more actions when a specific change is
attempted. By preventing incorrect, unauthorized, or inconsistent changes to data, triggers help maintain the
integrity of a database.

Triggers can also protect referential integrity—enforcing rules about the relationships among data in different
tables. Triggers go into effect when a user attempts to modify data with an insert, delete, or update
command.

Triggers can nest to a depth of 16 levels, and can call local or remote stored procedures or other triggers.

Related Information

Triggers: Enforce Referential Integrity [page 591]

44 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

1.8.6 Defaults and Rules

Transact-SQL provides keywords for maintaining entity integrity, which ensures that a value is supplied for
every column that requires one, and domain integrity, which ensures that each value in a column belongs to
the set of legal values for that column.

Defaults and rules define the integrity constraints that are used during data entry and modification. A default is
a value linked to a particular column or datatype, and inserted by the system if no value is provided during data
entry. Rules are user-defined integrity constraints linked to a particular column or datatype, and enforced at
data entry time.

Related Information

Defining Defaults and Rules for Data [page 415]

1.8.7 Error Handling and set Options

Transact-SQL error-handling techniques include capturing return status from stored procedures, defining
customized return values from stored procedures, passing parameters from a procedure to its caller, and
retrieving reports from global variables.

set options customize the results display, show processing statistics, and provide other diagnostic aids for
debugging your Transact-SQL programs.

The raiserror and print statements, in combination with control-of-flow language, can direct error
messages to a Transact-SQL application. Developers can localize print and raiserror to use different
languages.

All set options except showplan and char_convert take effect immediately.

See the Reference Manual: Commands.

1.8.8 Additional SAP ASE Extensions to SQL

SAP ASE includes additional features of Transact-SQL.

● The following extensions to SQL search conditions:
○ modulo operator (%)
○ negative comparison operators (!>
○ !<, and !=)
○ bitwise operators (–, ^
○ |, and &)
○ join operators (*= and =*)

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 45

○ wildcard characters ([] and -)
○ not operator (^)

● Fewer restrictions on the group by clause and the order by clause.
● Subqueries, which can be used almost anywhere an expression is allowed.
● Temporary tables and other temporary database objects, which exist only for the duration of the current

work session.
● User-defined datatypes built on SAP ASE-supplied datatypes.
● The ability to insert data from a table into that same table.
● The ability to extract data from one table and put it into another with the update command.
● The ability to remove data based on data in other tables using the join in a delete statement.
● A fast way to delete all rows in a specified table and reclaim the space they took up with the truncate

table command.
● Identity columns, which provide system-generated values that uniquely identify each row within a table.
● Updates and selections through views. Unlike most other versions of SQL, Transact-SQL places no

restrictions on retrieving data through views, and few restrictions on updating data through views.
● Dozens of built-in functions.
● Options to the create index command for fine-tuning aspects of performance determined by indexes,

and controlling the treatment of duplicate keys and rows.
● Control over what happens when a user attempts to enter duplicate keys in a unique index, or duplicate

rows in a table.
● Bitwise operators for use with integer and bit type columns.
● Support for text and image datatypes.
● The ability to gain access to both SAP and non-SAP databases. With Component Integration Services, you

can access remote tables as if they were local, perform joins, transfer data between tables, maintain
referential integrity, provide applications such as PowerBuilder® with transparent access to
heterogeneous data, and use native remote server capabilities. For more information, see the Component
Integration Services Users Guide.

Related Information

Aggregates, Grouping, and Sorting [page 288]
Subqueries: Queries Within Other Queries [page 260]
Databases and Tables [page 50]
Datatypes [page 194]
Defining Defaults and Rules for Data [page 415]
Managing Data [page 358]
Managing Data [page 358]
Managing Data [page 358]
Managing Data [page 358]
Managing Data [page 358]
Views: Limit Access to Data [page 395]
Transact-SQL Functions [page 475]
Create Indexes on Tables [page 174]

46 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

Create Indexes on Tables [page 174]
Bitwise Operators [page 36]
Datatypes [page 194]
Datatypes [page 194]

1.9 SAP ASE Login Accounts

Each SAP ASE user must have a login account that is established by a system security officer.

Login accounts have a login name, unique on that server, and a password. A login profile is applied to a set of
login accounts. Login profiles define login characteristics, such as default roles or the login script associated
with each login bound to the profile.

Use sp_displaylogin to view information about your own SAP ASE login account.

Use groups to grant and revoke permissions to more than one user at a time within a database. For example, if
everyone who works in the Sales department needs access to certain tables, all of those users can be put into
a group called “sales.” The database owner can grant specific access permissions to that group rather than
granting permissions individually. See, Manage SAP ASE Logins and Database Users, in the Security
Administration Guide.

System security officers can use roles as a convenient way to grant and revoke server-wide permissions to
several users simultaneously. For example, clerical staff may need to insert and select from tables in several
databases, but they may not need to update them. A system security officer can define a role called
“clerical_user_role” and grant the role to everyone in the clerical staff. Database object owners can then grant
the required privileges to “clerical_user_role.” See, Create a User-Defined Role, in the Security Administration
Guide.

You can execute stored procedures on a remote SAP ASE server using remote procedure calls if you have
been granted access to the remote server and an appropriate database on that server. See, Managing Remote
Servers, in the System Administration Guide: Volume 1.

1.10 isql Utility

Use the standalone utility program isql to enter Transact-SQL statements directly from the operating
system.

You must first set up an account, or login, on SAP ASE. To use isql, type a command similar to the following
at your operating system prompt:

isql -U<user_name> -P<password> -S<server_name>

Once you are logged in, you see:

1>

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 47

Note
Do not use the -P option on the command line to access isql. Instead, to prevent another user seeing your
password, wait for the isql password prompt.

Log out of isql by entering:

quit

or:

exit

For more information, see isql in the Utility Guide.

To connect to a non-SAP database using Component Integration Services, use the connect to command.
See the Component Integration Services User’s Guide. See also connect to...disconnect in the Reference
Manual: Commands.

1.10.1 Default Databases

When your SAP ASE account was created, you may have been assigned a default database to which you are
automatically connected when you log in.

For example, your default database might be pubs2, the sample database. If you were not assigned a default
database, you are connected to the master database.

You can change your default database to any database that you have permission to use, or to any database
that allows guests. Any user with an SAP ASE login can be a guest. To change your default database, use
alter login or alter login profile, which are described in Reference Manual: Commands.

To change to the pubs2 database, which is used for most examples in this manual, enter:

1> use pubs2 2> go

Enter the word “go” on a line by itself and do not precede it with blanks or tabs. It is the command terminator;
it lets the server know that you have finished typing, and you are ready for your command to be executed.

In general, examples of Transact-SQL statements in this manual do not include the line prompts used by the
isql utility, nor do they include the terminator go.

1.10.2 Network-Based Security Services with isql

Using network-based security services such as unified login allows you to authenticate with a security
mechanism offered by a third-party provider and then log in to SAP ASE without specifying a login name or a
password.

Use the -V option of isql to specify network-based user authentication such as unified login.

48 P U B L I C
Transact-SQL Users Guide

SQL Building Blocks

See isql in the Utility Guide and, External Authentication, in the Security Administration Guide for more
information about the options you can specify to use network-based security.

1.11 Displaying SQL Text

set show_sqltext allows you to print the SQL text for ad hoc queries, stored procedures, cursors, and
dynamic prepared statements.

You need not enable set show_sqltext before you execute the query (as you do with commands like set
showplan on) to collect diagnostic information for a SQL session. Instead, you can enable it while the
commands are running to help determine which query is performing poorly.

Before you enable set show_sqltext, enable dbcc traceon to send the command results to standard
output (stdout):

dbcc traceon(3604)

The syntax for set show_sqltext is:

set show_sqltext {on | off}

For example, this enables show_sqltext:

set show_sqltext on

Once set show_sqltext is enabled, all SQL text is printed to stdout for each command or system
procedure you enter. Depending on the command or system procedure you run, this output can be extensive.

To disable show_sqltext, enter:

set show_sqltext off

Restrictions for show_sqltext

● You must have the sa_role or sso_role to run show_sqltext.
● You cannot use show_sqltext to print the SQL text for triggers.
● You cannot use show_sqltext to show a binding variable or a view name.

Transact-SQL Users Guide
SQL Building Blocks P U B L I C 49

2 Databases and Tables

A database stores information (data) in a set of database objects, such as tables, that relate to each other. A
table is a collection of rows that have associated columns containing individual data items.

When you create databases and tables, you are deciding the organization of your data. This process is called
data definition.

SAP ASE database objects include:

● Tables
● Rules
● Defaults
● Stored procedures
● Triggers
● Views
● Referential integrity constraints
● Check integrity constraints
● Functions
● Computed columns
● Partition conditions

Columns and datatypes define the type of data included in tables. Indexes describe how data is organized in
tables. They are not considered database objects by SAP ASE and are not listed in sysobjects.

Note
To create databases, tables, and other database objects, as well as to execute certain commands and
stored procedures, you must have the appropriate permissions.See, Manage User Permissions, in the
Security Administration Guide.

2.1 Databases

A database is a collection of related tables and other database objects—views, indexes, and so on.

When you install SAP ASE, it contains these system databases:

● master – controls the user databases and the operation of SAP ASE as a whole.
● sybsystemprocs – contains the system stored procedures.
● sybsystemdb – contains information about distributed transactions.
● tempdb – stores temporary objects, including temporary tables created with the name prefix “tempdb..”.
● model – is used by SAP ASE as a template for creating new user databases.

In addition, system administrators can install these optional databases:

50 P U B L I C
Transact-SQL Users Guide

Databases and Tables

● pubs2 – a sample database that contains data representing a publishing operation. You can use this
database to test your server connections and learn Transact-SQL. Most of the examples in the SAP ASE
documentation use the pubs2 database.

● pubs3 – a version of pubs2 that uses referential integrity examples. pubs3 has a table,
store_employees, that uses a self-referencing column. pubs3 also includes an IDENTITY column in the
sales table. Additionally, the primary keys in the pubs3 master tables use nonclustered unique indexes,
and the titles table has an example of the numeric datatype.

● interpubs – similar to pubs2, but contains French and German data.
● jpubs – similar to pubs2, but contains Japanese data. Use it if you have installed the Japanese

Language Module.

These optional databases are user databases. All of your data is stored in user databases. SAP ASE manages
each database by means of system tables. The data dictionary tables in the master database and in other
databases are considered system tables.

2.2 Create a User Database
You can create a new database if a system administrator has granted you permission to use create
database. You must be using the master database when you create a new database.

In many enterprises, a system administrator creates all databases. The creator of a database is its owner.
Another user who creates a database for you can use sp_changedbowner to transfer ownership of it.

The database owner is responsible for giving users access to the database and for granting and revoking
certain other permissions to users. In some organizations, the database owner is also responsible for
maintaining regular backups of the database and for reloading it in case of system failure. The database owner
can use the setuser command to temporarily attain any other user’s permissions on a database.

Because each database is allocated a significant amount of space, even if it contains only small amounts of
data, you may not have permission to use create database.

The simplest form of create database is:

create database <database_name>

To create a new database called newpubs database, verify you are using the master database rather than
pubs2, then enter:

use master create database newpubs
drop database newpubs use pubs2

A database name must be unique on SAP ASE, and must follow the rules for identifiers. SAP ASE can manage
up to 32,767 databases. You can create only one database at a time. The maximum number of segments (a
label that points to one or more database devices) for any database is 32.

SAP ASE creates a new database as a copy of the model database, which contains the system tables that
belong in every user database.

The creation of a new database is recorded in the master database tables sysdatabases and sysusages.

Transact-SQL Users Guide
Databases and Tables P U B L I C 51

See the Reference Manual: Commands and the Reference Manual: Tables.

The with overide option allows machines with limited space to maintain their logs on device fragments that
are separate from their data. This is not recommend, but for machines with limited storage, it may be an
option. For information about with override, see, Creating and Managing User Databases, the System
Administration Guide: Volume 2.

Related Information

Naming Convention Identifiers [page 29]

2.2.1 The on Clause

Use the on clause to specify where to store a database and how much space, in megabytes, to allocate for the
database.

If you use the keyword default, the database is assigned to an available database device in the pool of default
database devices indicated in the master database table sysdevices. Use sp_helpdevice to see which
devices are in the default list.

Note
A system administrator may have made certain storage allocations based on performance statistics and
other considerations. Before creating databases, check with a system administrator.

To specify a size of 5MB for a database to be stored in this default location, use on default = <size>:

use master create database newpubs
on default = 5
drop database newpubs use pubs2

To specify a different location for the database, give the logical name of the database device where you want it
stored. You can store a database on more than one database device, with different amounts of space on each.

This example creates the newpubs database and allocates 3MB to it on pubsdata and 2MB on newdata:

create database newpubs on pubsdata = 3, newdata = 2

If you omit the on clause and the size, the database is created with 2MB of space from the pool of default
database devices indicated in sysdevices.

A database allocation can range in size from 2MB to 223MB.

52 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.2.2 The log on Clause

Unless you are creating very small, noncritical databases, always use the log on clause with the create
database command. Using this extension places the transaction logs on a separate database device.

Placing the logs on a separate device:

● Allows you to use dump transaction rather than dump database, thus saving time and tapes.
● Allows you to establish a fixed size for the log, keeping it from competing with other database activity for

space.
● It improves performance.
● It ensures full recovery in the event of hard disk failures.

The following command places the log for newpubs on the logical device pubslog, with a size of 1MB:

create database newpubs on pubsdata = 3, newdata = 2 log on pubslog = 1

Note
When you use the log on extension, you are placing the database transaction log on a segment named
“logsegment.” To add more space for an existing log, use alter database and, in some cases,
sp_extendsegment. See the Reference Manual: Commands, Reference Manual: Procedures, or, Creating
and Using Segments, in the System Administration Guide: Volume 2 for details.

The size of the device required for the transaction log varies, according to the amount of update activity and
the frequency of transaction log dumps. As a general guideline, allocate to the log between 10 and 25 percent
of the space you allocate to the database.

2.2.3 for load Option

The optional for load clause invokes a streamlined version of create database that you can use only for
loading a database dump.

Use the for load option for recovery from media failure or for moving a database from one machine to
another. See the Reference Manual: Commands and, Backing Up and Restoring User Databases, in the System
Administration Guide: Volume 2.

2.3 Choose a Database

The use command lets you access an existing database if you are a known user:

use <database_name>

Transact-SQL Users Guide
Databases and Tables P U B L I C 53

For example, to access the pubs2 database, enter:

use pubs2

It is likely that you are automatically connected to the master database when you log in to SAP ASE, so to use
another database, issue the use command. Use alter login to specify the default database for a login. Only
a system administrator can change the default database for another user.

2.4 Permissions Within Databases

Permissions or privileges you are granted determine the actions you can perform on databases and database
objects.

Ordinarily, a system administrator or database owner sets up permissions for you, based on the kind of work
you do and the functions you need. These permissions can be different for each user in an installation or
database.

Determine what your permissions are by executing:

sp_helprotect <user_name>

where <user_name> is your SAP ASE login name.

The pubs2 and pubs3 databases have a guest user name in their sysusers system tables. The scripts that
create pubs2 and pubs3 grant a variety of permissions to “guest.”

The “guest” mechanism means that anyone who has a login on SAP ASE, that is, anyone who is listed in
master..syslogins, has access to pubs2 and pub3, and permission to create and drop such objects as
tables, indexes, defaults, rules, procedures, and so on. The “guest” user name also allows you to use certain
stored procedures, create user-defined datatypes, query the database, and modify the data in it.

To use the pubs2 or pubs3 database, issue the use command. SAP ASE checks whether you are listed under
your own name in pubs2.sysusers or pubs3..sysusers. If not, you are admitted as a guest without any
action on your part. If you are listed in the sysusers table for pubs2 or pubs3, SAP ASE admits you as
yourself, but may give you different permissions from those of “guest.”

Most users can look at the system tables in the master database by using the “guest” mechanism. Users who
are not recognized by name in the master database are allowed in and treated as a user named “guest.” The
“guest” user is added to the master database in the script that creates the master database when it is
installed.

A database owner, “dbo,” can add a “guest” user to any user database using sp_adduser. System
administrators automatically become the database owner in any database they use. See, Getting Started with
Security Administration in SAP ASE, in the System Administration Guide: Volume 1.

54 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.5 Initialize Databases Asynchronously

The async_init parameter for the alter database and create database commands lets you
asynchronously initialize a database while it is being used.

That is, the database is immediately available when it is created or altered, not when the database initialization
is complete. The initialization is transparent to the user.

Any task that uses a page of the database that is not yet initialized performs an initialization of the allocation
unit on which the page resides.

The asynchronous initialization is performed by a service task that is started by the create database or
alter database command. When it restarts, SAP ASE automatically starts a new service task that
completes the initialization. In a clustered environment, if an instance running the service task fails or is shut
down, the coordinating instance starts a new service task to complete the initialization.

Use can use the enable async database init configuration parameter to specify whether SAP ASE
asynchronously creates or alters databases.

The noasync_init clause can also be use to indicate that you are extending a database, and that SAP ASE
initializes the extended space synchronously.

The syntax to create databases asynchronously is:

create [temporary] database <database_name> [on {default | <database_device>} [= <size>] . . .
 [with {override | default_location = "<pathname>" [,[no]async_init] } [for {load | proxy_update}]

noasync_init indicates the database is initialized synchronously. The syntax to alter a database
asynchronously is:

alter database <database_name> [on {default | <database_device> } [= size] . . .
 [with override [,[no]async_init]]
 [for load] [for proxy_update]

Using the [no]async_init clause for create or alter database overrides the settings for enable
async database init.

2.5.1 Determine If There is Space to be Initialized

SAP ASE synchronizes a portion of the data and log segments synchronously before making the database
available, allowing the initializer to work ahead of any commands that require space in the database.

However, you may occasionally see a performance impact to commands normally run against the database
while SAP ASE is busy initializing the space. This occurs because a command that requires space that is not
yet initialized must initialize the space before it proceeds.

Transact-SQL Users Guide
Databases and Tables P U B L I C 55

Information about initialized space is stored in sysattributes.

To determine if there is space not yet initialized in the database (for example, if the initializer terminated
prematurely and left part of the database uninitialized), issue a query similar to:

select lstart=object_info1, size=object_info2, segmap=object_info3 from master..sysattributes where class=42 and object=db_id("mydb")

lstart size segmap ----------- ----------- -----------
 1536 3584000 3 5120 51200 4

If the query returns one or more rows, the database contains space not yet initialized (in this query, the mydb
database). This query does not indicate if the asynchronous initialization service task is running, only that it is
not finished (if it was finished, the result set would contain zero rows).

Use a query similar to the following to determine if the initializer is running on a specific database (in this
query, the test database):

select spid from sysprocesses where dbid=db_id("test") and cmd="CRDB AUINIT"

 spid ------ 22

SAP ASE prints this message to the error log once the asynchronous initialization service task is running:

Asynchronous initialization of database '<database_name>' has completed.

If the asynchronous initialization service task stops prematurely, SAP ASE prints this message to the error log:

Asynchronous database initialization terminated prematurely for database '%.*s'. Use DBCC
DBREPAIR(%.*s, async_database_init, start) to restart
it if required as uninitialized pages will incur a small performance penalty when they are first referenced.

2.5.2 Restrictions for Initializing Databases Asynchronously

You cannot initialize certain databases asynchronously, even if you explicitly use the async_init parameter.

● Databases such as:
○ All system databases
○ All temporary databases, system or user
○ Archive databases
○ Proxy databases
○ Any database created with the for load option

● These commands cannot be run in a database that it still undergoing initialization:
○ unmount database

56 P U B L I C
Transact-SQL Users Guide

Databases and Tables

○ alter database ... log off
● You can put the database into single user mode during initialization. However, the initializer does not run

while the database is in single user mode, and is automatically restarted to continue initialization when you
take the database out of single user mode.

Note
You may notice a slight performance impact to DMLs that use the space in the database being initialized
while the asynchronous initialization service task is running.

2.6 Drop Databases

Use the drop database command to remove a database. drop database deletes the database and all of its
contents from SAP ASE, frees the storage space that had been allocated for it, and deletes references to it
from the master database.

See the Reference Manual: Commands.

You cannot drop a database that is in use, that is, open for reading or writing by any user.

You can drop more than one database in a single command. For example:

drop database newpubs, newdb

You can remove damaged databases with drop database. If drop database does not work, use dbcc
dbrepair to repair the damaged database before you drop it.

2.7 Change the Database Size

If a database has filled its allocated storage space, you cannot add new data or updates to it. Existing data is
always preserved. If the space allocated for a database proves to be too small, the database owner can use the
alter database command to increase it.

alter database permission defaults to the database owner, and cannot be transferred. You must be using
the master database to use alter database.

The default increase is 2MB from the default pool of space. This statement adds 2MB to newpubs on the
default database device:

alter database newpubs

See the Reference Manual: Commands.

The on clause in the alter database command is just like the on clause in create database. The for
load clause is just like the for load clause in create database and can be used only on a database
created with the for load clause.

Transact-SQL Users Guide
Databases and Tables P U B L I C 57

To increase the space allocated for newpubs by 2MB on the database device pubsdata, and by 3MB on the
database device newdata, type:

alter database newpubs on pubsdata = 2, newdata = 3

When you use alter database to allocate more space on a device already in use by the database, all of the
segments already on that device use the added space fragment. All the objects already mapped to the existing
segments can now grow into the added space. The maximum number of segments for any database is 32.

When you use alter database to allocate space on a device that is not yet in use by a database, the system
and default segments are mapped to the new device. To change this segment mapping, use
sp_dropsegment to drop the unwanted segments from the device. See the Reference Manual: Procedures.

Note
Using sp_extendsegment automatically unmaps the system and default segments.

2.8 Enforce Data Integrity in Databases

Data integrity refers to the correctness and completeness of data within a database. To enforce data integrity,
you can constrain or restrict the data values that users can insert, delete, or update in the database.

For example, the integrity of data in the pubs2 and pubs3 databases requires that a book title in the titles
table must have a publisher in the publishers table. You cannot insert books that do not have a valid
publisher into titles, because it violates the data integrity of pubs2 or pubs3.

Transact-SQL provides several mechanisms for integrity enforcement in a database such as rules, defaults,
indexes, and triggers. These mechanisms allow you to maintain these types of data integrity:

● Requirement – requires that a table column must contain a valid value in every row; it cannot allow null
values. The create table statement allows you to restrict null values for a column.

● Check or validity – limits or restricts the data values inserted into a table column. You can use triggers or
rules to enforce this type of integrity.

● Uniqueness – no two table rows can have the same non-null values for one or more table columns. You
can use indexes to enforce this integrity.

● Referential – data inserted into a table column must already have matching data in another table column
or another column in the same table. A single table can have up to 192 references.

As an alternative to using rules, defaults, indexes, and triggers, Transact-SQL provides a series of integrity
constraints as part of the create table statement to enforce data integrity as defined by the SQL
standards.

Related Information

Transactions: Maintain Data Consistency and Recovery [page 640]

58 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.9 quiesce database Command

The quiesce database command suspends and resumes updates to a specified list of databases.

quiesce database

This command both suspends and resumes updates to a specified list of databases. See the Reference
Manual: Commands and Suspending and Resuming Updates to Databases in the System Administration Guide:
Volume 2.

2.10 Tables

When you create a table, you name its columns and supply a datatype for each column. You can also specify
whether a particular column can hold null values, or specify integrity constraints for columns in the table.

The create table command builds a new table in the currently open database.

There can be as many as 2,000,000,000 tables per database.

The limits for the length of object names or identifiers are 255 bytes for regular identifiers, and 253 bytes for
delimited identifiers. This limit applies to most user-defined identifiers, including table name, column name,
index name and so on.

For variables, “@” counts as 1 byte, and names can be up to 254 bytes long.

The maximum number of columns in a table depends on many factors, including, your server’s logical page
size and whether the tables are configured for allpages or data-only locking.

Use the create table command to define each column in a table.

create table also:

● Provides the column name and datatype and specifies how each column handles null values.
● Specifies which column, if any, has the IDENTITY property.
● Defines column-level integrity constraints and table-level integrity constraints. Each table definition can

have multiple constraints per column and per table.

For example, the create table statement for the titles table in the pubs2 database is:

create table titles (title_id tid,
title varchar(80) not null,
type char(12),
pub_id char(4) null,
price money null,
advance money null,
royalty int null,
total_sales int null,
notes varchar(200) null,
pubdate datetime, contract bit not null)

See the Reference Manual: Commands.

Transact-SQL Users Guide
Databases and Tables P U B L I C 59

Note
The on <segment_name> extension to create table allows you to place your table on an existing
segment. <segment_name> points to a specific database device or a collection of database devices. Before
creating a table on a segment, see a system administrator or the database owner for a list of segments that
you can use. Certain segments may be allocated to specific tables or indexes for performance reasons, or
for other considerations.

Examples of Creating Tables

If you use these examples, be sure you first created a sample database first (such as newpubs) otherwise
these changes will affect another database, like pubs2 or pubs3.

The simplest form of create table is:

create table <table_name> (<column_name> <datatype>)

For example, to create a table named names with one column named “some_name,” and a fixed length of 11
bytes, enter:

create table names (some_name char(11)) drop table names

If you have set quoted_identifier on, both the table name and the column names can be delimited
identifiers. Column names must be unique within a table, but you can use the same column name in different
tables in the same database.

There must be a datatype for each column. The word “char” after the column name in the example above
refers to the datatype of the column—the type of value that column will contain.

The number in parentheses after the datatype determines the maximum number of bytes that can be stored in
the column. You give a maximum length for some datatypes. Others have a system-defined length.

Put parentheses around the list of column names, and commas after each column definition. The last column
definition does not need a comma after it.

Note
You cannot use a variable in a default if the default is part of a create table statement.

For complete documentation of create table, see the Reference Manual: Commands.

60 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.11 Designing and Creating a Table

Use the create table statement to create a practice table. If you do not have create table permission,
see a system administrator or the owner of the database in which you are working.

Context

You can create a table, input some data, and work with it for a while before you create indexes, defaults, rules,
triggers, or views. This allows you to see what kind of transactions are most common and what kind of data is
frequently entered.

However, it is more efficient to design a table and the components that go with it at the same time. You might
find it easiest to sketch your plans on paper before you actually create a table and its accompanying objects.

Procedure

1. Decide what columns you need in the table, and the datatype, length, precision, and scale, for each.
2. Create any new user-defined datatypes before you define the table where they are to be used.
3. Decide which column, if any, should be the IDENTITY column.
4. Determine which columns can and cannot accept null values.
5. Decide what integrity constraints or column defaults, if any, you need to add to the columns in the table.

This includes deciding when to use column constraints and defaults instead of defaults, rules, indexes, and
triggers.

6. Decide whether you need defaults and rules, and if so, where and what kind. Consider the relationship
between the NULL and NOT NULL status of a column, and defaults and rules.

7. Decide what kind of indexes you need and where.

Results

Create the table and its associated objects:

1. Create the table and its indexes using create table and create index.
2. Create defaults and rules using create default and create rule.
3. Bind any defaults and rules using sp_bindefault and sp_bindrule. Any existing defaults or rules on a

user-defined datatype already used in a create table statement, are automatically used.
4. Create triggers using create trigger.
5. Create views using create view.

Transact-SQL Users Guide
Databases and Tables P U B L I C 61

Related Information

Create Indexes on Tables [page 174]
Defining Defaults and Rules for Data [page 415]
Stored Procedures [page 504]
Triggers: Enforce Referential Integrity [page 591]
Views: Limit Access to Data [page 395]

2.11.1 Table Names

Table names must be unique for each user.

You can create temporary tables either by preceding the table name in a create table statement with a
pound sign (#), or by specifying the name prefix “tempdb”.

You can use any tables or other objects that you have created without qualifying their names. You can also use
objects created by the database owner without qualifying their names, as long as you have the appropriate
permissions on them. These rules apply to all users, including the system administrator and the database
owner.

Different users can create tables of the same name. For example, a user named “jonah” and a user named
“sally” can each create a table named info. Users who have permissions on both tables must qualify them as
jonah.info and sally.info. Sally must qualify references to Jonah’s table as jonah.info, but she can
refer to her own table simply as info.

Related Information

Temporary Tables Usage [page 68]

2.11.2 Create the User-Defined Datatypes

Before you create a table, create any user-defined datatypes.

The same is true of the p# datatype for the phone column:

execute sp_addtype nm, "varchar(30)" execute sp_addtype p#, "char(10)"

The first two columns used in the sample table design are for the personal (first) name and surname. They are
defined as the nm datatype.

The nm datatype allows for a variable-length character entry with a maximum of 30 bytes. The p# datatype
allows for a char datatype with a fixed-length size of 10 bytes.

62 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.11.3 Choose Columns That Accept Null Values

Except for columns that are assigned user-defined datatypes, each column has an explicit NULL or NOT NULL
entry. You do not need to specify NOT NULL in the table definition, because it is the default.

The sample table design specifies NOT NULL explicitly, for readability.

The NOT NULL default means that an entry is required for that column, for example, for the two name columns
in this table. The other data is meaningless without the names. In addition, the gender column must be NOT
NULL because you cannot use NULL with bit columns.

If a column is designated NULL and a default is bound to it, the default value, rather than NULL, is entered
when no other value is given on input. If a column is designated NULL and a rule is bound to it that does not
specify NULL, the column definition overrides the rule when no value is entered for the column. Columns can
have both defaults and rules.

Related Information

Defining Defaults and Rules for Data [page 415]

2.11.4 Sample Table Design Sketch

A table called friends_etc is used to illustrate how to create indexes, defaults, rules, triggers, and so forth.

friends_etc hold names, addresses, telephone numbers, and personal information. It does not define any
column defaults or integrity constraints.

If another user has already created the friends_etc table, check with a system administrator or the
database owner if you plan to follow the examples and create the objects that go with friends_etc. The
owner of friends_etc must drop its indexes, defaults, rules, and triggers so that there is no conflict when
you create these objects.

This table shows the proposed structure of the friends_etc table and the indexes, defaults, and rules that go
with each column.

Column Datatype Null? Index Default Rule

pname nm NOT NULL nmind(composite)

sname nm NOT NULL nmind(composite)

address varchar(30) NULL

city varchar(30) NOT NULL citydflt

state char(2) NOT NULL statedflt

Transact-SQL Users Guide
Databases and Tables P U B L I C 63

Column Datatype Null? Index Default Rule

zip char(5) NULL zipind zipdflt ziprule

phone p# NULL phonerule

age tinyint NULL agerule

bday datetime NOT NULL bdflt

gender bit NOT NULL gndrdflt

debt money NOT NULL gndrdflt

notes varchar(255) NULL

2.11.4.1 Define the Sample Table

Write the create table statement for the sample table called friends_etc.

For example:

create table friends_etc (pname nm not null,
sname nm not null,
address varchar(30) null,
city varchar(30) not null,
state char(2) not null,
postalcode char(5) null,
phone p# null,
age tinyint null,
bday datetime not null,
gender bit not null,
debt money not null, notes varchar(255) null)

You have now defined columns for the personal name and surname, address, city, state, postal code,
telephone number, age, birthday, gender, debt information, and notes. Later, you will create rules, defaults,
indexes, triggers, and views for this table.

2.12 Create Tables in Different Databases

You can create a table in a database other than the current one by qualifying the table name with the name of
the other database.

However, you must be an authorized user of the database in which you are creating the table, and you must
have create table permission in it.

64 P U B L I C
Transact-SQL Users Guide

Databases and Tables

If you are using pubs2 or pubs3 and there is another database called newpubs, you can create a table called
newtab in newpubs like this:

create table newpubs..newtab (col1 int)

You cannot create other database objects—views, rules, defaults, stored procedures, and triggers—in a
database other than the current one.

2.13 Create New Tables from Query Results: select into
The select into command lets you create a new table based on the columns specified in the select
statement’s select list and the rows specified in the where clause.

The into clause is useful for creating test tables, new tables as copies of existing tables, and for making
several smaller tables out of one large table.

The select and select into clauses, as well as the delete and update clauses, enable TOP functionality.
The TOP option is an unsigned integer that allows you to limit the number of rows inserted in the target table. It
implements compatibility with other platforms. See the Reference Manual: Commands.

You can use select into on a permanent table only if the select into/bulkcopy/pllsort database
option is set to on. A system administrator can turn on this option using sp_dboption. Use sp_helpdb to see
if this option is on.

Here is what sp_helpdb and its results look like when the select into/bulkcopy/pllsort database
option is set to on. This example uses a page size of 8K.

sp_helpdb pubs2

name db_size owner dbid created status --------- ---------- --------- ---- -------------- --------------
pubs2 20.0 MB sa 4 Apr 25, 2005 select
 into/bulkcopy/pllsort, trunc log on chkpt, mixed log and data
device_fragments size usage created free kbytes
------------------- ------------- ------------- ---------- ------------ master 10.0MB data and log Apr 13 2005 1792

pubs_2_dev 10.0MB data and log Apr 13 2005 9888 device segment
---------------------- ----------------------
master default
master logsegment
master system
pubs_2_dev default
pubs_2_dev logsegment
pubs_2_dev system
pubs_2_dev seg1 pubs_2_dev seg2

sp_helpdb output indicates whether the option is set to on or off.

If the select into/bulkcopy/pllsort database option is on, you can use the select into clause to build
a new permanent table without using a create table statement. You can select into a temporary table,
even if the select into/bulkcopy/pllsort option is not on.

Transact-SQL Users Guide
Databases and Tables P U B L I C 65

Note
Because select into is a minimally logged operation, use dump database to back up your database
following a select into. You cannot dump the transaction log following a minimally logged operation.

Unlike a view that displays a portion of a table, a table created with select into is a separate, independent
entity.

The new table is based on the columns you specify in the select list, the tables you name in the from clause,
and the rows you specify in the where clause. The name of the new table must be unique in the database, and
must conform to the rules for identifiers.

A select statement with an into clause allows you to define a table and put data into it, based on existing
definitions and data, without going through the usual data definition process.

The following example shows a select into statement and its results. This example creates a table called
newtable, using two of the columns in the four-column table publishers. Because this statement includes
no where clause, data from all the rows (but only the two specified columns) of publishers is copied into
newtable.

select pub_id, pub_name into newtable from publishers

(3 rows affected)

“3 rows affected” refers to the three rows inserted into newtable. newtable looks like this:

select * from newtable

pub_id pub_name ------ ------------------------------------
0736 New Age Books
0877 Binnet & Hardley 1389 Algodata Infosystems

The new table contains the results of the select statement. It becomes part of the database, just like its
parent table.

You can create a skeleton table with no data by putting a false condition in the where clause. For example:

select * into newtable2
from publishers where 1=2

(0 rows affected)

select * from newtable2

pub_id pub_name city state ------- -------------- -------- ------

66 P U B L I C
Transact-SQL Users Guide

Databases and Tables

No rows are inserted into the new table, because 1 never equals 2.

You can also use select into with aggregate functions to create tables with summary data:

select type, "Total_amount" = sum(advance) into #whatspent
from titles group by type

(6 rows affected)

select * from #whatspent

 type Total_amount ------------ ------------------------
 UNDECIDED NULL
 business 25,125.00
 mod_cook 15,000.00
 popular_comp 15,000.00
 psychology 21,275.00 trad_cook 19,000.00

Always supply a name for any column in the select into result table that results from an aggregate function
or any other expression. Examples are:

● Arithmetic aggregates, for example, <amount> * 2
● Concatenation, for example, lname + fname
● Functions, for example, lower(lname)

Here is an example of using concatenation:

select au_id, "Full_Name" = au_fname + ’ ’ + au_lname
into #g_authortemp
from authors where au_lname like "G%"

(3 rows affected)

select * from #g_authortemp

 au_id Full_Name ----------- -------------------------
 213-46-8915 Marjorie Green
 472-27-2349 Burt Gringlesby 527-72-3246 Morningstar Greene

Because functions allow null values, any column in the table that results from a function other than convert
or isnull allows null values.

Related Information

Views: Limit Access to Data [page 395]

Transact-SQL Users Guide
Databases and Tables P U B L I C 67

2.13.1 Check for Errors

If a select into statement fails after creating a new table, the table is not automatically dropped or the first
data page deallocated. This means that any rows inserted on the first page before the error occurred remain
on the page. Check the value of the <@@error> global variable after a select into statement to be sure that
no error occurred.

select into is a two-step operation. The first step creates the new table and the second step inserts the
specified rows into the table. Because select into operations are not logged, you cannot issue them within
user-defined transactions, and you cannot roll them back.

If an error occurs from a select into operation, use drop table to remove the new table, then reissue the
select into statement.

2.14 Temporary Tables Usage

Temporary tables are created in the tempdb database. To create a temporary table, you must have create
table permission in tempdb; this permission defaults to the database owner.

There are two kinds of temporary tables:

● Tables that can be shared among SAP ASE sessions
Create a shareable temporary table by specifying tempdb as part of the table name in the create table
statement. For example, the following statement creates a temporary table that can be shared among
SAP ASE sessions:

create table tempdb..authors (au_id char(11)) drop table tempdb..authors

SAP ASE does not change the names of temporary tables created this way. While hash temporary tables
exist until the current session or scope is exited, shared temporary tables exist until they are explicitly
dropped using drop table.

● Tables that are accessible only by the current SAP ASE session or procedure
Create a nonshareable temporary table by specifying a pound sign (#) before the table name in the
create table statement. For example:

create table #authors (au_id char (11))

While hash temporary tables exist until the current session or scope is exited, shared temporary tables
exist until they are explicitly dropped.

If you do not use the pound sign or “tempdb..” before the table name, and you are not currently using tempdb,
the table is created as a permanent table. A permanent table stays in the database until it is explicitly dropped
by its owner.

This statement creates a nonshareable temporary table:

create table #myjobs (task char(30),

68 P U B L I C
Transact-SQL Users Guide

Databases and Tables

start datetime,
stop datetime, notes varchar(200))

You can use this table to keep a list of today’s chores and errands, along with a record of when you start and
finish, and any comments you may have. This table and its data is automatically deleted at the end of the
current work session. Temporary tables are not recoverable.

You can associate rules, defaults, and indexes with temporary tables, but you cannot create views on
temporary tables or associate triggers with them. You can use a user-defined datatype when creating a
temporary table only if the datatype exists in tempdb..systypes.

To add an object to tempdb for the current session only, execute sp_addtype while using tempdb. To add an
object permanently, execute sp_addtype in model, then restart SAP ASE so model is copied to tempdb.

2.14.1 Unique Temporary Table Names

To ensure that a temporary table name is unique for the current session, SAP ASE truncates the table name to
238 bytes, including the pound sign (#), if necessary and appends a 17-digit numeric suffix that is unique for
each SAP ASE session.

The following example shows a table created as #temptable and stored as
#temptable00000050010721973:

use pubs2 go
create table #temptable (task char(30))
go
use tempdb
go
select name from sysobjects where name like
 "#temptable%" go

name ------------------------------
#temptable00000050010721973
 (1 row affected)

2.14.2 Manipulate Temporary Tables in Stored Procedures

Stored procedures can reference temporary tables that are created during the current session.

Temporary Table Names Beginning with “#”

Temporary tables with names beginning with “#” that are created within stored procedures are not saved
when the procedure exits.

Transact-SQL Users Guide
Databases and Tables P U B L I C 69

A single procedure can:

● Create a temporary table
● Insert data into the table
● Run queries on the table
● Call other procedures that reference the table

1. Use create table to create the temporary table.
2. Create the procedures that access the temporary table, but do not create the procedure that creates the

table.
3. Drop the temporary table.
4. Create the procedure that creates the table and calls the procedures created in step 2.

Temporary Table Names Beginning with tempdb..

You can use create table <tempdb..tablename> from inside a stored procedure to create temporary
tables without the # prefix. These tables persist when the procedure completes, so they can be referenced by
independent procedures.

Follow the steps for temporary table names beginning with “#” to create these tables.

Caution
Create temporary tables with the “tempdb..” prefix from inside a stored procedure only if you intend to
share the table among users and sessions. Stored procedures that create and drop a temporary table
should use the “#” prefix to avoid inadvertent sharing.

2.14.3 General Rules for Temporary Tables

Temporary tables with names that begin with # are subject to certain restrictions.

The restrictions are:

● You cannot create views on these tables.
● You cannot associate triggers with these tables.
● From within a stored procedure, you cannot:

1. Create a temporary table
2. Drop it
3. Create a new temporary table with the same name.

● You cannot tell which session or procedure has created these tables.

These restrictions do not apply to shareable, temporary tables that are created in tempdb.

Rules that apply to both types of temporary tables:

● You can associate rules, defaults, and indexes with temporary tables. Indexes created on a temporary
table disappear when the temporary table disappears.

70 P U B L I C
Transact-SQL Users Guide

Databases and Tables

● System procedures, such as sp_help, work on temporary tables only if you invoke them from tempdb.
● You cannot use user-defined datatypes in temporary tables unless the datatypes exist in tempdb; that is,

unless the datatypes have been explicitly created in tempdb since the last time SAP ASE was restarted.
● You do not have to set the select into/bulkcopy option on to select into a temporary table.

2.15 Deferred Table Creation

The with deferred_allocation parameter for the create table command lets you defer page
allocation for a table. The use of deferred tables can improve performance for applications that create
numerous tables, but use only a small number of them. Tables are called “deferred” until SAP ASE allocates
their pages.

System tables include entries for deferred tables. These entries allow you to create objects associated with
deferred tables such as views, procedures, triggers, and so on.

SAP ASE performs page allocation for deferred tables when it inserts the first row (called table
materialization). Access to the table before the first insert, such as selects, deletes or updates, functions
that report space usage, or enforce referential integrity constraints during DML on other tables, behave as if
the table is empty. That is, a select against a deferred table produces an empty result set. Although you can
create indexes on deferred tables, the page allocation for these indexes is deferred until SAP ASE materializes
the table.

2.15.1 Deferred Table Creation at the Database Level

Use the ‘deferred table allocation' database option to configure the database to defer page
allocation for all subsequently created user tables.

The syntax is:

sp_dboption <database_name>, "deferred table allocation", true

You cannot enable deferred table allocation for any system databases (such as master,
sybsystemprocs, sybsystemdb) or temporary databases.

2.15.2 Create Deferred Tables

Use the create table . . . with deferred_allocation parameter to create deferred tables.

The syntax is:

create table <table_name> . . . with deferred_allocation

Transact-SQL Users Guide
Databases and Tables P U B L I C 71

For example, to create a table named im_not_here_yet, enter:

create table im_not_here_yet (col_1 int,
col_2 varchar(20)
) with deferred_allocation

sp_dboption 'deferred table allocation' need not be enabled to create deferred tables.

Use create table . . . with immediate_allocation to create tables that are not deferred when
sp_dboption 'deferred table allocation' is enabled. The syntax is:

create table <table_name> . . . with immediate_allocation

2.15.3 Explicitly Materialize Deferred Tables

Use alter table . . . immediate_allocation to explicitly materialize a deferred table.

The syntax is:

alter table <table_name> immediate_allocation

Once you materialize the table, SAP ASE allocates pages for all data and index partitions.

For example, to materialize the table im_not_here_yet, enter:

alter table im_not_here_yet immediate allocation

2.15.4 Identify Deferred Tables

sp_help includes information about deferred tables in the object_status column.

This example shows a partial sp_help output for the im_not_here_yet deferred table:

sp_help im_not_here_yet

Name Owner Object_type Object_status Create_date --------------- ----- ----------- ------------------- ------------------- im_not_here_yet dbo user table deferred allocation Apr 9 2012 2:09PM

sysobjects includes the 0x80 status bit in the sysstat3 column to indicate that a table is deferred.

72 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.15.5 Roll Back for Deferred Tables

If the materialization of a deferred table is part of a transaction that gets rolled back, SAP ASE does not roll
back any page allocations that have been performed for the deferred table.

For example:

create table im_not_here_yet with deferred_allocation go
begin tran t1
go
insert into deferred table ...
go rollback tran t1

insert materializes the im_not_here_yet, table, then inserts a value. Although the rollback tran
removes the value from the table, the page allocation is not rolled back, so the table remains materialized and
is no longer a deferred table.

2.15.6 Command Behavior in Deferred Tables

Most commands work similarly on deferred tables and empty tables.

Command Action on Deferred Table

insert Materializes the table; execute insert

select 0 rows selected

update 0 rows affected

delete 0 rows affected

alter table Materialize the table; execute alter table

drop table Drop table

create view, trigger or, procedure Creates view, trigger, or procedure

create index Creates indexes without page allocations

drop index Drops index

reorg subcommands None

update statistics None

truncate table None

dbcc checktable None

Transact-SQL Users Guide
Databases and Tables P U B L I C 73

Command Action on Deferred Table

dbcc checkcatalog Skips indexes on deferred tables

2.16 IDENTITY Columns Usage

An IDENTITY column contains a value for each row, generated automatically by SAP ASE, that uniquely
identifies the row within the table.

Each table can have only one IDENTITY column. You can define an IDENTITY column when you create a table
with a create table or select into statement, or add it later with an alter table statement.

Define an IDENTITY column by specifying the keyword identity, instead of null or not null, in the create
table statement. IDENTITY columns must have a datatype of numeric and scale of 0, or any integer type.
Define the IDENTITY column with any desired precision, from 1 to 38 digits, in a new table:

create table <table_name> (<column_name> numeric(<precision> ,0) identity)

The maximum possible column value is 10 precision - 1. For example, this command creates a table with an
IDENTITY column that allows a maximum value of 105 - 1, or 9999:

create table sales_daily (sale_id numeric(5,0) identity, stor_id char(4) not null)

Once an IDENTITY column reaches its maximum value, all further insert statements return an error that
aborts the current transaction

You can create automatic IDENTITY columns by using the auto identity database option and the size
of auto identity configuration parameter. To include IDENTITY columns in nonunique indexes, use the
identity in nonunique index database option.

Note
By default, SAP ASE begins numbering rows with the value 1, and continues numbering rows consecutively
as they are added. Some activities, such as manual insertions, deletions, or transaction rollbacks, and
server shutdowns or failures, can create gaps in IDENTITY column values.

Related Information

Manage Identity Gaps in Tables [page 100]

74 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.16.1 Create IDENTITY Columns with User-Defined
Datatypes

You can use user-defined datatypes to create IDENTITY columns. The user-defined datatype must have an
underlying type of numeric and a scale of 0, or any integer type.

If the user-defined datatype was created with the IDENTITY property, you do not have to repeat the identity
keyword when creating the column.

This example shows a user-defined datatype with the IDENTITY property:

sp_addtype ident, "numeric(5)", "identity"

This example shows an IDENTITY column based on the ident datatype:

create table sales_monthly (sale_id ident, stor_id char(4) not null)

If the user-defined type was created as not null, you must specify the identity keyword in the create
table statement. You cannot create an IDENTITY column from a user-defined datatype that allows null
values.

2.16.2 Reference IDENTITY Columns

When you create a table column that references an IDENTITY column, as with any referenced column, make
sure it has the same datatype definition as the IDENTITY column.

For example, in the pubs3 database, the sales table is defined using the ord_num column as an IDENTITY
column:

create table sales (stor_id char(4) not null
 references stores(stor_id),
ord_num numeric(6,0) identity,
date datetime not null, unique nonclustered (ord_num))

The ord_num IDENTITY column is defined as a unique constraint, which it needs to reference the ord_num
column in salesdetail. salesdetail is defined as follows:

create table salesdetail (stor_id char(4) not null
 references storesz(stor_id),
ord_num numeric(6,0)
 references salesz(ord_num),
title_id tid not null
 references titles(title_id),
qty smallint not null, discount float not null)

Transact-SQL Users Guide
Databases and Tables P U B L I C 75

An easy way to insert a row into salesdetail after inserting a row into sales is to use the <@@identity>
global variable to insert the IDENTITY column value into salesdetail. The @@identity global variable
stores the most recently generated IDENTITY column value. For example:

begin tran insert sales values ("6380", "04/25/97")
insert salesdetail values ("6380", @@identity, "TC3218", 50, 50) commit tran

This example is in a transaction because both inserts depend on each other to succeed. For example, if the
sales insert fails, the value of <@@identity> is different, resulting in an erroneous row being inserted into
salesdetail. Because the two inserts are in a transaction, if one fails, the entire transaction is rejected.

Related Information

Retrieve IDENTITY Column Values with @@identity [page 366]
Transactions: Maintain Data Consistency and Recovery [page 640]

2.16.3 Refer to IDENTITY Columns with syb_identity

Once you have defined an IDENTITY column, you need not remember the actual column name. You can use
the syb_identity keyword, qualified by the table name where necessary, in a select, insert, update, or
delete statement on the table.

For example, this query selects the row for which <sale_id> equals 1:

select * from sales_monthly where syb_identity = 1

2.16.4 Automatically Create “hidden” IDENTITY Columns

System administrators can use the auto identity database option to automatically include a 10-digit
IDENTITY column in new tables.

To turn this feature on in a database, use:

sp_dboption <database_name>, "auto identity", "true"

Each time a user creates a new table without specifying a primary key, a unique constraint, or an IDENTITY
column, SAP ASE automatically defines an IDENTITY column. The IDENTITY column is invisible when you use
select * to retrieve all columns from the table. You must explicitly include the column name,
SYB_IDENTITY_COL (all uppercase letters), in the select list. If Component Integration Services is enabled,
the automatic IDENTITY column for proxy tables is called OMNI_IDENTITY_COL.

76 P U B L I C
Transact-SQL Users Guide

Databases and Tables

To set the precision of the automatic IDENTITY column, use the size of auto identity configuration
parameter. For example, to set the precision of the IDENTITY column to 15 use:

sp_configure "size of auto identity", 15

2.16.5 Using select into with IDENTITY Columns

There are special rules for using the select into command with tables containing IDENTITY columns.

2.16.5.1 Select an IDENTITY Column into a New Table

To select an existing IDENTITY column into a new table, include the column name (or the syb_identity
keyword) in the select statement’s <column_list>.

The syntax is:

select <column_list> into <table_name> from <table_name>

The following example creates a new table, stores_cal_pay30, based on columns from the stores_cal
table:

select record_id, stor_id, stor_name into stores_cal_pay30
from stores_cal where payterms = "Net 30"

The new column inherits the IDENTITY property, unless any of the following conditions is true:

● The IDENTITY column is selected more than once.
● The IDENTITY column is selected as part of an expression.
● The select statement contains a group by clause, aggregate function, union operator, or join.

2.16.5.2 Select the IDENTITY Column More Than Once

A table cannot have more than one IDENTITY column. If an IDENTITY column is selected more than once, it is
defined as NOT NULL in the new table. It does not inherit the IDENTITY property.

In the following example, the record_id column, which is selected once by name, and once by the
syb_identity keyword, is defined as NOT NULL in stores_cal_pay60:

select syb_identity, record_id, stor_id, stor_name into stores_cal_pay60
from stores_cal where payterms = "Net 60"

Transact-SQL Users Guide
Databases and Tables P U B L I C 77

2.16.5.3 Add a New IDENTITY Column with select into

To define a new IDENTITY column in a select into statement, add the column definition before the into
clause.

The definition includes the column’s precision but not its scale:

select <column_list> <identity_column_name> = identity(<precision>) into <table_name> from <table_name>

The following example creates a new table, new_discounts, from the discounts table and adds a new
IDENTITY column, id_col:

select *, id_col=identity(5) into new_discounts from discounts

If the <column_list> includes an existing IDENTITY column, and you add a description of a new IDENTITY
column, the select into statement fails.

You cannot use the union operator with an identity function in a select into.

2.16.5.4 Define a Column for Which the Value Must Be
Computed

IDENTITY column values are generated by SAP ASE. New columns that are based on IDENTITY columns, and
for which the values must be computed rather than generated, cannot inherit the IDENTITY property.

If a table’s select statement includes an IDENTITY column as part of an expression, the resulting column
value must be computed. The new column is created as NULL if any column in the expression allows a NULL
value. Otherwise, it is NOT NULL.

In the following example, the new_id column, which is computed by adding 1000 to the value of record_id,
is created NOT NULL:

select new_id = record_id + 1000, stor_name into new_stores from stores_cal

Column values are also computed if the select statement contains a group by clause or aggregate function.
If the IDENTITY column is the argument of the aggregate function, the resulting column is created NULL.
Otherwise, it is NOT NULL.

78 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.16.5.5 IDENTITY Columns Selected into Tables with Unions
or Joins

The value of the IDENTITY column uniquely identifies each row in a table. However, if a table’s select
statement contains a union or join, individual rows can appear multiple times in the result set.

An IDENTITY column that is selected into a table with a union or join does not retain the IDENTITY property. If
the table contains the union of the IDENTITY column and a NULL column, the new column is defined as NULL.
Otherwise, it is NOT NULL.

Related Information

IDENTITY Columns Usage [page 74]
Update IDENTITY Columns [page 377]

2.17 Allow Null Values in a Column

If you omit null or not null in the create table statement, SAP ASE uses the null mode defined for the
database (by default, NOT NULL). Use sp_dboption to set the allow nulls by default option to true.

You must make an entry in a column defined as NOT NULL; otherwise, SAP ASE displays an error message.

Defining columns as NULL provides a placeholder for data you may not yet know. For example, in the titles
table, price, advance, royalty, and total_sales are set up to allow NULL.

However, title_id and title are not, because the lack of an entry in these columns would be meaningless
and confusing. A price without a title makes no sense, whereas a title without a price simply means that the
price has not been set yet or is not available.

In create table, use not null when the information in the column is critical to the meaning of the other
columns.

Related Information

“Unknown” Values: NULL [page 251]

Transact-SQL Users Guide
Databases and Tables P U B L I C 79

2.17.1 Constraints and Rules Used with Null Values

You cannot define a column to allow null values, and then override this definition with a constraint or a rule that
prohibits null values. For example, if a column definition specifies NULL and a rule specifies:

@val in (1,2,3)

An implicit or explicit NULL does not violate the rule. The column definition overrides the rule, even a rule that
specifies:

@val is not null

Related Information

Define Integrity Constraints for Tables [page 105]
Defining Defaults and Rules for Data [page 415]

2.17.2 Defaults and Null Values

You can use defaults, that is, values that are supplied automatically when no entry is made, with both NULL
and NOT NULL columns.

A default counts as an entry. However, you cannot designate a NULL default for a NOT NULL column. You can
specify null values as defaults using the default constraint of create table or using create default.

If you specify NOT NULL when you create a column and do not create a default for it, an error message occurs
when a user fails to make an entry in that column during an insert. In addition, the user cannot insert or update
such a column with NULL as a value.

This table illustrates the interaction between a column’s default and its null type when a user specifies no
column value, or explicitly enters a NULL value. The three possible results are a null value for the column, the
default value for the column, or an error message.

Column Definition User Entry Result

Null and default defined Enters no value

Enters NULL value

Default used

NULL used

Null defined, no default defined Enters no value

Enters NULL value

NULL used

NULL used

Not null, default defined Enters no value

Enters NULL value

Default used

NULL used

80 P U B L I C
Transact-SQL Users Guide

Databases and Tables

Column Definition User Entry Result

Not null, no default defined Enters no value

Enters NULL value

Error

Error

Related Information

Defining Defaults and Rules for Data [page 415]

2.17.3 Nulls Require Variable-Length Datatypes

Only columns with variable-length datatypes can store null values. When you create a NULL column with a
fixed-length datatype, SAP ASE converts it to the corresponding variable-length datatype. SAP ASE does not
inform you of the type change.

This table lists the fixed-length datatypes and the variable-length datatypes to which SAP ASE converts them.
Certain variable-length datatypes, such as moneyn, are reserved; you cannot use them to create columns,
variables, or parameters.

Original Fixed-Length Datatype Converted to

char varchar

nchar nvarchar

unichar univarchar

binary varbinary

datetime datetimn

float floatn

bigint, int, smallint, tinyint, intn

unsigned bigint, unsigned int, and unsigned smallint uintn

decimal decimaln

numeric numericn

money and smallmoney moneyn

Data entered into char, nchar, unichar, and binary columns follows the rules for variable-length columns,
rather than being padded with spaces or zeros to the full length of the column specification.

Transact-SQL Users Guide
Databases and Tables P U B L I C 81

2.17.4 text, unitext, and image Columns

text, unitext, and image columns created with insert and NULL are not initialized and contain no value.
They do not use storage space and cannot be accessed with readtext or writetext.

When a NULL value is written in a text, unitext, or image column with update, the column is initialized, a
valid text pointer to the column is inserted into the table, and a 2K data page is allocated to the column. Once
the column is initialized, it can be accessed by readtext and writetext. See the Reference Manual:
Commands.

2.18 Alter Existing Tables

Use the alter table command to change the structure of an existing table.

You can:

● Add columns and constraints
● Change column default values
● Add NULL and NOT NULL columns
● Drop columns and constraints
● Change the locking scheme
● Partition or unpartition tables
● Convert column datatypes
● Convert the null default value of existing columns
● Increase or decrease column length

You can also change a table’s partitioning attributes.

For example, by default, the au_lname column of the authors table uses a varchar(50) datatype. To alter
the au_lname to use a varchar(60), enter:

alter table authors modify au_lname varchar(60)

Note
You cannot use a variable as the argument to a default that is part of an alter table statement.

Dropping, modifying, and adding non-null columns may perform a data copy, which has implications for
required space and the locking scheme.

The modified table’s page chains inherits the table’s current configuration options (for example, if
fillfactor is set to 50 percent, the new pages use the same fillfactor).

Note
SAP ASE performs partial logging (of page allocations) for alter table operations. However, because
alter table is performed as a transaction, you cannot dump the transaction log after running alter

82 P U B L I C
Transact-SQL Users Guide

Databases and Tables

table; you must dump the database to ensure it is recoverable. If the server encounters any problems
during the alter table operation, SAP ASE rolls back the transaction.

alter table acquires an exclusive table lock while it is modifying the table schema. This lock is released as
soon as the command has finished.

alter table does not fire any triggers.

Related Information

Partition Tables and Indexes [page 138]
Data Copying [page 93]

2.18.1 Objects Using select * Do Not List Changes to Table

If a database has any objects (stored procedures, triggers, and so on) that perform a select * on a table
from which you have dropped a column, an error message lists the missing column.

This occurs even if you create the objects using the with recompile option. For example, if you dropped the
postalcode column from the authors table, any stored procedure that performed a select * on this table
issues this error message:

Msg 207, Level 16, State 4: Procedure ‘columns’, Line 2:
Invalid column name ‘postalcode’. (return status = -6)

This message does not appear if you add a new column and then run an object containing a select *; in this
case, the new column does not appear in the output.

You must drop and re-create any objects that reference a dropped column.

2.18.2 Use alter table on Remote Tables

You can use alter table to modify a remote table using Component Integration Services (CIS).

Before you modify a remote table, make sure that CIS is running by entering:

sp_configure "enable cis"

If CIS is enabled, the output of this command is “1.” By default, CIS is enabled when you install SAP ASE.

See, Setting Configuration Parameters, in the System Administration Guide: Volume 1, and the Component
Integration Services Users Guide.

Transact-SQL Users Guide
Databases and Tables P U B L I C 83

2.18.3 Add Columns

Use the alter table command to add a column to an existing table.

This is an example adding on a non-null column named author_type, which includes the constant
“primary_author” as the default value, and a null column named au_publisher to the authors table.

alter table authors add author_type varchar(20)
default "primary_author" not null, au_publisher varchar(40) null

2.18.3.1 Add Columns Appends Column IDs

alter table adds a column to the table with a column ID that is one greater than the current maximum
column ID.

For example, this table lists the default column IDs of the salesdetail table:

Column Name stor_id ord_num title_id qty discount

Col ID 1 2 3 4 5

This command appends the store_name column to the end of the salesdetail table with a column ID of
6:

alter table salesdetail add store_name varchar(40)
default "unknown" not null

If you add another column, it will have a column ID of 7.

Note
Because a table’s column IDs change as columns are added and dropped, your applications should never
rely on them.

2.18.3.2 Add NOT NULL Columns

You can add a NOT NULL column to a table. This means that a constant expression, and not a null value, is
placed in the column when the column is added. This also ensures that, for all existing rows, the new column is
populated with the specified constant expression when the table is created.

SAP ASE issues an error message if a user fails to enter a value for a NOT NULL column.

84 P U B L I C
Transact-SQL Users Guide

Databases and Tables

The following adds the column owner to the stores table with a default value of “unknown:”

alter table stores add owner_lname varchar(20) default "unknown" not null

The default value can be a constant expression when adding NULL columns, but it can be a constant value only
when adding a NOT NULL column (as in the example above).

2.18.3.3 Add Constraints

Use alter table to add a constraint to an existing column.

For example, to add a constraint to the titles table that does not allow an advance in excess of 10,000:

alter table titles add constraint advance_chk check (advance < 10000)

If a user attempts to insert a value greater than 10,000 into the titles table, SAP ASE produces an error
message similar to this:

Msg 548, Level 16, State 1: Line 1:Check constraint violation occurred,
dbname = ‘pubs2’,table name= ‘titles’,
constraint name = ‘advance_chk’. Command has been aborted.

Adding a constraint does not affect the existing data. Also, if you add a new column with a default value and
specify a constraint on that column, the default value is not validated against the constraint.

Related Information

Drop Constraints [page 87]

2.18.4 Drop Columns

Use alter table to drop a column from an existing table.

You can drop any number of columns using a single alter table statement. However, you cannot drop the
last remaining column from a table (for example, if you drop four columns from a five-column table, you
cannot then drop the remaining column).

For example, to drop the advance and the contract columns from the titles table:

alter table titles drop advance, contract

Transact-SQL Users Guide
Databases and Tables P U B L I C 85

alter table rebuilds all indexes on the table when it drops a column.

2.18.4.1 Drop Columns Renumbers the Column ID

alter table renumbers column IDs when you drop a column from a table. Columns with IDs higher than the
number of the dropped column move down one column ID to fill the gap that the dropped column leaves
behind.

For example, the titleauthor table contains these column names and column IDs:

Column Name au_id title_id au_ord royaltyper

Column ID 1 2 3 4

If you drop the au_ord column from the table:

alter table titleauthor drop au_ord

titleauthor now has these column names and column IDs:

Column Name au_id title_id royaltyper

Column ID 1 2 3

The royaltyper column now has the column ID of 3. The nonclustered index on both title_id and
royaltyper are also rebuilt when au_ord is dropped. Also, all instances of column IDs in different system
catalogs are renumbered.

Users generally will not notice the renumbering of column IDs.

Note
Because a table’s column IDs are renumbered as columns are added and dropped, your applications should
never rely on them. If you have stored procedures or applications that depend on column IDs, rewrite them
so they access the correct column IDs.

2.18.4.2 Drop Columns Without Performing a Data Copy

The no datacopy parameter to the alter table drop column allows you to drop columns from a table
without performing a data copy, and reduces the amount of time required for alter table drop column to
run.

The syntax is:

alter table [[<database>.][<owner>].<table_name> {add <column_name datatype>} . . . } modify <column_name>

86 P U B L I C
Transact-SQL Users Guide

Databases and Tables

 drop {<column_name> [, <column_name>]... with exp_row_size=num_bytes
 | transfer table [on | off]} | no datacopy

Instead of immediately removing the columns from the table, no datacopy updates the system tables,
indicating the affected rows will be reformatted the next time you run reog rebuild or another datacopy
operation (the space allocated for dropped columns (including large objects) is not freed until the next time
you run reorg rebuild).

This example drops the total_sales column from the titles table without a data copy:

alter table titles drop total_sales with no datacopy

2.18.4.2.1 Restrictions for no datacopy Parameter

You cannot use the no datacopy parameter in certain scenarios.

You cannot use it in:

● Materialized or virtual computed columns
● Encrypted columns
● XML columns
● IDENTITY columns
● Java columns
● Proxy tables
● Columns using these datatypes:

○ timestamp
○ bit

● You cannot change the locking scheme of a table:
○ That has been affected by a no datacopy operation
○ For which you have not yet executed a reorg rebuild or datacopy operation since the last drop

column with no datacopy
You must run reorg rebuild before changing the locking scheme of a table.

2.18.4.3 Drop Constraints

Use alter table to drop a constraint.

For example:

alter table titles drop constaint advance_chk

Transact-SQL Users Guide
Databases and Tables P U B L I C 87

Related Information

Use sp_helpconstraint to Find Table Constraint Information [page 126]

2.18.5 Modify Columns

Use alter table to modify an existing column. You can modify any number of columns in a single alter
table statement.

For example, this command changes the datatype of the type column in the titles table from char(12) to
varchar(20) and makes it nullable:

alter table titles modify type varchar(20) null

Caution
You may have objects (stored procedures, triggers, and so on) that depend on a column having a particular
datatype. Before you modify a column, use sp_depends to determine a table’s dependent objects, and to
make sure that any objects that reference these objects can run successfully after the modification.

2.18.5.1 Convert Datatypes

You can convert only datatypes that are either implicitly or explicitly convertible to the new datatype, or if
there is an explicit conversion function in Transact-SQL.

See, System and User-Defined Datatypes, in the Reference Manual: Building Blocks for a list of the supported
datatype conversions. If you attempt an illegal datatype modification, SAP ASE raises an error message and
the operation is aborted.

Note
You cannot convert an existing column datatype to the timestamp datatype, nor can you modify a column
that uses the timestamp datatype to any other datatype.

If you issue the same alter table...modify command more than once, SAP ASE issues a message
similar to this:

Warning: ALTER TABLE operation did not affect column ‘au_lname’. Msg 13905, Level 16, State 1:
Server ‘SAP1’, Line 1: Warning: no columns to drop, add or modify. ALTER TABLE ‘authors’ was aborted.

88 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.18.5.2 Modifying Tables and Using Bulk Copy

Modifying either the length or datatype of a column may prevent you from successfully using bulk-copy to
copy in older dumps of the table.

The older table schema may not be compatible with the new table schema. Before you modify a column’s
length or datatype, verify that doing so does not prevent you from copying in a previous dump of the table.

2.18.5.3 Decreased Column Length May Truncate Data

If you decrease the length of a column, make sure the reduced column length does not result in truncated
data.

For example, although you can use alter table to reduce the length of the title column of the titles
table from a varchar(80) to a varchar(2), doing so renders the data meaningless:

select title from titles

title -----
Bu
Co
Co
Em
Fi
Is
Li
Ne
On
Pr
Se
Si
St
Su
Th
Th
Th Yo

SAP ASE issues error messages about truncating the column data only if the set string_rtruncation
option is turned on. If you need to truncate character data, set the appropriate string-truncation option and
modify the column to decrease its length.

Transact-SQL Users Guide
Databases and Tables P U B L I C 89

2.18.5.4 Modify datetime Columns

If you modify a column from a char datatype to datetime, smalldatetime, or date, you can neither specify
the order that the month, day, and year appear in the output, nor specify the language used in the output.
Instead, both of these settings are assigned a default value.

However, you can use set dateformat or set language to alter the output to match the setting of the
information stored in the column. Also, SAP ASE does not support modifying a column from smalldatetime
to char datatype. See the Reference Manual: Commands.

2.18.5.5 Modify the NULL Default Value of a Column

If you are changing only the NULL default value of a column, you need not specify the column’s datatype.

For example, this command modifies the address column in the authors table from NULL to NOT NULL:

alter table authors modify address not null

If you modify a column and specify the datatype as NOT NULL, the operation succeeds as long as none of the
rows have NULL values. If, however, any of the rows have a NULL value, the operation fails and any incomplete
transactions are rolled back. For example, the following statement fails because the titles table contains
NULL values for the The Psychology of Computer Cooking:

alter table titles modify advance numeric(15,5) not null

Attempt to insert NULL value into column ‘advance’, table ‘pubs2.dbo.titles’; column does not allow nulls. Update fails. Command has been aborted.

To run this command successfully, update the table to change all NULL values of the modified column to NOT
NULL, then reissue the command.

2.18.5.6 Check Columns That Have Precision or Scale

Before you modify a column’s scale, check the length of your data.

If an alter table command causes a column value to lose precision (for example, from numeric(10,5) to
numeric(5,5)), SAP ASE aborts the statement. If this statement is part of a batch, the batch is aborted if the
arithabort arithignore arith_overflow option is turned on.

If an alter table command causes a column value to lose scale (say from numeric(10, 5) to
numeric(10,3), the rows are truncated without warning. This occurs whether arithabort
numeric_truncation is on or off.

If arithignore arith_overflow is on and alter table causes a numeric overflow, SAP ASE issues a
warning. However, if arithabort arithignore arith_overflow is off, SAP ASE does not issue a warning

90 P U B L I C
Transact-SQL Users Guide

Databases and Tables

if alter table causes a numeric overflow. By default, arithignore arith_overflow is off when you
install SAP ASE.

Note
Make sure you review the data truncation rules and fully understand their implications before issuing
commands that may truncate the length of the columns in your production environment. First perform the
commands on a set of test columns.

2.18.5.7 Modify text, unitext, and image Columns

You can modify the text, unitext, and image columns with certain restrictions.

text columns can be converted to:

● [n]char
● [n]varchar
● unichar
● univarchar

unitext columns can be converted to:

● [n]char
● [n]varchar
● unichar
● univarchar
● binary
● varbinary

image columns can be converted to:

● varbinary
● binary

You cannot modify char, varchar, unichar, and univarchar datatype columns to text or unitext
columns. If you are converting from text or unitext to char, varchar, unichar, or univarchar, the
maximum length of the column is governed by page size. If you do not specify a column length, alter table
uses the default length of one byte. If you are modifying a multibyte character text, unitext, or image
column, and you do not specify a column length that is sufficient to contain the data, SAP ASE truncates the
data to fit the column length.

Transact-SQL Users Guide
Databases and Tables P U B L I C 91

2.18.6 Add IDENTITY Columns

You can add IDENTITY columns only with a default value of NOT NULL. You cannot specify a default clause for
a new IDENTITY column.

To add an IDENTITY column to a table, specify the identity keyword in the alter table statement:

alter table <table_name> add column_name numeric(<precision> ,0) identity not null

The following example adds an IDENTITY column, record_id, to the stores table:

alter table stores add record_id numeric(5,0) identity not null

When you add an IDENTITY column to a table, SAP ASE assigns a unique sequential value, beginning with the
value 1, to each row. If the table contains a large number of rows, this process can be time consuming. If the
number of rows exceeds the maximum value allowed for the column (in this case, 105 - 1, or 99,999), the
alter table statement fails.

You can create IDENTITY columns with user-defined datatypes. The user-defined datatype must be a
numeric type with a scale of 0.

2.18.7 Drop IDENTITY Columns

You can drop IDENTITY columns just like any other column.

For example:

alter table stores drop record_id

These are the restrictions for dropping an IDENTITY column:

● If sp_dboption “identity in nonunique index” is turned on in the database, you must first drop
all indexes, then drop the IDENTITY column, and then re-create the indexes.
If the IDENTITY column is hidden, you must first identify it using the syb_identity keyword.

● To drop an IDENTITY column from a table that has set identity_insert turned on first, issue
sp_helpdb to determine if set identity_insert is turned on.
Next, turn off the set identity_insert option:

set identity_insert table_name off

Drop the IDENTITY column, then add the new IDENTITY column, and turn on the set identity_insert
option:

set identity_insert <table_name> on

92 P U B L I C
Transact-SQL Users Guide

Databases and Tables

Related Information

Refer to IDENTITY Columns with syb_identity [page 76]

2.18.8 Modify IDENTITY Columns

You can modify the size of an IDENTITY column to increase its range. This might be necessary if either your
current range is too small, or the range has been used up because of a server shutdown.

For example, you can increase the range of record_id by entering:

alter table stores modify record_id numeric(9,0)

You can decrease the range by specifying a smaller precision for the target datatype. If the IDENTITY value in
the table is too large for the range of the target IDENTITY column, an arithmetic conversion is raised and
alter table aborts the statement.

You cannot add a non-null IDENTITY column to a partitioned table using alter table commands that
require a data copy. Data copying is performed in parallel for partitioned tables, and cannot guarantee unique
IDENTITY values.

2.18.9 Data Copying

SAP ASE performs a data copy only if it must temporarily copy data out of a table before it changes the table’s
schema. If the table has any indexes, SAP ASE rebuilds the indexes when the data copy finishes.

Note
If alter table is performing a data copy, the database that contains the table must have select into/
bulkcopy/pllsort turned on. See the Reference Manual: Commands.

SAP ASE performs a data copy when you:

● Drop a column.
● Modify any of these properties of a column:

○ The datatype (except when you increase the length of varchar, varbinary, NULL char, or NULL
binary columns).

○ From NULL to NOT NULL, or vice-versa.
○ Decrease length. If you decrease a column’s length, you may not know beforehand if all the data will fit

in the reduced column length. For example, if you decrease au_lname to varchar(30), it may contain
a name that requires a varchar(35). When you decrease a column’s data length, SAP ASE first
performs a data copy to ensure that the change in the column length is successful.

● Increase the length of a number column (for example, from tinyint to int). SAP ASE performs data
copying in case one row has a NOT NULL value for this column.

Transact-SQL Users Guide
Databases and Tables P U B L I C 93

● Add a NOT NULL column.

alter table does not perform a data copy when you change the:

● Length of either a varchar or a varbinary column.
● User-defined datatype ID, but not the physical datatype. For example, if your site has two datatypes

mychar1 and mychar2 that have different user-defined datatypes but the same physical datatype, there is
no data copy performed if you change mychar1 to mychar2.

● NULL default value of a variable-length column from NOT NULL to NULL.

To identify if alter table performs a data copy:

1. Set showplan on to report whether SAP ASE will perform a data copy.
2. Set noexec on to ensure that no work will be performed.
3. Perform the alter table command if no data copy is required; only catalog updates are performed to

reflect the changes made by the alter table command.

Note
See Create Nonmaterialized, Non-Null Columns for information about adding non NULL columns that do not
require data copy.

Related Information

Create Nonmaterialized, Non-Null Columns [page 372]

2.18.9.1 Change exp_row_size

If you perform a data copy, you can also change the exp_row_size, which allows you to specify how much
space to allow per row.

You can change the exp_row_size only if the modified table schema contains variable-length columns, and
only to within the range specified by the maxlen and minlen values in sysindexes for the modified table
schema. The maxlen and minlen values do not include the overhead for the row ID.

If the column has fixed-length columns, you can change the exp_row_size to only 0 or 1. If you drop all the
variable-length columns from a table, you must specify an exp_row_size of 0 or 1. Also, if you do not supply
an exp_row_size with the alter table command, the old exp_row_size is used. SAP ASE raises an error
if the table contains only fixed-length columns and the old exp_row_size is incompatible with the modified
schema.

You cannot use the exp_row_size clause with any of the other alter table subclauses (for example,
defining a constraint, changing the locking scheme, and so on). You can also use sp_chgattribute to
change the exp_row_size. See the Reference Manual: Commands.

94 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.18.10 Modifying Locking Schemes and Table Schema

When using alter table to modify data, you can also include the lock command to change the locking
scheme of a table.

Context

For example, to modify the au_lname column of the authors table and change the locking scheme of the
table from allpages locking to datarows locking:

alter table authors modify au_lname varchar(10) lock datarows

Procedure

1. Drop the index.
2. Modify the table schema and change the locking scheme in the same statement (if the change in the table

schema also includes a data copy).
3. Rebuild the clustered index.

Results

Alternately, you can issue an alter table command to change the locking scheme, then issue another
alter table command to change the table’s schema.

2.18.11 Add, Drop, or Modify Columns with User-Defined
Datatypes

The syntax to add, drop, or modify a column to include user-defined datatypes is the same as with a system-
defined datatype.

Add a Column with User-Defined Datatypes

To add a column to the authors table of pubs2 using the usertype datatype:

alter table titles

Transact-SQL Users Guide
Databases and Tables P U B L I C 95

 add newcolumn usertype not null

The NULL or NOT NULL default you specify takes precedence over the default specified by the user-defined
datatype. That is, if you add a column and specify NOT NULL as the default, the new column has a default of
NOT NULL even if the user-defined datatype specifies NULL. If you do not specify NULL or NOT NULL, the
default specified by the user-defined datatype is used.

You must supply a default clause when you add columns that are not null, unless the user-defined datatype
already has a default bound to it.

If the user-defined datatype specifies IDENTITY column properties (precision and scale), the column is added
as an IDENTITY column.

Modify a Column with User-Defined Datatypes

To modify the au_lname of the authors table to use the user-defined newtype datatype:

alter table authors modify au_lname newtype(60) not null

If you do not specify either NULL or NOT NULL as the default, columns use the default specified by the user-
defined datatype.

Modifying the table does not affect any current rules or defaults bound to the column. However, if you specify
new rules or defaults, any old rules or defaults bound to the user-defined datatype are dropped. If there are no
previous rules or defaults bound to the column, any user-defined rules and defaults are applied.

You cannot modify an existing column to an IDENTITY column. You can only modify an existing IDENTITY
column with user-defined datatypes that have IDENTITY column properties (precision and scale).

Drop a Column with User-Defined Datatypes

Drop a column with a user-defined datatype in the same way that you drop a column with a system-defined
datatype.

2.18.12 Errors and Warnings from alter table

Most errors you encounter when running alter table inform you of schema constructs that prevent the
requested command (for example, if you try to drop a column that is part of an index).

To report error conditions:

1. Set showplan on.
2. Set noexec on.
3. Perform the alter table command.

96 P U B L I C
Transact-SQL Users Guide

Databases and Tables

After you have changed the command to address any reported errors, set showplan and noexec to off so that
SAP ASE actually performs the work.

All runtime data-dependent errors (for example, errors of numeric overflow, character truncation, and so on)
can be identified only when the statement executes. Either change the command to fit the data available, or fix
the data values to work with the required target datatypes the statement specifies. To identify these errors,
run the command with noexec disabled.

2.18.12.1 Errors and Warnings Generated by alter table
modify

Certain errors are generated only by the alter table modify command. Although alter table modify
converts columns to compatible datatypes, alter table may issue errors if the columns you are converting
have certain restrictions.

Note
Make sure you understand the implications of modifying a datatype before you issue the command.
Generally, use alter table modify only to implicitly convert between convertible datatypes. This
ensures that any hidden conversions required during processing of insert and update statements do not
fail because of datatype incompatibility.

For example, if you add a second_advance column to the titles table with a datatype of int, and create a
clustered index on second_advance, you cannot then modify this column to a char datatype. This would
cause the int values to be converted from integers (1, 2, 3) to strings (‘1’, ‘2’, ‘3’). When the index is rebuilt
with sorted data, the data values are expected to be in sorted order. But in this example, the datatype has
changed from int to char and is no longer in sorted order for the char datatype’s ordering sequence. So, the
alter table command fails during the index rebuild phase.

Be very cautious when choosing a new datatype for columns that are part of index-key columns of clustered
indexes. alter table modify must specify a target datatype that will not violate the ordering sequence of
the modified data values after its data copy phase.

alter table modify also issues a warning message if you modify the datatype to an incompatible datatype
in a column that contains a constraint. For example, if you try to modify from datatype char to datatype int,
and the column includes a constraint, alter table modify issues this warning:

Warning: a rule or constraint is defined on column ‘new_col’ being modified.
Verify the validity of rules and constraints after this ALTER TABLE operation.

The modify operation is flexible, but must be used with caution. In general, modifying to an implicitly
convertible datatype works without errors. Modifying to an explicitly convertible datatype may lead to
inconsistencies in the table schema. Use sp_depends to identify all column-level dependencies before
modifying a column’s datatype.

Transact-SQL Users Guide
Databases and Tables P U B L I C 97

2.18.12.2 Scripts Generated by if exists()...alter table
Scripts that include certain constructs may produce errors if the table described in the script does not include
the specified column.

For example:

if exists (select 1 from syscolumns where id = object_id("some_table")
 and name = "some_column")
 begin
 alter table some_table drop some_column end

In this example, some_column must exist in some_table for the batch to succeed.

If some_column exists in some_table, the first time you run the batch, alter table drops the column. On
subsequent executions, the batch does not compile.

SAP ASE raises these errors while preprocessing this batch, which are similar to those that are raised when a
normal select tries to access a nonexistent column. These errors are raised when you modify a table’s
schema using clauses that require a data copy. If you add a null column, and use the above construct, SAP
ASE does not raise these errors.

To avoid such errors when you modify a table’s schema, include alter table in an execute immediate
command:

if exists (select 1 from syscolumns where id = object_id("some_table")
 and name = "some_column")
begin
 exec ("alter table some_table drop
 some_column") end

Because the execute immediate statement is run only if the if exists() function succeeds, SAP ASE
does not raise any errors when it compiles this script.

You must also use the execute immediate construct for other uses of alter table, for example, to
change the locking scheme, and for any other cases when the command does not require data copy.

2.18.13 Rename Tables and Other Objects
Use sp_rename to rename tables and other database objects: columns, constraints, datatypes, views,
indexes, rules, defaults, procedures, and triggers.

You must own an object to rename it. You cannot change the name of system objects or system datatypes.
The database owner can change the name of any user’s objects. Also, the object for which you are changing
the name must be in the current database.

To rename the database, use sp_renamedb. See the Reference Manual: Procedures.

For example, to change the name of friends_etc to infotable:

sp_rename friends_etc, infotable

98 P U B L I C
Transact-SQL Users Guide

Databases and Tables

To rename a column, use:

sp_rename "<table.column>", <newcolumnname>

Do not include the table name prefix in the new column name, or the new name is not accepted.

To change the name of an index, use:

sp_rename "<table.index>", <newindexname>

Do not include the table name in the new name.

To change the name of the user datatype tid to t_id, use:

exec sp_rename tid, "t_id"

2.18.13.1 Rename Dependent Objects

When you rename objects, you must also change the text of any dependent procedure, trigger, or view, to
reflect the new object name.

The original object name continues to appear in query results until you change the name of, and compile the
procedure, trigger, or view. The safest course is to change the definitions of any dependent objects when you
execute sp_rename. You can use sp_depends to get a list of dependent objects.

You can use the defncopy utility program to copy the definitions of procedures, triggers, rules, defaults, and
views into an operating system file. Edit this file to correct the object names, then use defncopy to copy the
definition back into SAP ASE. See the Utility Guide.

2.19 Drop Tables

Use drop table to remove specified tables from the database, together with their contents and all indexes
and privileges associated with them. Rules or defaults that are bound to the table are no longer bound, but are
otherwise not affected.

You must be the owner of a table to drop it. However, no one can drop a table while it is being read or written to
by a user or application. You cannot use drop table on any system tables, either in the master database or
in a user database.

You can drop a table in another database if you are the table owner.

If you delete all the rows in a table or use truncate table on it, the table exists until you drop it.

drop table and truncate table permission cannot be transferred to other users.

Transact-SQL Users Guide
Databases and Tables P U B L I C 99

2.20 Manage Identity Gaps in Tables

The IDENTITY column contains a unique ID number, generated by SAP ASE, for each row in a table.

Because of the way the server generates ID numbers by default, you may occasionally have large gaps in the
ID numbers. The identity_gap parameter gives you control over ID numbers, and potential gaps in them, for
a specific table.

By default, SAP ASE allocates a block of ID numbers in memory instead of writing each ID number to disk as it
is needed, which requires more processing time. The server writes the highest number of each block to the
table’s object allocation map (OAM) page. This number is used as the starting point for the next block after the
currently allocated block of numbers is used or “burned.” The other numbers of the block are held in memory,
but are not saved to disk. Numbers are considered burned when they are allocated to memory, then deleted
from memory, either because they were assigned to a row, or because they were erased from memory due to
some abnormal occurrence such as a system failure.

Allocating a block of ID numbers improves performance by reducing contention for the table. However, if the
server fails or is shut down with no wait before all the ID numbers are assigned, the unused numbers are
burned. When the server is running again, it starts numbering with the next block of numbers based on the
highest number of the previous block that the server wrote to disk. Depending on how many allocated
numbers were assigned to rows before the failure, you may have a large gap in the ID numbers.

Identity gaps can also result from dumping and loading an active database. When dumping, database objects
are saved to the OAM page. If an object is currently being used, the maximum used identity value is not
in the OAM page and, therefore, is not dumped.

2.20.1 Parameters for Controlling Identity Gaps

SAP ASE provides parameters that allow you to control gaps in identity numbers.

Parameter name Scope Used with Description

identity_gap Table-specific create table
or select into

Creates ID number blocks of a specific size for a spe
cific table. Overrides identity burning set
factor for the table. Works with identity grab
size.

100 P U B L I C
Transact-SQL Users Guide

Databases and Tables

Parameter name Scope Used with Description

identity burning
set factor

Server-wide sp_configure Indicates a percentage of the total available ID num
bers to allocate for each block. Works with
identity grab size. If the identity_gap
for a table is set to 1 or higher, identity
burning set factor has no effect on that ta
ble. The burning set factor is used for all tables for
which identity_gap is set to 0.

When you set identity burning set
factor, express the number in decimal form, and
then multiply it by 10,000,000 (107) to get the cor
rect value to use with sp_configure. For example,
to release 15 percent (.15) of the potential IDENTITY
column values at one time, specify a value of .15
times 107 (or 1,500,000):

sp_configure "identity burning set
factor", 1500000

identity grab size Server-wide sp_configure Reserves a block of contiguous ID numbers for each
process. Works with identity burning set
factor and identity_gap.

2.20.2 Comparison of identity burning set factor and
identity_gap

The identity_gap parameter controls the size of identity gaps for a particular table.

For example, if you create a table named books that includes all the books in a bookstore, each book must
have a unique ID number, which SAP ASE automatically generates. books includes an IDENTITY column that
uses the default numeric value of (18, 0), providing a total of 999,999,999,999,999,999 ID numbers. The
identity burning set factor configuration parameter uses the default setting of 5000 (.05 percent of
999,999,999,999,999,999), which means that SAP ASE allocates blocks of 500,000,000,000,000 numbers.

The server allocates the first 500,000,000,000,000 numbers in memory and stores the highest number of
the block (500,000,000,000,000) on the table’s OAM page. When all the numbers are assigned to rows or
burned, SAP ASE takes the next block of numbers (the next 500,000,000,000,000), starting with
500,000,000,000,001, and stores the number 1,000,000,000,000,000 as the highest number of the block.

If the server fails after row number 500,000,000,000,022, only numbers 1 through 500,000,000,000,022
were used as ID numbers for books. Numbers 500,000,000,000,023 through 1,000,000,000,000,000 are
burned. When SAP ASE starts again, it creates ID numbers starting from the highest number stored on the
table’s OAM page plus one (1,000,000,000,000,001), which leaves a gap of 499,999,999,999,978 ID
numbers.

Transact-SQL Users Guide
Databases and Tables P U B L I C 101

Reduce the Identity Number Gap

Creating the books table with an identity_gap value of 1000, overrides the server-wide identity
burning set factor setting that resulted in blocks of 500,000,000,000,000 ID numbers. Instead, ID
numbers are allocated in memory in blocks of 1000

The server allocates the first 1000 numbers and stores the highest number of the block (1000) to disk. When
all the numbers are used, SAP ASE takes the next 1000 numbers, starting with 1001, and stores the number
2000 as the highest number.

If SAP ASE fails after row number 1002, it uses the numbers 1000 through 1002: numbers 1003 through 2000
are lost. When you restart SAP ASE, it creates ID numbers starting from the highest number stored on the
table’s OAM page plus one (2000), which leaves a gap of only 998 numbers.

You can significantly reduce the gap in ID numbers by setting the identity_gap for a table instead of using
the server-wide table burning set factor. However, if you set this value too low, each time the server
must write the highest number of a block to disk, which affects performance. For example, if identity_gap is
set to 1, which means you are allocating one ID number at a time, the server must write the new number every
time a row is created, which may reduce performance because of page lock contention on the table. You must
find the best setting to achieve the optimal performance with the lowest gap value acceptable for your
situation.

2.20.3 Set the Table-Specific Identity Gap

Set the table-specific identity gap when you create a table using either create table or select into.

This statement creates a table named mytable with an identity column:

create table mytable (IdNum numeric(12,0) identity) with identity_gap = 10

The identity gap is set to 10, which means ID numbers are allocated in memory in blocks of ten. If the server
fails or is shut down with no wait, the maximum gap between the last ID number assigned to a row and the next
ID number assigned to a row is ten numbers.

If you are creating a table in a select into statement from a table that has a specific identity gap setting, the
new table does not inherit the identity gap setting from the parent table. Instead, the new table uses the
identity burning set factor setting. To give the new table a specific identity_gap setting, specify
the identity gap in the select into statement. You can give the new table an identity gap that is the same as
or different from the parent table.

For example, to create a new table (newtable) from the existing table (mytable) with an identity gap:

select IdNum into newtable with identity_gap = 20 from mytable

102 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.20.4 Change the Table-Specific Identity Gap

To change the identity gap for a specific table, use sp_chgattribute.

sp_chgattribute "<table_name>", "identity_gap", <set_number>

For example:

sp_chgattribute "mytable", "identity_gap", 20

To change mytable to use the identity burning set factor setting instead of the identity_gap
setting, set identity_gap to 0:

sp_chgattribute "mytable", "identity_gap", 0

See the Reference Manual: Procedures.

2.20.5 Display Table-Specific Identity Gap Information

To see the identity_gap setting for a table, use sp_help.

For example, the zero value in the identity_gap column (towards the end of the output) indicates that no
table-specific identity gap is set. mytable uses the server-wide identity burning set factor value.

sp_help mytable

Name Owner Object_type Create_date ------- -------- -------------- -----------------------------
mytable dbo user table Nov 29 2004 1:30PM
(1 row affected)
. . .
exp_row_size reservepagegap fillfactor max_rows_per_page identity_gap
------------ -------------- ---------- ----------------- ------------ 1 0 0 0 0

If you change the identity_gap of mytable to 20, sp_help output for the table shows 20 in the
identity_gap column. This setting overrides the server-wide identity burning set factor value.

sp_help mytable

Name Owner Object_type Create_date ------- -------- -------------- -----------------------------
mytable dbo user table Nov 29 2004 1:30PM
(1 row affected)
. . .
exp_row_size reservepagegap fillfactor max_rows_per_page identity_gap
------------ -------------- ---------- ----------------- ------------ 1 0 0 0 20

Transact-SQL Users Guide
Databases and Tables P U B L I C 103

2.20.6 Gaps from Other Causes

Manually inserting values into the IDENTITY column, deleting rows, setting the identity grab size value,
and rolling back transactions can create gaps in IDENTITY column values. Setting the identity burning
set factor does not affect these gaps.

For example, assume that you have an IDENTITY column with these values:

select syb_identity from stores_cal

 id_col -------
 1
 2
 3
 4 5

You can delete all rows for which the IDENTITY column falls between 2 and 4, leaving gaps in the column
values:

delete stores_cal where syb_identity between 2 and 4 select syb_identity from stores_cal

id_col ------
 1 5

After setting identity_insert on for the table, the table owner, database owner, or system administrator
can manually insert any legal value greater than 5. For example, inserting a value of 55 would create a large
gap in IDENTITY column values:

insert stores_cal (syb_identity, stor_id, stor_name)
values (55, "5025", "Good Reads") select syb_identity from stores_cal

id_col -------
 1
 5 55

If identity_insert is then set to off, SAP ASE assigns an IDENTITY column value of 55 + 1, or 56, for the
next insertion. If the transaction that contains the insert statement is rolled back, SAP ASE discards the
value 56 and uses a value of 57 for the next insertion.

104 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.20.7 IDENTITY Column Maximum Value

The maximum number of rows you can insert into a table depends on the precision that is set for the IDENTITY
column.

If a table reaches that limit, you can either re-create the table with a larger precision or, if the table’s IDENTITY
column is not used for referential integrity, use bcp to remove the gaps.

Related Information

Maximum Value of the IDENTITY Column [page 368]

2.21 Define Integrity Constraints for Tables

To maintain data integrity in a database, you can either define rules, defaults, indexes, and triggers; or, you can
define create table integrity constraints.

The method select depends on your requirements. Integrity constraints offer the advantages of defining
integrity controls in one step during the table creation process (as defined by the SQL standards) and of
simplifying the process to create those integrity controls. However, integrity constraints are more limited in
scope and less comprehensive than defaults, rules, indexes, and triggers.

For example, triggers provide more complex handling of referential integrity than those declared in create
table. The integrity constraints defined by a create table are specific to that table; you cannot bind them
to other tables, and you can only drop or change them using alter table. Constraints cannot contain
subqueries or aggregate functions, even on the same table.

The two methods are not mutually exclusive. You can use integrity constraints along with defaults, rules,
indexes, and triggers. This gives you the flexibility to choose the best method for your application. This section
describes the create table integrity constraints. Defaults, rules, indexes, and triggers are described in later
chapters.

You can create these types of constraints:

● unique and primary key constraints require that no two rows in a table have the same values in the
specified columns. In addition, a primary key constraint does not allow a null value in any row of the
column.

● Referential integrity (references) constraints require that data being inserted in specific columns
already has matching data in the specified table and columns. Use sp_helpconstraint to find a table’s
referenced tables.

● check constraints limit the values of data inserted into columns.

You can also enforce data integrity by restricting the use of null values in a column (the null or not null
keywords) and by providing default values for columns (the default clause).

Transact-SQL Users Guide
Databases and Tables P U B L I C 105

Caution
Do not define or alter the definitions of constraints for system tables.

Related Information

Allow Null Values in a Column [page 79]
Use sp_helpconstraint to Find Table Constraint Information [page 126]

2.21.1 Table and Column Level Constraints
You can declare integrity constraints at the table or column level.

Although the difference is rarely noticed by users, column-level constraints are verified only if a value in the
column is being modified, while the table-level constraints are verified whenever there is any modification to a
row, regardless of whether or not it changes the column in question.

Place column-level constraints after the column name and datatype, but before the delimiting comma. Enter
table-level constraints as separate comma-delimited clauses. SAP ASE treats table-level and column-level
constraints the same way; both ways are equally efficient

However, you must declare constraints that operate on more than one column as table-level constraints. For
example, the following create table statement has a check constraint that operates on two columns,
pub_id and pub_name:

create table my_publishers (pub_id char(4),
pub_name varchar(40),
constraint my_chk_constraint
 check (pub_id in ("1389", "0736", "0877") or pub_name not like "Bad News Books"))

You can optionally declare constraints that operate on a single column as column-level constraints. For
example, if the above check constraint uses only one column (pub_id), you can place the constraint on that
column:

create table my_publishers (pub_id char(4) constraint my_chk_constraint
 check (pub_id in ("1389", "0736", "0877")), pub_name varchar(40))

On either column-level or table-level constraints, the constraint keyword and accompanying
<constraint_name> are optional.

Note
You cannot issue create table with a check constraint and then insert data into the table in the same
batch or procedure. Either separate the create and insert statements into two different batches or
procedures, or use execute to perform the actions separately.

106 P U B L I C
Transact-SQL Users Guide

Databases and Tables

Related Information

Check Constraints [page 107]

2.21.2 Create Error Messages for Constraints

You can use sp_addmessage to create error messages, then use sp_bindmsg to bind them to constraints.

For example:

sp_addmessage 25001, "The publisher ID must be 1389, 0736, or 0877"
sp_bindmsg my_chk_constraint, 25001
insert my_publishers values ("0000", "Reject This Publisher")

Msg 25001, Level 16, State 1: Server ‘snipe’, Line 1:
The publisher ID must be 1389, 0736, or 0877 Command has been aborted.

To change the message for a constraint, bind a new message. The new message replaces the old message.

Unbind messages from constraints using sp_unbindmsg; drop user-defined messages using
sp_dropmessage.

For example:

sp_unbindmsg my_chk_constraint sp_dropmessage 25001

To change the text of a message but keep the same error number, unbind it, drop it with sp_dropmessage,
add it again with sp_addmessage, and bind it with sp_bindmsg.

2.21.3 Check Constraints

You can declare a check constraint to limit the values users insert into a column in a table.

Check constraints are useful for applications that check a limited, specific range of values. A check constraint
specifies a <search_condition> that any value must pass before it is inserted into the table. A
<search_condition> can include:

● A list of constant expressions introduced with in
● A range of constant expressions introduced with between
● A set of conditions introduced with like, which may contain wildcard characters

An expression can include arithmetic operations and Transact-SQL built-in functions. The
<search_condition> cannot contain subqueries, a set function specification, or a target specification.

Transact-SQL Users Guide
Databases and Tables P U B L I C 107

For example, this statement ensures that only certain values can be entered for the pub_id column:

create table my_new_publishers (pub_id char(4)
 check (pub_id in ("1389", "0736", "0877",
 "1622", "1756")
 or pub_id like "99[0-9][0-9]"),
pub_name varchar(40),
city varchar(20), state char(2))

Column-level check constraints can reference only the column on which the constraint is defined; they cannot
reference other columns in the table. Table-level check constraints can reference any columns in the table.
create table allows multiple check constraints in a column definition.

Because check constraints do not override column definitions, you cannot use a check constraint to prohibit
null values if the column definition permits them. If you declare a check constraint on a column that allows null
values, you can insert NULL into the column, implicitly or explicitly, even though NULL is not included in the
<search_condition>. For example, suppose you define the following check constraint on a table column
that allows null values:

check (pub_id in ("1389", "0736", "0877", "1622", "1756"))

You can still insert NULL into that column. The column definition overrides the check constraint because the
following expression always evaluates to true:

col_name != null

When you create a check constraint, source text, which describes the check constraint, is stored in the text
column of the syscomments system table.

Caution
Do not remove this information from syscomments; doing so can cause problems for future upgrades of
SAP ASE.

If you have security concerns, encrypt the text in syscomments by using sp_hidetext, described in the
Reference Manual: Procedures.

2.21.4 Default Column Values

Before you define any column-level integrity constraints, you can use the default clause to assign a default
value to a column as part of the create table statement. When you do not enter a value for a column, the
default value is inserted.

You can use the following values with the default clause:

● <constant_expression> – specifies a constant expression to use as a default value for the column. The
constant expression cannot include the name of any columns or other database objects, but you can
include built-in functions that do not reference database objects. This default value must be compatible
with the datatype of the column.

108 P U B L I C
Transact-SQL Users Guide

Databases and Tables

● user – specifies that the user name is inserted as the default. The datatype of the column must be either
char(30) or varchar(30) to use this default.

● null – specifies that the null value is inserted as the default. You cannot use the not null keyword to define
this default for columns that do not allow null values.

For example, this create table statement defines two column defaults:

create table my_titles (title_id char(6),
title varchar(80),
price money default null, total_sales int default 0)

You can include only one default clause per column in a table.

Using the default clause to assign defaults is simpler than the two-step Transact-SQL method. In Transact-
SQL, you can use create default to declare the default value, and then use sp_bindefault to bind it to
the column.

2.21.5 unique and primary key Constraints

You can declare unique or primary key constraints to ensure that no two rows in a table have the same
values in the specified columns.

Both constraints create unique indexes to enforce this data integrity. However, primary key constraints are
more restrictive than unique constraints. Columns with primary key constraints cannot contain a NULL
value. You normally use a table’s primary key constraint with referential integrity constraints defined on
other tables.

The definition of unique constraints in the SQL standard specifies that the column definition shall not allow
null values. By default, SAP ASE defines the column as not allowing null values (if you have not changed this
using sp_dboption) when you omit null or not null keywords in the column definition. In Transact-SQL,
you can define the column to allow null values along with the unique constraint, since the unique index used
to enforce the constraint allows you to insert a null value.

Note
Do not confuse the unique and primary key integrity constraints with the information defined by
sp_primarykey, sp_foreignkey, and sp_commonkey. The unique and primary key constraints actually
create indexes to define unique or primary key attributes of table columns. sp_primarykey,
sp_foreignkey, and sp_commonkey define the logical relationship of keys (in the syskeys table) for table
columns, which you enforce by creating indexes and triggers.

unique constraints create unique nonclustered indexes by default; primary key constraints create unique
clustered indexes by default. You can declare either clustered or nonclustered indexes with either type of
constraint.

For example, the following create table statement uses a table-level unique constraint to ensure that no
two rows have the same values in the stor_id and ord_num columns:

create table my_sales

Transact-SQL Users Guide
Databases and Tables P U B L I C 109

(stor_id char(4),
ord_num varchar(20),
date datetime, unique clustered (stor_id, ord_num))

There can be only one clustered index on a table, so you can specify only one unique clustered or primary
key clustered constraint.

You can use the unique and primary key constraints to create unique indexes (including the with
fillfactor, with max_rows_per_page, and on <segment_name> options) when enforcing data integrity.
However, indexes provide additional capabilities.

Related Information

Create Indexes on Tables [page 174]

2.21.6 Referential Integrity Constraints

Referential integrity refers to the methods used to manage the relationships between tables. When you create
a table, you can define constraints to ensure that the data inserted into a particular column has matching
values in another table.

There are three types of references you can define in a table: references to another table, references from
another table, and self-references, that is, references within the same table. The referential integrity
constraints in these examples are defined at the column level, using the references keyword in the create
table statement.

The following two tables from the pubs3 database illustrate how declarative referential integrity works. The
first table, stores, is a “referenced” table:

create table stores (stor_id char(4) not null,
stor_name varchar(40) null,
stor_address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null,
payterms varchar(12) null, unique nonclustered (stor_id))

The second table, store_employees, is a “referencing table” because it contains a reference to the stores
table. It also contains a self-reference:

create table store_employees (stor_id char(4) null
 references stores(stor_id),
emp_id id not null,
mgr_id id null
 references store_employees(emp_id),
emp_lname varchar(40) not null,
emp_fname varchar(20) not null,

110 P U B L I C
Transact-SQL Users Guide

Databases and Tables

phone char(12) null,
address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode varchar(10) null, unique nonclustered (emp_id))

The references defined in the store_employees table enforce these restrictions:

● Any store specified in the store_employees table must be included in the stores table. The
references constraint enforces this by verifying that any value inserted into the stor_id column in
store_employees must already exist in the stor_id column in my_stores.

● All managers must have employee identification numbers. The references constraint enforces this by
verifying that any value inserted into the mgr_id column must already exist in the emp_id column.

2.21.6.1 Table and Column Level Referential Integrity
Constraints

You can define referential integrity constraints at the column level or the table level.

When you define table-level referential integrity constraints, include the foreign key clause, and a list of one
or more column names. foreign key specifies that the listed columns in the current table are foreign keys
for which the target keys are the columns listed the following references clause. For example:

constraint sales_detail_constr foreign key (stor_id, ord_num) references my_salesdetail(stor_id, ord_num)

The foreign key syntax is permitted only for table-level constraints, and not for column-level constraints.

After defining referential integrity constraints at the column level or the table level, you can use
sp_primarykey, sp_foreignkey, and sp_commonkey to define the keys in the syskeys system table.

Note
The maximum number of references allowed for a table is 192.

Related Information

Table and Column Level Constraints [page 106]

Transact-SQL Users Guide
Databases and Tables P U B L I C 111

2.21.6.2 Using Create Schema for Cross-Referencing
Constraints

You cannot create a table that references a table that does not yet exist. To create two or more tables that
reference each other, use create schema.

A schema is a collection of objects owned by a particular user, and the permissions associated with those
objects. If any of the statements within a create schema statement fail, the entire command is rolled back as
a unit, and none of the commands take effect.

The create schema syntax is:

create schema authorization <authorization name> <create_object_statement> [create_object_statement ...] [<permission_statement> ...]

For example:

create schema authorization dbo create table list1
 (col_a char(10) primary key,
 col_b char(10) null
 references list2(col_A))
 create table list2
 (col_A char(10) primary key,
 col_B char(10) null references list1(col_a))

2.21.6.3 General Rules for Creating Referential Integrity
Constraints

You should follow certain guidelines when creating referential integrity constraints.

When you define referential integrity constraints in a table:

● Make sure you have references permission on the referenced table. See, Managing User Permissions, in
the Security Administration.

● Make sure that the referenced columns are constrained by a unique index in the referenced table. You can
create that unique index using either the unique or primary key constraint, or the create index
statement. For example, the referenced column in the stores table is defined as:

stor_id char(4) primary key

● Make sure the columns used in the references definition have matching datatypes. For example, the
stor_id columns in both my_stores and store_employees were created using the char(4) datatype.
The mgr_id and emp_id columns in store_employees were created with the id datatype.

● You can omit column names in the references clause only if the columns in the referenced table are
designated as a primary key through a primary key constraint.

● You cannot delete rows or update column values from a referenced table that match values in a
referencing table. Delete or update from the referencing table first, and then delete from the referenced
table.

112 P U B L I C
Transact-SQL Users Guide

Databases and Tables

Similarly, you cannot use truncate table on a referenced table. Truncate the referencing table first,
then truncate the referenced table.

● You must drop the referencing table before you drop the referenced table; otherwise, a constraint
violation occurs.

● Use sp_helpconstraint to find a table’s referenced tables.

Referential integrity constraints provide a simpler way to enforce data integrity than triggers. However,
triggers provide additional capabilities to enforce referential integrity between tables.

Related Information

Triggers: Enforce Referential Integrity [page 591]

2.21.6.4 Designing Applications That Use Referential
Integrity

You should follow certain guidelines when designing applications that use referential integrity.

When you design applications that use referential integrity features:

● Do not create unnecessary referential constraints. The more referential constraints a table has, the slower
a statement requiring referential integrity runs on that table.

● Use as few self-referencing constraints on a table as possible.
● Use check constraint rather than references constraint for applications that check a limited, specific

range of values. Using check constraint eliminates the need for SAP ASE to scan other tables to complete
the query, since there are no references. Therefore, queries on such tables run faster than on tables using
references.
For example, this table uses a check constraint to limit the authors to California:

create table cal_authors (au_id id not null,
au_lname varchar(40) not null,
au_fname varchar(20) not null,
phone char(12) null,
address varchar(40) null,
city varchar(20) null,
state char(2) null
 check(state = "CA"),
country varchar(12) null, postalcode char(10) null)

● Bind commonly scanned foreign-key indexes to their own caches, to optimize performance. Unique
indexes are automatically created on primary-key columns. These indexes are usually selected to scan the
referenced table when their corresponding foreign keys are updated or inserted.

● Keep multirow updates of candidate keys at a minimum.
● Put referential integrity queries into procedures that use constraint checks. Constraint checks are

compiled into the execution plan; when a referential constraint is altered, the procedure that has the
constraint compiled is automatically recompiled when that procedure is executed.

Transact-SQL Users Guide
Databases and Tables P U B L I C 113

● If you cannot embed referential integrity queries in a procedure and you must frequently recompile
referential integrity queries in an ad hoc batch, bind the system catalog sysreferences to its own cache.
This improves performance when SAP ASE recompiles referential integrity queries.

● To test a table that has referential constraints, use set showplan, noexec on before running a query
using the table. The showplan output indicates the number of auxiliary scan descriptors required to run
the query; scan descriptors manage the scan of a table whenever queries are run on it. If the number of
auxiliary scan descriptors is very high, either redesign the table so it uses fewer scan descriptors, or
increase the value of the number of auxiliary scan descriptors configuration parameter.

2.22 Computed Columns
Computed columns, computed column indexes, and function-based indexes provide convenient data
manipulation and faster data access.

● Computed columns are defined by an expression, whether from regular columns in the same row, or
functions, arithmetic operators, XML path queries, and so forth.
The expression can be either deterministic or nondeterministic. The deterministic expression always
returns the same results from the same set of inputs.

● You can create indexes on materialized computed columns as if they were regular columns.

Computed columns and function-based indexes similarly allow you to create indexes on expressions.

Computed columns and function-based indexes differ in some respects:

● A computed column provides both shorthand for an expression and indexability, while a function-based
index provides no shorthand.

● Function-based indexes allow you to create indexes directly on expressions, while to create an index on a
computed column, you must create the computed column first.

● A computed column can be either deterministic or nondeterministic, but a function-based index must be
deterministic. “Deterministic” means that if the input values in an expression are the same, the return
values must also be the same.

● You can create a clustered index on a computed column, but not a clustered function-based index.

These are the differences between materialized and not materialized computed columns:

● Computed columns can be materialized or not materialized. Columns that are materialized are
preevaluated and stored in the table when base columns are inserted or updated. The values associated
with them are stored in both the data row and the index row. Any subsequent access to a materialized
column does not require reevaluation; its preevaluated result is accessed. Once a column is materialized,
each access to it returns the same value.

● Columns that are not materialized are sometimes called virtual columns; virtual columns become
materialized when they are accessed. If a column is virtual, or not materialized, its result value must be
evaluated each time the column is accessed. This means that if the virtual computed column expression is
based on a nondeterministic expression, or calls one, it may return different values each time you access
it.You may also encounter runtime exceptions, such as domain errors, when you access virtual computed
columns.

Note
A computed column cannot reference a user-defined function that belongs to a different database.

114 P U B L I C
Transact-SQL Users Guide

Databases and Tables

Related Information

Deterministic Property [page 118]
Function-Based Indexes [page 179]

2.22.1 Computed Columns Usage

Computed columns allow you to create a shorthand term for an expression, such as “Pay” for “Salary +
Commission,” and to make that column indexable, as long as its datatype is indexable.

Nonindexable datatypes include:

● text
● unitext
● image
● Java class
● bit

Computed columns are intended to improve application development and maintenance efficiency. By
centralizing expression logics in the table definition, and giving expressions meaningful aliases, computed
columns make greatly simplified and readable queries. You can change expressions by simply modifying the
computed column definitions.

Computed columns are particularly useful when you must index a column for which the defining expression is
either a nondeterministic expression or function, or which calls a nondeterministic expression or function. For
example, getdate always returns the current date, so it is nondeterministic. To index a column using
getdate, build a materialized computed column and then index it:

create table rental (cust_id int, start_date as getdate()materialized, prod_id int) create index ind_start_date on rental (start_date)

Composing and Decomposing Datatypes

An important feature of computed columns is that you can use them to compose and decompose complex
datatypes (for example, XML, text, unitext, image, and Java classes). You can use computed columns
either to make a complex datatype from simpler elements (compose), or to extract one or more elements
from a complex datatype (decompose). Complex datatypes are usually composed of individual elements or
fragments. You can define automatic decomposing or composing of these complex datatypes when you define
the table. For example, suppose you want to store XML “order” documents in a table, along with some
relational elements: <order_no>, <part_no>, and <customer>. Using create table with the compute and
materialized parameters, you can define an extraction with computed columns:

create table orders(xml_doc image, order_no compute xml_extract("order_no", xml_doc)materialized,
part_no compute xml_extract ("part_no", xml_doc)materialized,

Transact-SQL Users Guide
Databases and Tables P U B L I C 115

customer compute xml_extract("customer", xml_doc)materialized)

Each time you insert a new XML document into the table, the document’s relational elements are
automatically extracted into the computed columns.

Or, to present the relational data in each row as an XML document, specify mapping the relational data to an
XML document using a computed column in the table definition. For example, define a table:

create table orders (order_no int,part_no int, quantity smallint, customer varchar(50))

Later, to return an XML representation of the relational data in each row, add a computed column using alter
table:

alter table orders add order_xml compute order_xml(order_no, part_no, quantity, customer)

Then use a select statement to return each row in XML format:

select order_xml from orders

User-Defined Ordering

Computed columns support comparison, order by, and group by ordering of complex datatypes, such as
XML, text, unitext, image, and Java classes. You can use computed columns to extract relational elements
of complex data, which you can use to define ordering.

You can also use computed columns to transform data into different formats, to customize data presentations
for data retrieval. This is called user-defined sort order. For example, this query returns results in the order of
the server’s default character set and sort order, usually ASCII alphabetical order:

select name, part_no, listPrice from parts_table order by name

Use computed columns to present your query result in a case-insensitive format, such as ordering based on
special-case acronyms, as in the ordering of stock market symbols, or using system sort orders other than the
default. To transform data into a different format, use either the built-in function sortkey, or a user-defined
sort-order function.

For example, to add a computed column called <name_in_myorder> with the user-defined function
Xform_to_myorder():

alter table parts_table add name_in_myorder compute Xform_to_myorder(name)materialized

To return the result in the customized format:

select name, part_no, listPrice from parts_table order by name_in_myorder

This approach allows you to materialize the transformed ordering data and create indexes on it.

116 P U B L I C
Transact-SQL Users Guide

Databases and Tables

If you prefer, you can do the same thing using data manipulation language (DML):

select name, part_no, listPrice from parts_table

 order by Xform_to_myorder(name)

However, using the computed column approach allows you to materialize the transformed ordering data and
create indexes on it, which improves the performance of the query.

Decision-Support Systems (DSS)

Typical decision-support system applications require intensive data manipulation, correlation, and collation
data analysis. Such applications frequently use expressions and functions in queries, and special user-defined
ordering is often required. Using computed columns and function-based indexes simplifies the tasks
necessary in such applications, and improves performance.

2.22.1.1 Computed Columns Example

A computed column is defined by an expression. You can build the expression by combining regular columns
in the same row. Expressions may contain functions, arithmetic operators, case expressions, other columns
from the same table, global variables, Java objects, and path expressions.

In the example below:

● part_no is a Java object column that represents the specified part number.
● desc is a text column that contains a detailed description of the specified parts.
● spec is an image column that stores the parsed XML stream object.
● name_order is a computed column defined by the user-defined function XML().
● version_order is a computed column defined by the Java class.
● descr_index is a computed column defined by des_index(), which generates an index key on the text

data.
● spec_index is a computed column defined by xml_index(), which generates an index key on the XML

document.
● total_cost is a computed column defined by an arithmetical expression.

create table parts_table (part_no Part.Part_No, name char(30),
 descr text, spec image, listPrice money,
 quantity int,
 name_order compute name_order(part_no)
 version_order compute part_no version,
 descr_index compute des_index(descr),
 spec_index compute xml_index(spec)
 total_cost compute quantity*listPrice)

Transact-SQL Users Guide
Databases and Tables P U B L I C 117

2.22.2 Indexes on Computed Columns

You can create indexes on computed columns, as long as the datatype of the result can be indexed. Computed
column indexes and function-based indexes provide a way to create indexes on complex datatypes like XML,
text, unitext, image, and Java classes.

For example, the following code sample creates a clustered index on the computed columns:

CREATE CLUSTERED INDEX name_index on part_table(name_order) CREATE INDEX adt_index on parts_table(version_order)
CREATE INDEX xml_index on parts_table(spec_index) CREATE INDEX text_index on parts_table(descr_index)

SAP ASE evaluates the computed columns and uses the results to build or update indexes when you create or
update an index.

2.22.3 Deterministic Property

All expressions and functions are deterministic or nondeterministic, which means they may or may not return
the same results each time they are evaluated.

● Deterministic expressions and functions always return the same result, as long as they are evaluated with
the same set of input values. This expression is deterministic:

c1 * c2

● Nondeterministic expressions of functions may return different results each time they are evaluated, even
when they are called with the same set of input values. The function getdate is nondeterministic because
it always returns the current date.

An expression’s deterministic property defines a computed column or a function-based index key, and thus
defines the computed column or function-based index key itself.

The deterministic property depends on whether the expression contains any nondeterministic elements, such
as various system functions, user-defined functions, and global variables.

Whether a function is deterministic or nondeterministic depends on the function coding:

● If the function calls nondeterministic functions, it may be nondeterministic itself.
● If a function’s return value depends on factors other than input values, the function is probably

nondeterministic.

2.22.3.1 Effects of Deterministic Property on Computed
Columns

Virtual and materialized are two types of computed columns in SAP ASE.

A virtual computed column is referenced by a query, and is evaluated each time a query accesses it.

118 P U B L I C
Transact-SQL Users Guide

Databases and Tables

A materialized computed column’s result is stored in the table when a data row is inserted, or when any base
columns are updated. When a materialized computed column is referenced in a query, it is not reevaluated. Its
preevaluated result is used.

● A nonmaterialized, or virtual, computed column becomes a materialized computed column if it is used as
an index key.

● A materialized computed column is reevaluated only if one of its base columns is updated.

2.22.3.2 Effects of Deterministic Property on Materialized
Computed Columns

SAP ASE guarantees repeatable reads on materialized computed columns, regardless of their deterministic
property, because they are not reevaluated when you reference them in a query. Instead, SAP ASE uses the
preevaluated values.

Deterministic materialized computed columns always have the same values, no matter how often they are
reevaluated.

Nondeterministic materialized computed columns must adhere to these rules:

● Each evaluation of the same computed column may return a different result, even using the same set of
inputs.

● References to nondeterministic preevaluated computed columns use the preevaluated results, which may
differ from current evaluation results. In other words, historical rather than current data is used in
nondeterministic preevaluated computed columns.

In the first example from Examples of Nondeterministic Computed Columns, Start_Date is a
nondeterministic materialized computed column. Its results differ, depending on what day you insert the row.
For instance, if the rental period begins on “02/05/04,” “02/05/04” is inserted into the column, and later
references to Start_Date use this value. If you reference this value later, on 06/05/04, the query continues
to return “02/05/04,” not “06/05/04,” as you would expect if the expression was evaluated every time you
query the column.

2.22.3.3 Effects of Deterministic Property on Virtual
Computed Columns

SAP ASE guarantees repeatable reads on deterministic virtual computed columns, even though, by definition,
a virtual computed column is evaluated each time it is referenced.

For example, this statement always returns the same result, if the data in the table does not change:

select Cust_ID, Property_ID from Renting where Formatted_Name ='RICHARD HUANG'

Transact-SQL Users Guide
Databases and Tables P U B L I C 119

SAP ASE does not guarantee repeatable reads on nondeterministic virtual computed columns. For example, in
this query, the column Rent_Due returns different results on different days; the column has a serial time
property, for which the value is a function of the amount of time that passes between rent payments:

select Cust_Name, Rent_Due from renting where Cust_Name= 'RICHARD HUANG'

The nondeterministic property is useful here, but use it with caution. For instance, if you inadvertently defined
Start_Date as a virtual computed column and entered the same query, you would rent all your properties for
nothing: Start_Date is always evaluated to the current date, so in this query, the number of Rental_Days is
always 0.

Likewise, if you mistakenly define the nondeterministic computed column Rent_Due as a preevaluated
column, either by declaring it materialized or by using it as an index key, you would rent your properties for
nothing. It is evaluated only once, when the record is inserted, and the number of rental days is 0. This value is
returned each time the column is referenced.

2.22.3.4 Effects of Deterministic Property on Function-
Based Indexes

Unlike computed columns, function-based index keys must be deterministic. A computed column is still
conceptually a column, which, once evaluated and stored, does not require reevaluation. A function or
expression, however, must be reevaluated upon each appearance in a query.

You cannot use preevaluated data, such as index data, unless the function always evaluates to the same
results with the same input set .

● SAP ASE internally represents function-based index keys as hidden materialized computed columns. The
value of a function-based index key is stored on both a data row and an index page, and therefore assumes
all the properties of a materialized computed column.

● SAP ASE assumes all function- or expression-based index keys to be deterministic. When these index keys
are referenced in a query, the preevaluated results that are already stored in the index page are used; the
index keys are not reevaluated.

● Preevaluated results are updated only when the base columns of the function-based index key are
updated.

● Do not use a nondeterministic function as an index, as in Example 2. The results can be unexpected.

Related Information

Function-Based Indexes [page 179]

120 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.22.3.5 Examples of Nondeterministic Computed Columns
Examples are provide to illustrate both the usefulness and the dangers of using nondeterministic computed
columns and index keys.

Example
The table Renting in this example stores rental information on various properties. It contains these fields:

● Cust_ID – ID of the customer
● Cust_Name – name of the customer
● Formatted_Name – customer’s name
● Property_ID – ID of the property rented
● Property_Name – name of the property in a standard format
● Start_Date – starting day of the rent
● Rent_Due – amount of rent due today

create table Renting (Cust_ID int, Cust_Name varchar(30),
 Formatted_Name compute format_name(Cust_Name), Property_ID
int,Property_Name compute
 get_pname(Property_ID), start_date compute
 today_date()materialized, Rent_due compute rent_calculator(Property_ID, Cust_ID, Start_Date))

Formatted_Name, Property_Name, Start_Date, and Rent_Due are defined as computed columns.

● Formatted_Name – virtual computed column that transforms the customer name to a standard
format. Since its output depends solely on the input Cust_Name, Formatted_Name is deterministic.

● Property_Name – virtual computed column that retrieves the name of the property from another
table, Property, which is defined as:

create table Property (Property_ID int, Property_Name varchar(30), Address
varchar(50), Rate int)

To get the property name based on the input ID, the function get_pname invokes a JDBC query:

select Property_Name from Property where Property_ID=input_ID

The computed column Property_Name looks deterministic, but it is actually nondeterministic,
because its return value depends on the data stored in the table Property as well as on the input value
Property_ID.

● Start_Date – a nondeterministic user-defined function that returns the current date as a
varchar(15). It is defined as materialized. Therefore, it is reevaluated each time a new record is
inserted, and that value is stored in the Renting table.

● Rent_Due – a virtual nondeterministic computed column, which calculates the current rent due, based
on the rent rate of the property, the discount status of the customer, and the number of rental days.

Example
Using the table created in Example 1, Renting: If you create an index on the virtual computed column
Property_Name, it becomes a materialized computed column.

Transact-SQL Users Guide
Databases and Tables P U B L I C 121

If you then inserted a new record:

Property_ID=10

This new record calls get_pname(10) from the table Property, executing this JDBC query:

select Property_Name from Property where Property_ID=10

The query returns “Rose Palace,” which is stored in the data row. This all works, unless someone changes
the name of the property by issuing:

update Property set Property_Name ='Red Rose Palace' where Property_ID = 10

The query returns “Red Rose Palace,” so SAP ASE stores “Red Rose Palace.” This update command on the
table Property invalidates the stored value of Property_Name in the table Renting, which must also be
updated to “Red Rose Palace.” Because Property_Name is defined on the column Property_ID in the
table Renting, not on the column Property_Name in the table Property, it is not automatically updated.
Future reference to Property_Name may produce incorrect results.

To avoid this situation, create a trigger on the table Property:

CREATE TRIGGER my_t ON Property FOR UPDATE AS IF UPDATE(Property_Name)
 BEGIN
 UPDATE Renting SET Renting.Property_ID=Property.Property_ID
 FROM Renting, Property
 WHERE Renting.Property_ID=Property.Property_ID END

When this trigger updates the column Property_Name in the table Property, it also updates the column
Renting.Property_ID, the base column of Property_Name. This automatic update triggers SAP ASE to
reevaluate Property_Name and update the value stored in the data row. Each time SAP ASE updates the
column Property_Name in the table Property, the materialized computed column Property_Name in the
table Renting is refreshed, and shows the correct value.

2.23 Retrieve Information About Databases and Tables

SAP ASE includes several procedures and functions you can use to get information about databases, tables,
and other database objects.

See the Reference Manual: Procedures and also the Reference Manual: Building Blocks for information about
the procedures and functions for additional information.

122 P U B L I C
Transact-SQL Users Guide

Databases and Tables

2.23.1 Help on Databases

sp_helpdb can report information about a specified database or about all SAP ASE databases.

sp_helpdb [<dbname>]

This example displays a report on pubs2 on a server using a page size of 8K.

sp_helpdb pubs2

name db_size owner dbid created status --------- ---------- --------- ---- -------------- --------------
pubs2 20.0 MB sa 4 Apr 25, 2005 select
 into/bulkcopy/pllsort, trunc log on chkpt, mixed log and data
device_fragments size usage created free kbytes
------------------- ------------- ------------- ---------- ------------ master 10.0MB data and log Apr 13 2005 1792

pubs_2_dev 10.0MB data and log Apr 13 2005 9888 device segment
---------------------- ----------------------
master default
master logsegment
master system
pubs_2_dev default
pubs_2_dev logsegment
pubs_2_dev system
pubs_2_dev seg1 pubs_2_dev seg2

sp_databases lists all the databases on a server. For example:

sp_databases

database_name database_size remarks ----------------- ------------- ------------
master 5120 NULL
model 2048 NULL
pubs2 2048 NULL
pubs3 2048 NULL
sybsecurity 5120 NULL
sybsystemprocs 30720 NULL
tempdb 2048 NULL
 (7 rows affected, return status = 0)

To find out who owns a database, use sp_helpuser:

sp_helpuser dbo

Users_name ID_in_db Group_name Login_name ------------- -------- ------------ ------------ dbo 1 public sa

Transact-SQL Users Guide
Databases and Tables P U B L I C 123

To identify the current database, use db_id and db_name:

select db_name(), db_id()

------------------------------ ------ master 1

2.23.2 Help on Database Objects

SAP ASE provides system procedures, catalog stored procedures, and built-in functions that return helpful
information about database objects, such as tables, columns, and constraints.

2.23.2.1 sp_help Usage on Database Objects

Use sp_help to display information about a specified database object (that is, any object listed in
sysobjects), a specified datatype (listed in systypes), or all objects and datatypes in the current database.

sp_help [<objname>]

This is sp_help output for the publishers table:

Name Owner Object_type Create_date ---------------- ----------- ------------- ------------------------------
publishers dbo user table Nov 9 2004 9:57AM

(1 row affected)
Column_name Type Length Prec Scale Nulls Default_name Rule_name
----------- ------- ------ ----- ------- ------- -------------- ----------
pub_id char 4 NULL NULL 0 NULL pub_idrule
pub_name varchar 40 NULL NULL 1 NULL NULL
city varchar 20 NULL NULL 1 NULL NULL
state char 2 NULL NULL 1 NULL NULL
Access_Rule_name Computed_Column_object Identity
------------------- ------------------------- ------------
NULL NULL 0
NULL NULL 0
NULL NULL 0
NULL NULL 0

Object has the following indexes
index_name index_keys index_description index_max_rows_per_page
---------- ---------- ---------- ------- -------------
pubind pub_id clustered, unique 0

index_fill_factor index_reservepagegap index_created index_local
------------------ ---------------------- ---------------- ----------------
 0 0 Nov 9 2004 9:58AM Global Index
(1 row affected)
index_ptn_name index_ptn_segment
---------------- --------------------
pubind_416001482 default
(1 row affected)
keytype object related_object related_keys
------- ---------- -------------- ------------

124 P U B L I C
Transact-SQL Users Guide

Databases and Tables

primary publishers -- none -- pub_id, *, *, *, *, *
foreign titles publishers pub_id, *, *, *, *, *

(1 row affected)
name type partition_type partitions partition_keys
-------- -------- ------------------ -------------- ------------------
publishers base table roundrobin 1 NULL
partition_name partition_id pages segment Create_date
------------------ ------------ ------ ----------- ----------------------
publishers_416001482 416001482 1 default Nov 9 2004 9:58AM
Partition_Conditions

NULL
Avg_pages Max_pages Min_pages Ratio

(return status = 0)
No defined keys for this object.
name type partition_type partitions partition_keys
------- ---------- ---------------- ------------ ---------------
mytable base table roundrobin 1 NULL
partiton_name partition_id pages segment create_date
----------------- -------------- --------- --------- ------------------------
mytable_1136004047 1136004047 1 default Nov 29 2004 1:30PM
partition_conditions

NULL
Avg_pages Max_pages Min_pages Ratio(Max/Avg) Ration(Min/Avg)
----------- ----------- ----------- --------------------- -------------------
 1 1 1 1.000000 1.000000
Lock scheme Allpages
The attribute ’exp_row_size’ is not applicable to tables with
allpages lock scheme.
The attribute ’concurrency_opt_threshold’ is not applicable to
tables with allpages lock scheme.
exp_row_size reservepagegap fillfactor max_rows_per_page identity_gap
 ------------ -------------- ---------- ----------------- ------------
 1 0 0 0 0
(1 row affected)
concurrency_opt_threshold optimistic_index_lock dealloc_first_txtpg
--------------------------- ----------------------- --------------------
 0 0 0 (return status = 0)

If you execute sp_help without supplying an object name, the resulting report shows each object in
sysobjects, along with its name, owner, and object type. Also shown is each user-defined datatype in
systypes and its name, storage type, length, whether null values are allowed, and any defaults or rules bound
to it. The report also notes if any primary or foreign-key columns have been defined for a table or view.

sp_help lists any indexes on a table, including those created by defining unique or primary key constraints.
However, it does not include information about the integrity constraints defined for a table.

Use the sp_help <verbose> parameter to determine how much information about partitions sp_help
displays. See Reference Manual: Procedures.

Transact-SQL Users Guide
Databases and Tables P U B L I C 125

2.23.2.2 Use sp_helpconstraint to Find Table Constraint
Information

sp_helpconstraint reports information about the declarative referential integrity constraints that are
specified for a table, including the constraint name and definition of the default, unique or primary key
constraint, referential, or check constraint.

sp_helpconstraint also reports the number of references associated with the specified tables.

sp_helpconstraint [<objname>] [, detail]

<objname> is the name of the table being queried. If you do not include a table name, sp_helpconstraint
displays the number of references associated with each table in the current database. With a table name,
sp_helpconstraint reports the name, definition, and number of integrity constraints associated with the
table. The detail option also returns information about the constraint’s user or error messages.

For example, sp_helpconstraint output on the store_employees table in pubs3 looks similar to:

name defn --------------------------- --------------------------------
store_empl_stor_i_272004000 store_employees FOREIGN KEY
 (stor_id) REFERENCES stores(stor_id)
store_empl_mgr_id_288004057 store_employees FOREIGN KEY
 (mgr_id) SELF REFERENCES
 store_employees(emp_id)
store_empl_2560039432 UNIQUE INDEX(emp_id) :
 NONCLUSTERED, FOREIGN REFERENCE

(3 rows affected)

Total Number of Referential Constraints: 2
Details:
-- Number of references made by this table: 2
-- Number of references to this table: 1
-- Number of self references to this table: 1

Formula for Calculation:
Total Number of Referential Constraints
= Number of references made by this table
+ Number of references made to this table - Number of self references within this table

To find the largest number of referential constraints associated with any table in the current database, run
sp_helpconstraint without specifying a table name:

sp_helpconstraint

id name Num_referential_constraints ----------- ------------------------ ---------------------------
 80003316 titles 4
 16003088 authors 3
 176003658 stores 3
 256003943 salesdetail 3
 208003772 sales 2
 336004228 titleauthor 2
 896006223 store_employees 2
 48003202 publishers 1
 128003487 roysched 1
 400004456 discounts 1
 448004627 au_pix 1

126 P U B L I C
Transact-SQL Users Guide

Databases and Tables

 496004798 blurbs 1
 (11 rows affected)

This report shows that the titles table has the largest number of referential constraints in the pubs3
database.

2.23.2.3 Determining Much Space a Table Uses

sp_spaceused computes and displays the number of rows and data pages used by a table or a clustered or
nonclustered index.

To find out how much space a table uses, enter:

sp_spaceused [<objname>]

To display a report on the space used by the titles table:

sp_spaceused titles

name rows reserved data index_size unused ------- ----- --------- ----- --------- ------
titles 18 48 KB 6 KB 4 KB 38 KB
 (0 rows affected)

If you do not include an object name, sp_spaceused displays a summary of space used by all database
objects.

2.23.2.4 List Tables, Columns, and Datatypes

Catalog stored procedures retrieve information from the system tables in tabular form. You can supply
wildcard characters for some parameters.

sp_tables lists all user tables in a database when used in the following format:

sp_tables @table_type = "’TABLE’"

sp_columns returns the datatype of any or all columns in one or more tables in a database. You can use
wildcard characters to get information about more than one table or column.

For example, the following command returns information about all columns that include the string “id” in all
the tables with “sales” in their name:

sp_columns "%sales%", null, null, "%id%"

table_qualifier table_owner table_name column_name data_type type_name precision length scale radix nullable remarks ss_data_type colid
--------------- -------------------------------- --------- --------- ---------

Transact-SQL Users Guide
Databases and Tables P U B L I C 127

pubs2 dbo sales stor_id 1 char 4 4 NULL NULL 0 NULL
47 1
pubs2 dbo salesdetail stor_id 1 char 4 4 NULL NULL 0 NULL 4
1
pubs2 dbo salesdetail title_id 12 varchar 6 6 NULL NULL 0 NULL
39 3 (3 rows affected, return status = 0)

2.23.2.5 Find an Object Name and ID

To identify the ID and name of an object, use object_id() and object_name().

The syntax is:

select object_id("titles")

---------- 208003772

Object names and IDs are stored in the sysobjects system table.

128 P U B L I C
Transact-SQL Users Guide

Databases and Tables

3 SQL-Derived Tables

A SQL-derived table is defined by one or more tables through the evaluation of a query expression, used in the
query expression in which it is defined, and exists only for the duration of the query. It is not described in
system catalogs or stored on disk.

SQL-derived tables are not the same as abstract-plan-derived tables. A table derived from an abstract plan is
used for query optimization and execution, and differs from a SQL-derived table in that it exists only as part of
an abstract plan and is invisible to the end user.

A SQL-derived table is created from an expression consisting of a nested select statement, as in the
following example, which returns a list of cities in the publishers table of the pubs2 database:

select city from (select city from publishers) cities

The SQL-derived table is named cities and has one column titled city. The SQL-derived table is defined by
the nested select statement and persists only for the duration of the query, which returns:

city --------------------
Boston
Washington Berkeley

This example shows the advantages of SQL-derived tables.

If you are interested in viewing only the titles of books written in Colorado, you might create a view like this:

create view vw_colorado_titles as select title
 from titles, titleauthor, authors
 where titles.title_id = titleauthor.title_id
 and titleauthor.au_id = authors.au_id and authors.state ="CO"

You can repeatedly use the view vw_colorado_titles, stored in memory, to display its results:

select * from vw_colorado_titles

Drop the view when it is no longer needed:

drop view vw_colorado_titles

If the query results are only needed once, you might instead use a SQL-derived table:

select title from (select title
 from titles, titleauthor, authors
 where titles.title_id = titleauthor.title_id
 and titleauthor.au_id = authors.au_id and authors.state = "CO") dt_colo_titles

Transact-SQL Users Guide
SQL-Derived Tables P U B L I C 129

The SQL-derived table created is named dt_colo_titles. The SQL-derived table persists only for the
duration of the query, in contrast with a temporary table, which exists for the entire session.

In the previous example for query results that are only needed once, a view is less desirable than a SQL-
derived table query because the view is more complicated, requiring both create and drop statements in
addition to a select statement. The benefits of creating a view for only one query are additionally offset by
the overhead of administrative tasks such as dealing with system catalogs. SQL-derived tables spontaneously
create nonpersistent tables which require no administrative tasks. A SQL-derived table used multiple times
performs comparably to a query using a view with a cached definition.

3.1 SQL-Derived Tables and Optimization

Queries that are expressed as a single SQL statement make more efficient use of the optimizer than queries
that are expressed in two or more SQL statements.

SQL-derived tables use a single step for what might otherwise require several SQL statements and temporary
tables, especially where intermediate aggregate results must be stored. For example, this single SQL
statement obtains aggregate results from the SQL-derived tables dt_1 and dt_2, and computes a join
between the two tables:

select dt_1.* from (select sum(total_sales)
 from titles_west group by total_sales)
 dt_1(sales_sum),
 (select sum(total_sales)
 from titles_east group by total_sales)
 dt_2(sales_sum) where dt_1.sales_sum = dt_2.sales_sum

3.2 SQL-Derived Table Syntax

The query expression for a SQL-derived table is specified in the from clause of the select or select into
command.

The syntax is:

<from_clause> ::= from <table_reference> [,<table_reference>]...

<table_reference> ::= <table_view_name> | <ANSI_join>

<table_view_name> ::= {<table_view_reference> | <derived_table_reference>} [holdlock | noholdlock]
 [readpast] [shared]

130 P U B L I C
Transact-SQL Users Guide

SQL-Derived Tables

<table_view_reference> ::= [[<database>.]<owner>.] {<table_name> | <view_name>} [[as] <correlation_name>] [index {<index_name> | <table_name> }] [parallel [<degree_of_parallelism>]] [prefetch size] [lru | mru]

<derived_table_reference> ::= <derived_table> [as] <correlation_name> [’(’ <derived_column_list>’)’]

<derived_column_list> ::= <column_name> [’,’ <column_name>] ...

<derived_table> ::= ’(’ <select> ’)’

A derived-table expression is similar to the select in a create view statement and follows the same rules,
except:

● Temporary tables are permitted in a derived-table expression except when it is part of a create view
statement.

● A local variable is permitted in a derived-table expression except when it is part of a create view
statement. You cannot assign a value to a variable within a derived-table expression.

● You cannot use variables in derived table syntax as part of a create view statement where the derived
table is referenced in cursors.

● A correlation_name, which must follow the derived-table expression to specify the name of the SQL-
derived table, may omit a derived column list, whereas a view cannot have unnamed columns:

select * from (select sum(advance) from total_sales) dt

See “Restrictions on views” in the Usage section of create view in the Reference Manual: Commands.

3.2.1 Derived Column Lists

If a derived column list is not included in a SQL-derived table, the names of the SQL-derived table columns
must match the names of the columns specified in the target list of the derived-table expression.

If a column name is not specified in the target list of the derived-table expression, as in the case where a
constant expression or an aggregate is present in the target list of the derived-table expression, the resulting
column in the SQL-derived table has no name. The server returns error 11073, A derived-table
expression may not have null column names...

If a derived column list is included in a SQL-derived table, it must specify names for all columns in the target
list of the derived-table expression. These column names must be used in the query block instead of the
natural column names of the SQL-derived table. The columns must be listed in the order in which they occur in
the derived-table expression, and a column name cannot be specified more than once in the derived column
list.

Transact-SQL Users Guide
SQL-Derived Tables P U B L I C 131

3.2.2 Correlated SQL-Derived Tables Are Not Supported

Transact-SQL does not support correlated SQL-derived tables, which are also not ANSI standard.

For example, the following query is not supported because it references the SQL-derived table
dt_publishers2 inside the derived-table expression for dt_publishers1:

select * from (select * from titles where titles.pub_id =
 dt_publishers2.pub_id) dt_publishers1,
 (select * from publishers where city = "Boston")
 dt_publishers2 where dt_publishers1.pub_id = dt_publishers2.pub_id

Similarly, the following query is not supported because the derived-table expression for dt_publishers
references the publishers_pub_id column, which is outside the scope of the SQL-derived table:

select * from publishers where pub_id in (select pub_id from
 (select pub_id from titles
 where pub_id = publishers.pub_id) dt_publishers)

The following query illustrates proper referencing and is supported:

select * from publishers where pub_id in (select pub_id from
 (select pub_id from titles)
 dt_publishers where pub_id = publishers.pub_id)

3.3 SQL-Derived Tables Usage

You can use SQL-derived tables to form part of a larger integrated query that uses assorted SQL clauses and
operators.

3.3.1 Nesting

A query can use numerous nested derived-table expressions, which are SQL expressions that define a SQL-
derived table.

In the following example, the innermost derived-table expression defines SQL-derived table dt_1, the select
from forming the derived-table expression that defines SQL-derived table dt_2.

select postalcode from (select postalcode
 from (select postalcode from authors) dt_1) dt_2

The degree of nesting is limited to 25.

132 P U B L I C
Transact-SQL Users Guide

SQL-Derived Tables

3.3.2 Subqueries Using SQL-Derived Tables

You can use a SQL-derived table in a subquery from clause.

For example, this query finds the names of the publishers who have published business books:

select pub_name from publishers where "business" in
 (select type from
 (select type from titles, publishers
 where titles.pub_id = publishers.pub_id) dt_titles)

dt_titles is the SQL-derived table defined by the innermost select statement.

SQL-derived tables can be used in the from clause of subqueries anywhere subqueries are legal.

Related Information

Subqueries: Queries Within Other Queries [page 260]

3.3.3 Unions in Derived-Table Expressions

A union clause is allowed within a derived-table expression.

For example, the following query yields the contents of the stor_id and ord_num columns of both the sales
and sales_east tables:

select * from (select stor_id, ord_num from sales
 union
 select stor_id, ord_num from sales_east) dt_sales_info

The union of two select operations defines the SQL-derived table dt_sales_info.

3.3.4 Unions in Subqueries

A union clause is allowed in a subquery inside a derived-table expression.

The following example uses a union clause in a subquery within a SQL-derived table to list the titles of books
sold at stores listed in the sales and sales_east tables:

select title_id from salesdetail where stor_id in
 (select stor_id from
 (select stor_id from sales
 union

Transact-SQL Users Guide
SQL-Derived Tables P U B L I C 133

 select stor_id from sales_east) dt_stores)

3.3.5 Rename Columns with SQL-Derived Tables

If a derived column list is included for a SQL-derived table, it follows the name of the SQL-derived table and is
enclosed in parentheses.

For example:

select dt_b.book_title, dt_b.tot_sales from (select title, total_sales
 from titles) dt_b (book_title, tot_sales) where dt_b.book_title like "%Computer%"

The column names title and total_sales in the derived-table expression are respectively renamed to
book_title and tot_sales using the derived column list. The book_title and tot_sales column names
are used in the rest of the query.

Note
SQL-derived tables cannot have unnamed columns.

3.3.6 Constant Expressions

If a column name is not specified in the target list of the derived-table expression, as in the case where a
constant expression is used for the column name, the resulting column in the SQL-derived table has no name.

For example:

1> select * from 2> (select title_id, (lorange + hirange)/2
3> from roysched) as dt_avg_range
4> go
title_id
--------- -----------
BU1032 2500
BU1032 27500
PC1035 1000 PC1035 2500

You can specify column names for the target list of a derived-table expression using a derived column list:

1> select * from 2> (select title_id, (lorange + hirange)/2
3> from roysched) as dt_avg_range (title, avg_range)
4> go
title avg_range
--------- -----------
BU1032 2500
BU1032 27500
PC1035 1000

134 P U B L I C
Transact-SQL Users Guide

SQL-Derived Tables

PC1035 2500

Alternately, you can specify column names by renaming the column in the target list of the derived-table
expression:

1> select * from 2> (select title_id, (lorange + hirange)/2 avg_range
3> from roysched) as dt_avg_range
4> go
title avg_range
--------- -----------
BU1032 2500
BU1032 27500
PC1035 1000 PC1035 2500

Note
If you specify column names in both a derived column list and in the target list of the derived-table
expression, the resulting columns are named by the derived column list. The column names in a derived
column list take precedence over the names specified in the target list of the derived-table expression.

If you use a constant expression within a create view statement, you must specify a column name for the
constant expression results.

3.3.7 Aggregate Functions

Derived-table expressions can use aggregate functions, such as sum, avg, max, min, count_big, and count.

The following example selects columns pub_id and adv_sum from the SQL-derived table dt_a.

The second column is created in the derived-table expression using the sum function over the advance
column of the titles table.

select dt_a.pub_id, dt_a.adv_sum from (select pub_id, sum(advance) adv_sum from titles group by pub_id) dt_a

If you use an aggregate function within a create view statement, you must specify a column name for the
aggregate results.

3.3.8 Joins with SQL-Derived Tables

You can use the where clause to join a SQL-derived table and an existing table.

In this example, the two tables joined are dt_c, which is a SQL-derived table, and publishers, which is an
existing table in the pubs2 database.

select dt_c.title_id, dt_c.pub_id from (select title_id, pub_id from titles) as dt_c,
 publishers

Transact-SQL Users Guide
SQL-Derived Tables P U B L I C 135

 where dt_c.pub_id = publishers.pub_id

The following example illustrates a join between two SQL-derived tables. The two tables joined are dt_c and
dt_d.

select dt_c.title_id, dt_c.pub_id from (select title_id, pub_id from titles)
 as dt_c,
 (select pub_id from publishers)
 as dt_d where dt_c.pub_id = dt_d.pub_id

You can also use outer joins with SQL-derived tables. SAP supports both left and right outer joins. The
following example illustrates a left outer join between two SQL-derived tables.

select dt_c.title_id, dt_c.pub_id from (select title_id, pub_id from titles)
 as dt_c,
 (select title_id, pub_id from publishers)
 as dt_d where dt_c.title_id *= dt_d.title_id

The following example illustrates a left outer join within a derived-table expression:

select dt_titles.title_id from (select * from titles, titleauthor
 where titles.title_id *= titleauthor.title_id) dt_titles

3.3.9 Create a Table From a SQL-Derived Table

Data obtained from a SQL-derived table can be inserted into a new table.

For example:

select pubdate into pub_dates from (select pubdate from titles) dt_e where pubdate = "450128 12:30:1PM"

Data from the SQL-derived table dt_e is inserted into the new table pub_dates.

3.3.10 Views with SQL-Derived Tables

You can create a view using a SQL-derived table.

The following example creates a view, view_colo_publishers, using a SQL-derived table, dt_colo_pubs,
to display publishers based in Colorado:

create view view_colo_publishers (Pub_Id, Publisher, City, State)
as select pub_id, pub_name, city, state
from
(select * from publishers where state="CO")

136 P U B L I C
Transact-SQL Users Guide

SQL-Derived Tables

 dt_colo_pubs

You can insert data through a view that contains a SQL-derived table if the insert rules and permission
settings for the derived-table expression follow the insert rules and permission settings for the select part
of the create view statement. For example, the following insert statement inserts a row through the
view_colo_publishers view into the publishers table on which the view is based:

insert view_colo_publishers values ('1799', 'Gigantico Publications', 'Denver', 'CO')

You can also update existing data through a view that uses a SQL-derived table:

update view_colo_publishers set Publisher = "Colossicorp Industries" where Pub_Id = "1699"

Note
Specify the column names of the view definition, not the column names of the underlying table.

Views that use a SQL-derived table are dropped in the standard manner:

drop view view_colo_publishers

3.3.11 Correlated Attributes

You cannot reference correlated attributes that exceed the scope of a SQL-derived table from a SQL-derived-
table expression.

For example, the following query results in an error:

select * from publishers where pub_id in
 (select pub_id from
 (select pub_id from titles
 where pub_id = publishers.pub_id) dt_publishers)

Here, the column publishers.pub_id is referenced in the SQL-derived-table expression, but it is outside the
scope of the SQL-derived table dt_publishers.

Transact-SQL Users Guide
SQL-Derived Tables P U B L I C 137

4 Partition Tables and Indexes

Use partitioning to manage large tables and indexes by dividing them into smaller, more manageable pieces.
Partitions, like a large-scale index, provide faster and easier access to data.

Each partition can reside on a separate segment. Partitions are database objects and can be managed
independently. You can, for example, load data and create indexes at the partition level. Yet partitions are
transparent to the end user, who can select, insert, and delete data using the same DML commands whether
the table is partitioned or not.

SAP ASE supports horizontal partitioning, in which a selection of table rows can be distributed among disk
devices. Individual table or index rows are assigned to a partition according to a partitioning strategy.

Partitioning is the basis for parallel processing, which can significantly improve performance.

Note
Semantics-based partitioning is licensed separately. To enable semantic partitioning at a licensed site, set
the value of the enable semantic partitioning configuration parameter to 1. See, Setting
Configuration Parameters, in the System Administration Guide: Volume 1.

Partitioning:

● Improves scalability.
● Improves performance – concurrent multiple I/O on different partitions, and multiple threads on multiple

CPUs working concurrently on multiple partitions.
● Provides faster response time.
● Provides partition transparency to applications.
● Supports very large database (VLDB) – concurrent scanning of multiple partitions of very large tables.
● Provides range partitioning to manage historical data.

Note
By default, SAP ASE creates tables with a single partition and uses a round-robin partitioning strategy.
These tables are described as “unpartitioned” to distinguish between tables created or modified without
partitioning syntax (the default) and those created with partitioning syntax.

Data Partitions

A data partition is an independent database object with a unique partition ID. It is a subset of a table, and
shares the column definitions and referential and integrity constraints of the base table.

To maximize I/O parallelism, SAP recommends that you bind each partition to a different segment, and bind
each segment to a different storage device.

138 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

Partition Keys

Each semantically partitioned table has a partition key that determines how individual data rows are
distributed to different partitions. The partition key may consist of a single partition-key column or multiple
key columns. The values in the key columns determine the actual partition distribution.

Range- and hash-partitioned tables can have as many as 31 key columns in the partition key. List partitions can
have one key column in the partition key. Round-robin partitioned tables do not have a partition key.

You can specify partitioning-key columns of any type except:

● text, image, and unitext
● bit
● Java classes
● Computed columns

You can partition tables containing columns of these datatypes, but the partitioning key columns must be of
supported datatypes.

Index Partitions

Indexes, like tables, can be partitioned. You can create local as well as global indexes.

An index partition is an independent database object identified with a unique combination of index ID and
partition ID; it is a subset of an index, and resides on a segment or other storage device.

SAP ASE supports local and global indexes.

● A local index – spans data in exactly one data partition. For semantically partitioned tables, a local index
has partitions that are equipartitioned with their base table; that is, the table and index share the same
partitioning key and partitioning type.
For all partitioned tables with local indexes, each local index partition has one and only one corresponding
data partition.

● A global index – spans all data partitions in a table. SAP supports only unpartitioned global indexes. All
unpartitioned indexes on unpartitioned tables are global.

You can mix partitioned and unpartitioned indexes with partitioned tables:

● A partitioned table can have partitioned and unpartitioned indexes.
● An unpartitioned table can have only unpartitioned, global indexes.

Partition IDs

A partition ID is a pseudorandom number similar to object ID. Partition IDs and object IDs are allocated from
the same number space. An index or data partition is identified with a unique combination of index ID and
partition ID.

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 139

Locks and Partitions

Partition locks increases data availability by creating finer locking granularity, which allows access to other
partitions for concurrent DDL and DML statements.

See Performance and Tuning Series: Locking and Concurrency Control.

4.1 Partitioning Types

SAP ASE supports range partitioning, hash partitioning, list partitioning, and round-robin partitioning.

4.1.1 Range Partitioning

Rows in a range-partitioned table or index are distributed among partitions according to values in the
partitioning key columns.

The partitioning column values of each row are compared with a set of upper and lower bounds to determine
the partition to which the row belongs.

● Every partition has an inclusive upper bound, which is specified by the values <= clause when the
partition is created.

● Every partition except the first has a noninclusive lower bound, which is specified implicitly by the values
<= clause on the next-lower partition.

Range partitioning is particularly useful for high-performance applications in both OLTP and decision-support
environments. Select ranges carefully so that rows are assigned equally to all partitions—knowledge of the
data distribution of the partition-key columns is crucial to balancing the load evenly among the partitions.

Range partitions are ordered; that is, each succeeding partition must have a higher bound than the previous
partition.

4.1.2 Hash Partitioning

In hash partitioning, SAP ASE uses a hash function to specify the partition assignment for each row. You select
the partitioning key columns, but SAP ASE chooses the hash function that controls the partition assignment.

Hash partitioning is a good choice for:

● Large tables with many partitions, particularly in decision-support environments
● Efficient equality searches on hash key columns
● Data with no particular order, for example, alphanumeric product code keys

If you choose an appropriate partition key, hash partitioning distributes data evenly across all partitions.
However, if you choose an inappropriate key—for example, a key that has the same value for many rows—the
result may be an unbalanced distribution of rows among the partitions.

140 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

4.1.3 List Partitioning

As with range partitioning, list partitioning distributes rows semantically; that is, according to the actual value
in the partitioning key column.

A list partition has only one key column. The value in the partitioning key column is compared with sets of user-
supplied values to determine the partition to which each row belongs. The partition key must match exactly
one of the values specified for a partition.

The value list for each partition must contain at least one value, and value lists must be unique across all
partitions. You can specify as many as 250 values in each list partition. List partitions are not ordered.

4.1.4 Round-Robin Partitioning

In round-robin partitioning, SAP ASE assigns rows in a round-robin manner to each partition so that each
partition contains a more or less equal number of rows and load balancing is achieved. Because there is no
partition key, rows are distributed randomly across all partitions.

In addition, round-robin partitioning offers:

● Multiple insertion points for future inserts
● A way to enhance performance using parallelism
● A way to perform administrative tasks, such as updating statistics and truncating data on individual

partitions

4.2 Partition Pruning

Partition pruning, or partition elimination, can save considerable time and resources during execution.

Semantics-based partitioning allow SAP ASE to eliminate certain partitions when performing a search. Range-
based partitions, for example, contain rows for which partitioning keys are discrete value sets. When a query
predicate—a where clause—is based on those partitioning keys, SAP ASE can quickly ascertain whether rows
in a particular partition can satisfy the query. This behavior is called partition pruning.

● For range and list partitioning – SAP ASE can apply partition pruning on equality (=) and range (>, >=, <,
and <=) predicates on partition-key columns on a single table.

● For hash partitioning – SAP ASE can apply partitioning pruning only on equality predicates on a single
table.

● For range, list, and hash partitioning – SAP ASE cannot apply partition pruning on predicates with “not
equal to” (!=) clauses or to complex predicates that have expressions on the partitioning column.

For example, suppose the roysched table in pubs2 is partitioned on hirange and royalty. SAP ASE can use
partitioning pruning on this query:

select avg(royalty) from roysched where hirange <= 10000 and royalty < 9

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 141

The partition pruning process identifies p1 and p2 as the only partitions to qualify for this query. Thus, the p3
partition need not be scanned, and SAP ASE can return query results more efficiently because it needs to scan
only p1 and p2.

In these examples, SAP ASE does not use partition pruning:

select * from roysched where hirange != 5000

select * from roysched where royalty*0.15 >= 45

Note
In serial execution mode, partition pruning applies only to scans, inserts, deletes, and updates; partition
pruning does not apply to other operators. In parallel execution mode, partition pruning applies to all
operators.

Related Information

Composite Partitioning Keys [page 142]

4.3 Composite Partitioning Keys

Semantically partitioned tables have one partition key per table or index. For range- or hash-partitioned tables,
the partition key can be a composite key with as many as 31 key columns.

If a hash-partitioned table has a composite partitioning key, SAP ASE takes the values in all partitioning key
columns and hashes the resultant data stream with a system-supplied hash function.

When a range-partitioned table has more than one partitioning key column, SAP ASE compares values of
corresponding partitioning key columns in each data row with each partition upper and lower bound. Each
partition bound is a list of one or more values, one for each partitioning key column.

SAP ASE compares partitioning key values with bounds in the order specified when the table was first created.
If the first key value satisfies the assignment criteria of a partition, the row is assigned to that partition and no
other key values are evaluated. If the first key value does not satisfy the assignment criteria, succeeding key
values are evaluated until the assignment criteria is satisfied. Thus, SAP ASE may evaluate as few as one
partitioning key value or as many as all keys values to determine a partition assignment.

For example, suppose key1 and key2 are partitioning columns for my_table. The table is made up of three
partitions: p1, p2, and p3. The declared upper bounds are (a, b) for p1, (c, d) for p2, and (e, f) for p3.

if key1 < a, then the row is assigned to p1 if key1 = a, then
 if key2 < b or key2 = b, then the row is assigned to p1
if key1 > a or (key1 = a and key2 > b), then
 if key1 < c, then the row is assigned to p2

142 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

 if key1 = c, then
 if key2 < d or key2 = d, then the row is assigned to p2
 if key1 > c or (key1 = c and key2 > d), then
 if key1 < e, then the row is assigned to p3
 if key1 = e, then
 if key2 < f or key2 = f, then the row is assigned to p3 if key2 > f, then the row is not assigned

Suppose the roysched table in pubs2 is partitioned by range. The partitioning columns are high range
(hirange) and royalty (royalty). There are three partitions: p1, p2, and p3. The upper bounds are (5000,
14) for p1, (10000, 10) for p2, and (100000, 25) for p3.

You can create partitions in the roysched table using alter table:

alter table roysched partition by range (hirange, royalty)
 (p1 values <= (5000, 14),
 p2 values <= (10000, 10), p3 values <= (100000, 25))

SAP ASE partitions the rows in this way:

● Rows with these partitioning key values are assigned to p1: (4001, 12), (5000, 12), (5000, 14), (3000, 18).
● Rows with these partitioning key values are assigned to p2: (6000, 18), (5000, 15), (5500, 22), (10000,

10), (10000, 9).
● Rows with these partitioning key values are assigned to p3: (10000, 22), (80000, 24), (100000, 2),

(100000, 16).

SAP ASE evaluates tables with more than two partitioning key columns in a similar manner.

4.4 Indexes and Partitions

Indexes speed data retrieval by pointing to the location of a table column’s data on disk. You can create global
indexes and local indexes, each of which can also be clustered or nonclustered.

In clustered indexes, the physical data is stored in the same order as the index, and the bottom level of the
index contains the actual data pages. In nonclustered indexes, the physical data is not stored in the same
order as the index, and the bottom level of the index contains pointers to the rows on the data pages.

Clustered indexes on semantically partitioned tables are always local indexes—whether or not you specify
“local” index in the create index command. Clustered indexes on round-robin tables can be either global or
local.

4.4.1 Global Indexes

Global indexes span data in one or more partitions, which are not equipartitioned with the base table. Because
SAP ASE supports only unpartitioned global indexes, a global index spans all partitions.

Global indexes are supported for compatibility with earlier versions of SAP ASE, and because they are
particularly useful in OLTP environments.

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 143

SAP ASE supports these types of global indexes:

● Clustered indexes on round-robin and unpartitioned tables
● Nonclustered indexes on all types of tables

Global Nonclustered Index on Unpartitioned Table

This is an example of creating a global nonclustered index on an unpartitioned table.

The figure below shows the default nonclustered index configuration.

To create this index on the unpartitioned publishers table, enter:

create nonclustered index publish5_idx on publishers(pub_id)

Global Clustered Index on Unpartitioned Table

This is an example figure that shows a default clustered index configuration. The table and index are
unpartitioned.

To create this table on an unpartitioned publishers table, enter:

create clustered index publish4_idx on publishers(pub_id)

144 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

4.4.2 Local Indexes

All local indexes are equipartitioned with the base table’s data partitions; that is, they inherit the partitioning
type and partition key of the base table. Each local index spans just one data partition.

You can create local indexes on range-, hash-, list-, and round-robin–partitioned tables. Local indexes allow
multiple threads to scan each data partition in parallel, which can greatly improve performance.

Local Clustered Indexes

When a table is partitioned, rows are assigned to a partition based on value, but the data is not sorted. When a
local index is created, each partition is sorted separately.

This figure shows an example of partitioned clustered indexes on a partitioned table. The index is created on
the pub_id column, and the table is indexed on pub_id. This example can enforce uniqueness on the pub_id
column.

To create this table on the range-partitioned publishers table, enter:

create clustered index publish6_idx on publishers(pub_id) local index p1, p2, p3

To create this example on the range-partitioned publishers table, enter:

create clustered index publish7_idx on publishers(pub_name) local index p1, p2, p3

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 145

The information in each data partition conforms to the boundaries established when the partitions were
created, which means you can enforce unique index keys across the entire table.

Local Nonclustered Indexes

You can define local nonclustered indexes on any set of indexable columns.

Using the publishers table partitioned by range on the pub_id column as in , create a partitioned,
nonclustered index on the pub_id and city columns:

create nonclustered index publish8_idx (A) on publishers(pub_id, city) local index p1, p2, p3

You can also create a partitioned, nonclustered index on the city column:

create nonclustered index publish9_idx (B) on publishers(city) local index p1, p2, p3

This example shows both examples of nonclustered local indexes. The graphic description of each is identical.
However, you can enforce uniqueness on example A; you cannot enforce uniqueness on example B.

4.4.3 Guarantee a Unique Index

A unique index ensures that no two rows have the same index value, including NULL. The system checks for
duplicate values when the index is created, if data already exists, and checks each time data is added or
modified with an insert or update.

You can easily enforce uniqueness—using the unique keyword—on global indexes because they are not
partitioned. Local indexes are partitioned; enforcing uniqueness requires additional constraints.

To enforce uniqueness on local indexes, the partition keys must:

146 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

● Be a subset of the index keys
● Have the same sequence as the index keys

For example, you can impose uniqueness in these instances:

● A table partitioned by hash, list, or range on column1, with a local index with index key on column1.
● A table partitioned by hash, list, or range on column1, with a local index with index keys on column1 and

column2.
● A table is partitioned by hash, list, or range on column1 and column3. A local index has these index keys:

○ column1, column3, or
○ column1, column2, column3, or
○ column0, column1, column3, column4.

An index with these index keys cannot enforce uniqueness: column3 or column1, column3.

You cannot enforce uniqueness on round-robin partitioned tables with local indexes.

Related Information

Create Indexes on Tables [page 174]

4.5 Create and Manage Partitions

The sp_configure option enable semantic paritioning turns on semantic paritioning. Round-robin
partitioning is always available, and is unaffected by the value of enable semantic partitioning.

To enable semantic partitioning at your licensed site, enter:

sp_configure ‘enable semantic partitioning’, 1

Enable semantic partitioning to perform commonly used administrative and maintenance operations such as:

● Creating and truncating tables – create table, truncate table
● Altering tables to change locks or modify schema – alter table
● Creating indexes – create index
● Updating statistical information – update statistics
● Reorganizing table pages to conform to clustered indexes and best use of space – reorg rebuild

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 147

4.5.1 Partitioning Tasks

Before you partition a table or index, you must prepare the disk devices and the segments or other storages
devices that you will use for the partitions.

Context

You can assign multiple partitions to a segment, but a partition can be assigned to only one segment.
Assigning a single partition to each segment, with devices bound to individual segments, ensures the most
benefit from parallelization and partitioning.

Procedure

1. Use disk init to initialize a new database device. disk init maps a physical disk device or operating
system file to a logical database device name. For example:

use master

disk init name ="pubs_dev1",
physname = "SYB_DEV01/pubs_dev", size = "50M"

See, Initializing Database Devices, in the System Administration Guide: Volume 1.
2. Use alter database to assign the new device to the database containing the table or index to partition.

For example:

use master

alter database pubs2 on pubs_dev1

3. (Optional) Use sp_addsegment to define the segments in the database. This example assumes that
pubs_dev2, pubs_dev3, and pubs_dev4 have been created in a similar manner to pubs_dev1.

use pubs2

sp_addsegment seg1, pubs2, pubs_dev1 sp_addsegment seg2, pubs2, pubs_dev2
sp_addsegment seg3, pubs2, pubs_dev3 sp_addsegment seg4, pubs2, pubs_dev4

4. Drop all indexes from the table to partition. For example:

use pubs2

drop index salesdetail.titleidind, salesdetail.salesdetailind

148 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

5. Use sp_dboption to enable the bulk-copy of table or index data to the new partitions. For example:

use master

sp_dboption pubs2,"select into", true

6. Use alter table to repartition a table or create table to create a new table with partitions; use
create index to create a new, partitioned index; or use select into to create a new, partitioned table
from an existing table.

For example, to repartition the salesdetail table in pubs2:

use pubs2

alter table salesdetail partition by range (qty) (smsales values <= (1000) on seg1,
 medsales values <= (5000) on seg2, lgsales values <= (10000) on seg3)

7. Re-create indexes on the partitioned table. For example, on the salesdetail table:

use pubs2

create nonclustered index titleidind on salesdetail (title_id)

create nonclustered index salesdetailind on salesdetail (stor_id)

4.5.2 Create a Range-Partitioned Table

For best performance, each partition of a range-partitioned table resides on a separate segment.

This example creates a range-partitioned table called fictionsales; it has four partitions, one for each
quarter of the year:

create table fictionsales (store_id int not null,
 order_num int not null,
 date datetime not null)
partition by range (date)
 (q1 values <= (“3/31/2004”) on seg1,
 q2 values <= (“6/30/2004”) on seg2,
 q3 values <= (“9/30/2004”) on seg3, q4 values <= (“12/31/2004”) on seg4)

The partitioning-key column is date. The q1 partition resides on seg1, and includes all rows with date values
through 3/31/2004. The q2 partition resides on seg2, and includes all rows with date values of 4/1/2004
through 6/30/2004. q3 and q4 are partitioned similarly.

Attempting to insert date values later than “12/31/2004” causes an error, and the insert fails. In this way, the
range conditions act as a check constraint on the table by limiting the rows that can be inserted into the table.

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 149

To make sure that all values, up to the maximum value for a datatype, are included, use the MAX keyword as
the upper bound for the last-created partition. For example:

create table pb_fictionsales (store_id int not null,
 order_num int not null,
 date datetime not null)
partition by range (order_num)
 (low values <= (1000) on seg1,
 mid values <= (5000) on seg2, high values <= (MAX) on seg3)

4.5.2.1 Restrictions on Partition Keys and Bound Values
for Range-Partitioned Tables

Partition bounds must be in ascending order according to the order in which the partitions were created. That
is, the upper bound for the second partition must be higher than for the first partition, and so on.

In addition, partition bound values must be compatible with the corresponding partition-key column datatype.
For example, varchar is compatible with char. If a bound value has a different datatype than that of its
corresponding partition-key column, SAP ASE converts the bound value to the datatype of the partition-key
column, with these exceptions:

● Explicit conversions are not allowed. This example attempts an illegal conversion from varchar to int:

create table employees(emp_names varchar(20)) partition by range(emp_name)
 (p1 values <=(1), p2 values <= (10))

● Implicit conversions that result in data loss are not allowed. In this example, rounding assumptions may
lead to data loss if SAP ASE converts the bound values to integer values. The partition bounds are not
compatible with the partition-key datatype.

create table emp_id (id int) partition by range(id)
 (p1 values <= (10.5), p2 values <= (100.5))

In this example, the partitions bounds and the partition-key datatype are compatible. SAP ASE converts
the bound values directly to float values. No rounding is required, and conversion is supported.

create table id_emp (id float) partition by range(id)
 (p1 values <= (10), p2 values <= (100))

● Conversions from nonbinary datatypes to binary datatypes are not allowed. For example, this conversion
is not allowed:

create table newemp (name binary) partition by range(name)
 (p1 values <= (“Maarten”), p2 values <= (“Zymmerman”))

150 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

4.5.3 Create a Hash-Partitioned Table

With hash partitioning, all rows are guaranteed to belong to some partition. There is no possibility that inserts
and updates will fail to find a partition, which is not the case for range- or list-partitioned tables.

This example creates a table with three hash partitions:

create table mysalesdetail (store_id char(4) not null,
 ord_num varchar(20) not null,
 title_id tid not null,
 qty smallint not null,
 discount float not null)
partition by hash (ord_num) (p1 on seg1, p2 on seg2, p3 on seg3)

Hash-partitioned tables are easy to create and maintain. SAP ASE chooses the hash function and attempts to
distribute the rows equally among the partitions.

4.5.4 Create a List-Partitioned Table

List partitioning controls how individual rows map to specific partitions. List partitions are not ordered and are
useful for low cardinality values. Each partition value list must have at least one value, and no value can appear
in more than one list.

This example creates a table with two list partitions:

create table my_publishers (pub_id char(4) not null,
pub_name varchar(40) null,
city varchar(20) null,
state char(2) null)
partition by list (state)
(west values (‘CA’, ‘OR’, ‘WA’) on seg1, east value (‘NY’, ‘NJ’) on seg2)

An attempt to insert a row with a value in the state column other than one provided in the list fails. Similarly,
an attempt to update an existing row with a key column value other than one provided in the list fails. As with
range-partitioned tables, the values in each list act as a check constraint on the entire table.

4.5.5 Create a Round-Robin–Partitioned Table

This partitioning strategy is random as no partitioning criteria are used. Round-robin-partitioned tables have
no partition keys.

This example specifies round-robin partitioning:

create table currentpublishers (pub_id char(4) not null,
pub_name varchar(40) null,
city varchar(20) null,
state char(2) null)

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 151

 partition by roundrobin 3 on (seg1)

All partition-aware utilities and administrative tasks are available for round-robin partitioned tables—whether
or not semantic partitioning has been licensed or configured.

4.5.6 Create Partitioned Indexes

Indexes can be created in serial or parallel mode, however, you can create global indexes on round-robin-
partitioned tables only in parallel mode.

SAP ASE supports local clustered indexes and local nonclustered indexes on all types of partitioned tables. A
local index inherits the partition types, partitioning columns, and partition bounds of the base table.

For range-, hash-, and list-partitioned tables, SAP ASE always creates local clustered indexes, whether or not
you include the keywords local index in the create index statement.

This example creates a local, clustered index on the partitioned mysalesdetail table. In a clustered index,
the physical order of index rows must be the same as that of the data rows; you can create only one clustered
index per table.

create clustered index clust_idx on mysalesdetail(ord_num) local index

This example creates a local, nonclustered index on the partitioned mysalesdetail table. The index is
partitioned by title_id. You can create as many as 249 nonclustered indexes per table.

create nonclustered index nonclust_idx on mysalesdetail(title_id) local index p1 on seg1, p2 on seg2, p3 on seg3

Create Clustered Indexes on Partitioned Tables

You can create a clustered index on a partitioned table if the select into/bulkcopy/pllsort database
option is true, and if there are as many worker threads available as there are partitions.

To speed recovery, dump the database after creating the clustered index.

See a system administrator or the database owner before creating a clustered index on a partitioned table.

4.5.7 Create a Partitioned Table From an Existing Table

To create a partitioned table from an existing table, use the select into command.

You can use select with the into_clause to create range-, hash-, list-, or round-robin–partitioned tables.
The table from which you select can be partitioned or unpartitioned. See the Reference Manual: Commands.

152 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

Note
You can create temporary partitioned tables in tempdb using select with the into_clause in your
applications.

For example, to create the partitioned sales_report table from the salesdetail table, enter:

select * into sales_report partition by range (qty) (smallorder values <= (500) on seg1,
bigorder values <= (5000) on seg2) from salesdetail

4.6 Change Data Partitions

The alter table alters data partitions.

You can use the alter table command to:

● Change an unpartitioned table to a multipartitioned table
● Split, merge, or move partitions
● Add one or more partitions to a list- or range-partitioned tables
● Repartition a table for a different partitioning type
● Repartition a table for a different partitioning key or bound
● Repartition a table for a different number of partitions
● Repartition a table to assign partitions to different segments

The general procedures for repartitioning a table are:

1. If the partition key or type is to change during the repartition process, drop all indexes on the table.
2. Use alter table to repartition the table.
3. If the partition key or type changed during the repartition process, re-create the indexes on the table.

Change an Unpartitioned Table to a Partitioned Table

An example of an unpartitioned titles table changing to a table with three range partitions.

alter table titles partition by range (total_sales) (smallsales values <= (500) on seg1,
mediumsales values <= (5000) on seg2, bigsales values <= (25000) on seg3)

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 153

4.6.1 Split, Merge, and Move Partitions

Over time, a partition’s data distribution might become skewed, or the manner in which the data was originally
partitioned may no longer suit the current business requirements. Use alter table to merge, split, or move
partitions to redistribute the data and revive performance benefits using partitions.

For example, a company may split partitions to better access its data according to four regions —North,
South, East and West. The split partitions allow customer representatives fast and efficient access to their
regions’ customers, independent of other regions. If sales increase in the Southern region and the customer
base has expanded significantly, frequent queries involving partition scans and maintenance operations may
cause the South partition to be slow and inefficient, losing out on the benefits of partitioning the customer
data. In this situation, splitting the data in the South partition into two partitions, South-East and South-West,
may revive performance without affecting the data in other partitions.

A company may merge partitions for better performance because their sales data is partitioned into the four
yearly quarters—partitions Q1, Q2, Q3, and Q4. At the end of the year, the company merges the data for the
year and archives it. Merging the partitions is efficient because the sales data for a past year is accessed
infrequently, and the older data is most likely to be read but not updated.

Note
During a partition split, merge, or move, SAP ASE takes an exclusive lock on the table on which it performs
the operation, and the system table entries corresponding to the table.

4.6.1.1 Partition Schemes Available for Splitting or
Merging

alter table allows you to split, merge, or move range and list partitioning schemes.

Because the location for the data in round-robin partitioned tables is distributed randomly among the data
partitions, there is no need to split or merge round-robin partitions.

For hash-partitioned tables, use the repartition utility to redistribute the data.

4.6.1.2 Split Partitions

Use the alter table ... split partition parameter to redistribute data to two or more partitions.

The syntax is:

alter table <table_name> split partition <partition_name> into <partition_condition_clause>

where:

● <partition_name> – the partition you are splitting.

154 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

● <partition_condition_clause> – conditions that specify how to split the source partition data.
Typically, conditions consist of a numerical range or a data range. The partition conditions should cover
all, and only, the data in the source partition.
<partition_condition_clause> may be on the same segment as the source partition, or on a new
segment. If you do not specify destination partition segments, SAP ASE creates the new partitions on the
segment on which the source partition resides.

See Reference Manual: Commands.

You must enable select into/bulkcopy to issue alter table ... split partition. By default,
alter table ... split partition rebuilds the section of the local or global index on the partitioned
table affected by the split operation.

Except for the step that rebuilds the index, alter table ... split partition is not a logged operation.
SAP recommends that you perform a database dump after running the alter table ... split
partition command.

This example creates the orders table and then splits its partitions to redistribute the data:

create table orders (orderid int, amount float, orderdate datetime) partition by range (amount)
(P1 values <= (10000) on seg1,
 P2 values <= (50000) on seg2,
 P3 values <= (100000) on seg3,
 P4 values <= (MAX) on seg4)
create clustered index ind_orderid
on orders(orderid) local index (i1 on seg1, i2 on seg2, i3 on seg3, i4 on seg4)
alter table orders
split partition P2
into
(P5 values <= (25000) on seg2,
 P6 values <= (50000) on seg3)
alter table orders
split partition P3
into
(P7 values <= (50000) on seg2,
 P8 values <= (100000) on seg3)
alter table orders
split partition P4
into
(P9 values <= (200000), P10 values <= (MAX))

4.6.1.3 Merge Partitions

Use alter table ... merge partition to combine the data from two or more merge-compatible (that
is, available for the merge) partitions into a single partition.

Whether partitions are merge compatible depends on how they are partitioned:

● For list-partitioned tables, any two partitions are merge-compatible
● For range-partitioned tables, partitions must be adjacent to be merge-compatible

The syntax is:

alter table <table_name> merge partition {<partition_name> [{, <partition_name>}…]}

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 155

into <destination_partition_name> [on <segment_name>]

where:

● <partition_name> – the source partitions you are merging. All source partitions must be on the same
segment.

● <destination_partition_name> – a new or existing partition. If <destination_partition_name>
is an existing partition, it cannot be any of the source partitions you are merging.
The partition condition for the merged destination partition is derived from the partition conditions of all
the source data partitions being merged, so the destination partition includes all the data residing in the
source data partitions being merged. For example, for a list-partitioned table, the new partition condition
for the merged partition is the union of all the values that form the source data partition conditions.

See Reference Manual: Commands.

You must enable select into/bulkcopy to issue alter table ... merge partition.

alter table ... merge partition is fully logged. Use the transaction dump to recover from a server
failure.

This example creates the sales table and then merges its partitions to consolidate the data:

create table sales(salesmanid int, salesdate datetime, salesregion varchar(10)) partition by range(salesdate)
(Q1 values <= ('31 Mar 2007'),
 Q2 values <= ('30 Jun 2007'),
 Q3 values <= ('30 Sep 2007'),
 Q4 values <= ('31 Dec 2007'))
create index ind_region on sales(salesregion)
alter table sales
merge partition Q3
into Q4
alter table sales
merge partition Q1, Q2, Q3, Q4 into Y2007

4.6.1.4 Move Partitions

Use alter table ... move partition to move a partition (and its index) to a specified segment.

The syntax is:

alter table <table_name> move partition <partition_name> to <destination_segment_name>

where:

● <partition_name> – the partition you are moving.
● <destination_segment_name> – a new or existing segment to which you are moving the partition. You

cannot specify “default” as the <destination_segment_name>.

See the Reference Manual: Commands.

You must enable select into/bulkcopy to issue alter table ... move partition.

156 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

4.6.1.5 Effect of Split or Merged Partitions on Indexes

SAP ASE rebuilds all affected indexes when you perform a split, merge, or move partition on a table with
indexes.

Note
Merging or splitting partitions removes statistics from systabstats and sysstatistics. SAP
recommends that you run update statistics after merging or splitting partitions.

Table 1: Splitting and Merging Partitions on Indexes

Command Global Nonclustered
Index

Local Index Local Clustered In
dex

Local Nonclustered Index

split
partition

Index is rebuilt All affected index
partitions are rebuilt

Rebuilds all index
partitions

Rebuilt on default segment

merge
partition

No effect if the source
and destination seg
ments are the same

All affected index
partitions are rebuilt

Rebuilds all index
partitions

Rebuilt on default segment

If the table you are splitting or merging includes indexes on separate segments, the segments on which the
newly rebuilt indexes reside depend on the type of index.

Table 2: Effect of Split Partition on Index Segments

Type of Index After the Split or Merge Operation

Global nonclustered index The index remains on the same segment as prior to the operation.

Local nonclustered index ● New index partitions (corresponding to the split or merge destination data parti
tions) are placed on the segment specified at the index level.

● The indexes are placed on the default segment if you do not specify an index seg
ment.

● All unaffected index partitions (corresponding to other data partitions that were not
involved in the split or merge) remain on the same segment as prior to the split or
merge operation

Local clustered index ● New index partitions are placed on the same segment on which the corresponding
destination data partition is placed.

● The unaffected index partitions (corresponding to other data partitions not involved
in the split or merge) remain on the same segment as prior to the split or merge op
eration.

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 157

4.6.2 Add Partitions to a Partitioned Table

You can add partitions to list- or range-partitioned tables, but you cannot add partitions to a hash- or round-
robin–partitioned table.

This example adds a new partition to a range-partitioned table using the existing partition-key column:

alter table titles add partition (vbigsales values <= (40000) on seg4)

Note
You can add partitions only to the high end of existing range-based partitions. If you have defined values
<= (MAX) on a partition, you cannot add new partitions.

Adding a partition to list- or range-partitioned tables does not involve a data copy. The newly created partition
is empty.

4.6.3 Change the Partitioning Type or Key

Before changing the partition type or key, you must drop all indexes.

Change the Partition Type

This example repartitions titles by hash on the title_id column:

alter table titles partition by hash(title_id) 3 on (seg1, seg2, seg3)

Repartition titles again by range on the total_sales column.

alter table titles partition by range (total_sales)
 (smallsales values <= (500) on seg1,
 mediumsales values <= (5000) on seg2, bigsales values <= (25000) on seg3)

Change the Partition Key

This example changes the partition key but not the partitioning type:

alter table titles partition by range(pubdate) (q1 values <= ("3/31/2006"),
 q2 values <= ("6/30/2006"),
 q3 values <= ("9/30/2006"),

158 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

 q1 values <= ("12/31/2006"))

Related Information

Add Partitions to a Partitioned Table [page 158]

4.6.4 Unpartition Round-Robin–Partitioned Tables

You can create an unpartitioned round-robin table from a partitioned round-robin table using alter table
with the unpartition clause—as long as all partitions are on the same segment, and there are no indexes on
the table.

This capability is useful when you are loading large amounts of data into a table that will eventually be used as
an unpartitioned table.

Related Information

Using Partitions to Load Table Data [page 163]

4.6.5 partition Parameter Usage

You can use the partition <number_of_partitions> parameter to change an unpartitioned round-robin
table to a round-robin-partitioned table that has a specified number of partitions.

SAP ASE places all existing data in the first partition. The remaining partitions are created empty; they are
placed on the same segment as the first existing partition. Data inserted later is distributed among all
partitions according to the round-robin strategy.

If a local index is present on the initial partition, SAP ASE builds empty local indexes on the new partitions. If,
when you created the table, you declared a segment, SAP ASE places the new partitions on that segment;
otherwise, the partitions are placed on the default segment specified at the table and index level.

For example, you can use partition <number_of_partitions> on the discounts table in pubs2 to
create three round-robin partitions:

alter table discounts partition 3

Note
alter table with the partition clause is supported only for the creation of round-robin partitions. It is
not supported for the creation of other types of partitions.

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 159

4.6.6 Change Partition-Key Columns

Certain rules apply when you modify partition-key columns.

These rules are:

● You cannot drop a column that is part of the partition key. You can drop columns that are not part of the
partition key.

● If you change the datatype of a column that is part of the partition key for a range-partitioned table, the
bound of that partition is converted to the new datatype, with these exceptions:
○ Explicit conversions
○ Implicit conversions that result in data loss
○ Conversions from nonbinary datatypes to binary datatypes

In certain cases, if you modify the datatype of a partition-key column or columns, data may redistribute among
the partitions:

● For range partitions – if some partition-key values are close to the partition bounds, a datatype conversion
may cause those rows to migrate to another partition.
For example, suppose the original datatype of the partition key is float, and it is converted to integer.
The partition bounds are: p1 values <= (5), p2 values <= (10). A row with a partition key of 5.5
is converted to 5, and the row migrates from p2 to p1.

● For range partitions – if the sort order changes because the partition-key datatype changes, all data rows
are repartitioned according to the new sort order. For example, the sort order changes if the partition-key
datatype changes from varchar to datetime.
alter table fails if you attempt to alter the datatype of a partition-key column, and, after conversion,
the new bound does not maintain the necessary ascending order, or not all rows fit in the new partitions.
See Handling suspect partitions, in, Configuring Character Sets, Sort Orders, and Languages, in the System
Administration Guide: Volume 1.

● For hash partitions – both the data value and the storage size of the partition-key datatype are used to
generate the hash value. As a consequence, changing the datatype of the hash partition key may result in
data redistribution.

Related Information

Restrictions on Partition Keys and Bound Values for Range-Partitioned Tables [page 150]

4.7 Configure Partitions

You can configure partitions to improve performance.

The configuration parameters for partitions are:

● number of open partitions – specifies the number of partitions that SAP ASE can access
simultaneously. The default value is 500.

160 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

● partition spinlock ratio – specifies the number of spinlocks used to protect against concurrent
access of open partitions. The default value is 10.

See, Setting Configuration Parameters, the System Administration Guide: Volume 1.

4.8 update, delete, and insert in Partitioned Tables

The syntax to update, insert, and delete data in partitioned tables is the same as for unpartitioned tables. You
cannot specify a partition in update, insert, and delete statements.

In a partitioned table, data resides on the partitions, and the table becomes a logical union of partitions. The
exact partition on which a particular data row is stored is transparent to the user. SAP ASE determines which
partitions are to be accessed through a combination of internal logic and the table’s partitioning strategy.

SAP ASE aborts any transaction that attempts to insert a row that does not qualify for any of the table’s
partitions. In a round-robin– or hash-partitioned table, every row qualifies. In a range- or list-partitioned table,
only those rows that meet the partitioning criteria qualify.

● For range-partitioned tables – insertions of data rows with values that exceed the upper range defined for
the table abort unless the MAX range is specified. If the MAX range is specified, all rows qualify at the
upper end.

● For list-partitioned tables – insertions of data rows with partition column values that do not match the
partitioning criteria fail.

If the partition-key column for a data row is updated so that the key column value no longer satisfies the
partitioning criteria for any partition, the update aborts.

Related Information

Update Values in Partition-Key Columns [page 161]

4.9 Update Values in Partition-Key Columns

For semantically partitioned tables, updating the value in a partition-key column can move the data row from
one partition to another.

SAP ASE updates partition-key columns in deferred mode when a data row must move to another partition. A
deferred update is a two-step procedure in which the row is deleted from the original partition and then
inserted in the new partition.

Such an operation on data-only-locked tables causes the row ID (RID) to change, and may result in scan
anomalies. For example, a table may be created and partitioned by range on column a:

create table test_table (a int) partition by range (a) (partition1 <= (1),

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 161

 partition2 <= (10))

The table has a single row located in partition2. The partition-key column value is 2. partition1 is empty.
Assume the following:

Transaction T1: begin tran
 go
 update table set a = 0 go

Transaction T2: select count(*) from table isolation level 1 go

Updating T1 causes the single row to be deleted from partition2 and inserted into partition1. However,
neither the delete nor the insert is committed at this point. Therefore, select count(*) in T2 does not
block on the uncommitted insert in partition1. Rather, it blocks on the uncommitted delete in
partition2. If T1 commits, T2 does not see the committed delete, and returns a count value of zero (0).

This behavior can be seen in inserts and deletes on data-only-locked tables that do not use partitions. It
exists for updates only when the partition-key values are updated such that the row moves from one partition
to another. See, Controlling Physical Data Placement, in the Performance and Tuning Series: Physical Database
Tuning and, Indexes, in the Performance and Tuning Series: Locking and Concurrency Control.

4.10 Display Information About Partitions

Use sp_helpartition to view information about partitions.

For example, to view information about the p1 partition in publishers, enter:

sp_helpartition publishers, null, p1

See the Reference Manual: Procedures.

4.10.1 Function Usage

There are several functions you can use to display partition information.

See the Reference Manual: Building Blocks for complete syntax and usage information.

● data_pages – returns the number of pages used by a table, index, or partition.
● reserved_pages – returns the number of pages reserved for a table, index, or partition.
● row_count – estimates the number of rows in a table or partition.
● used_pages – returns the number of pages used by a table, index, or partition. Unlike data_pages,

used_pages includes pages used by internal structures.
● partition_id – returns the partition ID of a specified partition for specified index.

162 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

● partition_name – returns the partition name that corresponds to the specified index and partition IDs.

Examples

This example returns the number of pages used by the object with an ID of 31000114 in the specified database.
The number of pages includes those for indexes.

data_pages(5, 31000114)

This example returns the partition ID corresponding to the testtable_ptn1 partition.

select partition_id(“testtable”, testtable_ptn1”)

This example returns the partition name for the partition ID 1111111111 belonging to the base table with an index
ID of 0.

select partition_name(0, 1111111111)

4.11 Truncate a Partition

You can delete all the information in a partition without affecting information in other partitions.

For example, to delete all rows from the q1 and q2 partitions of the fictionsales table, enter:

truncate table fictionsales partition q1

truncate table fictionsales partition q2

See the Reference Manual: Commands.

4.12 Using Partitions to Load Table Data

You can use partitioning to expedite loading large amounts of table data, even if the table will eventually be
used as an unpartitioned table.

Procedure

1. Create an empty table, and partition it <n> ways:

create table currentpublishers

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 163

(pub_id char(4) not null,
pub_name varchar(40) null,
city varchar(20) null,
state char(2) null) partition by roundrobin 3 on (seg1)

2. Run bcp in using the <partition_id> option. Copy presorted data into each partition. For example, to
copy datafile1.dat into the first partition of currentpublishers, enter:

bcp pubs2..currentpublishers:1 in datafile1.dat

3. Unpartition the table:

alter table currentpublishers unpartition

4. Create a clustered index:

create clustered index pubnameind on currentpublishers(pub_name)

 with sorted_data

Results

When the partitions are created, SAP ASE places an entry for each one in the syspartitions table. bcp in
with the <partition_id> option loads data into each partition in the order listed in syspartitions. You
unpartitioned the table before creating the clustered index to maintain this order.

4.13 Update Partition Statistics

The SAP ASE query processor uses statistics about the tables, indexes, partitions, and columns in a query to
estimate query costs. The query processor chooses the access method that it determines to be the least
expensive. But to do so, it must have accurate statistics.

Some statistics are updated during query processing. Others are updated only when you run the update
statistics command or create indexes.

update statistics helps SAP ASE make the best decisions by creating histograms for each major attribute
of the local indexes for a partition, and creating densities for the composite attributes. Use update
statistics when a large amount of data in a partitioned table has been added, changed, or deleted.

Permission to issue update statistics and delete statistics defaults to the table owner and is not
transferable. update statistics commands let you update statistics for individual data and index
partitions. update statistics commands that yield information on partitions include:

● update statistics
● update table statistics
● update all statistics

164 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

● update index statistics
● delete statistics

For example, to update statistics for the smallvalues partition of the titles table created previosuly, enter:

update statistics titles partition smallvalues

See the Reference Manual: Commands.

4.14 Improved Concurrency for Partition-Level Online
Operations

Certain partition-level operations can concurrently operate on different partitions of a table. DML can also
concurrently operate on the table while the partition-level online operation is running.

These include:

● alter table … split partition
● alter table … merge partition
● alter table … move partition
● alter table … drop partition
● truncate partition
● dbcc checkindex
● dbcc checktable
● dbcc tablealloc
● dbcc indexalloc

4.14.1 Partition-Level Online Operation Syntax

To allow for greater data availability, alter table and truncate partition commands include the with
online subclause in the partition clause.

Context

Partition locking must first be enabled.

The syntax for alter table is:

alter table <table_name > {merge | drop | move | split} partition <partition_name> <existing_clause> with online

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 165

where:

<table_name> – is the name of the table to modify.

<partition_name> – specifies the name of the partition to merge, drop, move, or split.

<existing_clause> – is the partition subclause, depending on the partition action specified.

with online – executes in an online mode. Enables concurrent access to the table.

The syntax for truncate partition is:

truncate table table_name [partition <partition_name>] [with online]

where:

<table_name> – is the name of the table to truncate.

<partition_name> – specifies the name of the partition to truncate.

with online – executes in an online mode. Enables concurrent access to the table.

4.14.2 Concurrency with Partition-Level Online Operations

Multiple partition-level online operations can be executed concurrently on different partitions of a table.

All DMLs — that is, select (but not select into), insert, update, and delete — can operate on a table
while partition-level online operations are in progress.

DMLs can operate on all the partitions other than the partitions being operated by partition-level online
operations.

DMLs with appropriate use of predicates leads to SAP ASE making use of the partition elimination technique.
This may lead to DMLs operating on only minimal required set of partitions.

Without partition elimination, DMLs operate on all partitions of table.

DMLs will be aborted when it operates on the partition that is concurrently being operated by partition-level
operations.

Note
To avoid concurrent DMLs leading to errors, DMLs can be written using appropriate predicates that makes
use of partition elimination technique. This results in DMLs operating on a minimal set of partitions.

For partition-level online operations, such as splitting a partition or moving a partition, the table must have a
local unique index. The move command is allowed for concurrent DMLs to all partitions in the table, including
ones being operated by split.

166 P U B L I C
Transact-SQL Users Guide

Partition Tables and Indexes

4.14.3 Partition-Level Online Operations with Global Index

Concurrent DML access to a table does not use global indexes while a partition-level operation is in progress
on the table. SAP ASE uses alternate local index scan or table scan for concurrent DML scans.

Multiple partition-level operations on different partitions can operate concurrently. Each one does not perform
global index rebuild. Only the last committed partition-level operation performs global index rebuild.

The last partition-level operation leading to abort may result in global index marked as suspect. The global
index in such case has to be explicitly rebuilt.

Transact-SQL Users Guide
Partition Tables and Indexes P U B L I C 167

5 Virtually Hashed Tables

You can perform hash-based index scans using nonclustered indexes or clustered indexes on data-only-locked
tables.

Note
Virtually hashed tables are available on IBM Linux pSeries and Linux AMD64.

During the scan, each worker process navigates the higher levels of the index and reads the leaf-level pages of
the index. Each worker process then hashes on either the data page ID or the value in a separate hash table to
determine which data pages or data rows to process.

A virtually hashed table can be an efficient way to organize a table because it does not require a separate hash
table. Instead, it stores the rows so that, using the hash key, the query processor can determine the row ID
(based on the row’s ordinal number) and the location of the data. Because it does not use a separate hash
table to hold the information, it is called a “virtually” hashed table.

For systems that require efficient CPU usage, the virtually hashed table is a good option.

Clustered and nonclustered indexes are expensive for tables that are used for lookups, or for tables in which
the row position does not change. With recent advancements in L2 and L3 CPU architectures, you must utilize
the cache to take advantage of the real CPU computing power. If you do not utilize the cache, the CPU spends
needless cycles waiting for available memory. For clustered or nonclustered indexes, the server misses rows
every time it accesses the index-level search, which consumes many CPU cycles. Virtually hashed tables
access row-location patterns by computing the hash-key value instead of performing a search.

5.1 Structure of a Virtually Hashed Table
A virtually hashed table contains a “hashed” region and an “overflow” region. The hashed region stores the
hashed rows, and the overflow region stores the remaining rows. You can access the overflow region with a
regular clustered index scan using a B-tree clustered index.

This figure demonstrates accessing the overflow region with a root page.

The first data page, the root page, and the first overflow page of a virtually hashed table are created when you
create the table. SYSINDEXES.indroot is the root page for the overflow clustered region. The first leaf page
under this page is the first overflow page. SYSINDEXES.indfirst points to the first data page, so a table
scan starts at the beginning of the table and scans the entire table.

168 P U B L I C
Transact-SQL Users Guide
Virtually Hashed Tables

5.2 Create a Virtually Hashed Table
To create a virtually hashed table, specify the maximum value for the hash region.

This is the partial syntax for create table; the parameters for virtually hashed tables are shown in bold:

create table [database.[owner].]<table_name> . . .
 | {unique | primary key} using clustered (<column_name> [asc | desc] [{, <column_name> [asc | desc]}...])= (hash_factor [{, hash_factor}...])
 with max num_hash_values key

where:

● using clustered – indicates you are creating a virtually hashed table. The list of columns are treated as
key columns for this table.

● <column_name> [asc | desc] – because rows are placed based on their hash function, you cannot use
[asc | desc] for the hash region. If you provide an order for the key columns of virtually hashed tables, it is
used only in the overflow clustered region.

● <hash_factor> – required for the hash function for virtually hashed tables. For the hash function, a hash
factor is required for every key column. These factors are used with key values to generate hash value for
a particular row.

● with max <num_hash_values> key – the maximum number of hash values that you can use. Defines
the upper bound on the output of this hash function.

Determining Values for hash_factor

You can keep the hash factor for the first key as 1. The hash factor for all the remaining key columns is greater
than the maximum value of the previous key allowed in the hash region multiplied by its hash factor.

SAP ASE allows tables with hash factors greater than 1 for the first key column to have fewer rows on a page.
For example, if a table has a hash factor of 5 for the first key column, after every row in a page, space for the
next four rows is kept empty. To support this, SAP ASE requires five times the amount of table space.

If the value of a key column is greater than or equal to the hash factor of the next key column, the current row
is inserted in the overflow clustered region to avoid collisions in the hash region.

For example, t is a virtually hashed table with key columns id and age, and corresponding hash factors of
(10,1). Because the hash value for rows (5, 5) and (2, 35) is 55, this may result in a hash collision.

However, because the value 35 is greater than or equal to 10 (the hash factor for the next key column, id),
SAP ASE stores the second row in the overflow clustered region, avoiding collisions in the hash region.

In another example, if u is a virtually hashed table with a primary index and hash factors of (id1, id2, id3) = (125,
25, 5) and a <max hash_value> of 200:

● Row (1,1,1) has a hash value of 155 and is stored in the hash region.
● Row (2,0,0) has a hash value 250 and is stored in overflow clustered region.
● Row (0,0,6) has a hash factor of 6 x 5, which is greater than or equal to 25, so it is stored in the overflow

clustered region.

Transact-SQL Users Guide
Virtually Hashed Tables P U B L I C 169

● Row (0,7,0) has a hash factor of 7 x 25, which is greater than or equal to 125, so it is stored in the overflow
clustered region

This example illustrates how the number of rows in the hash region, row length, and the number of rows per
page affect the page layout of hash and overflow regions. It creates a virtually hashed table named orders on
the pubs2 database on the order_seg segment:

create table orders(id int,
age int,
primary key using clustered (id,age) = (10,1) with max 1000 key) on order_seg

The layout for the data is:

● The order_seg segment starts on page ID 51200.
● The logical page size is 2048 bytes
● The ID for the first data object allocation map (OAM) page is 51201.
● For the logical page size of 2048 bytes, the maximum rows per page is 168.
● The row size is 10.
● The root index page of the overflow clustered region is 51217.

In this example:

● The row size is 10 bytes
● 1000 rows fit in the hash region, with key values ranging from (0,0) to (99,9)
● The total number of pages in the hash region is 6, with 168 rows per page in the hash region and a

maximum of 1000 keys (ceiling(1000/168) = 6). The last page (the sixth) has some unused space.
Assuming the segment starts at page 51200 and the first extent is reserved for the OAM page, the first
data page starts from 51208, so pages in the hash region range from 51208 to 51213.
The page after the last page in hash region (page number 51214) is the first page of the overflow region
and is governed by a clustered index, so the root page, 51217, points to page number 51214.

For this page layout, the number of rows per page is 168. Since the hash factors for id and age are 10 and 1,
respectively, the maximum value for column age that qualifies for the hash region is 9. The range of key values
of (id and age) combination that qualify for the the hash region (1000 keys in total) is:

● (0, 0) – (0, 9) – for a total of 10

170 P U B L I C
Transact-SQL Users Guide
Virtually Hashed Tables

● (1, 0) – (1,9) – for a total of 10
● (2, 0) – (2, 9) – for a total of 10
● . . .
● (99, 0) – (99, 9) – for a total of 10

From these keys, the first 168 keys—(0, 0) to (16, 7)—are mapped to the first data page, 51208. The next
range of 168 keys—(16, 8) to (33, 5)—are mapped to the second data page, 51209, and so on.

5.3 Limitations for Virtually Hashed Tables

Virtually hashed tables have certain limitations.

These are the limitations:

● truncate table is not supported. Use delete from table <table_name> instead.
● SQL92 does not allow two unique constraints on a relation to have the same key columns, so SAP ASE

does not support primary-key or unique-key constraint on the same key columns as the key columns of
the virtually hashed table.

● Because you cannot create a virtually hashed clustered index after you create a table, you also cannot
drop a virtually hashed clustered index.

● You must create a virtually hashed table on an exclusive segment. You cannot share disk devices you
assign to the segments for creating a virtually hashed table with other segments. In other words, you must
create a special device first, and then create an exclusive segment on the device.

● Virtually hashed tables must have unique rows. Virtually hashed tables do not allow multiple rows with the
same key column values because SAP ASE cannot keep one row in the hash region and another with the
same key column value in the overflow clustered region.

● You cannot create two virtually hashed tables on the same exclusive segment. SAP ASE supports 32
different segments per database. Three segments are reserved for the default, system, and log segments,
so the maximum number of virtually hashed tables per database is 29.

● You cannot use the alter table or drop clustered index commands on virtually hashed tables.
● Virtually hashed tables must use all-pages locking.
● The key columns and hash factors of a virtually hashed table must use the int datatype.
● You cannot include text or image columns in virtually hashed tables, or columns with datatypes based on

the text or image datatypes.
● You cannot create a partitioned virtually hashed table.

Do not create virtually hashed tables that:

● Have frequent inserts and updates.
● Are partitioned.
● Use frequent table scans.
● Have more data rows in the overflow region than in the hash region. In this situation use a B-tree instead of

a virtually hashed table.

Transact-SQL Users Guide
Virtually Hashed Tables P U B L I C 171

5.4 Commands that Support Virtually Hashed Tables

The dbcc checktable and dbcc checkstorage commands support virtually hashed tables.

● dbcc checktable – in addition to the regular checks it performs, checktable verifies that the layout of
data and OAM pages in the hash region is correct.
○ Data pages are not allocated in an extent reserved for OAM pages as per the layout.
○ The OAM pages are allocated only in the first extent of an allocation unit.

● dbcc checkstorage – reports a soft fault if any data page that is not the first data page is empty for
tables that are not hashed. However, dbcc checkstorage does not report this soft fault for the hashed
region of a virtually hashed table. Any data page in the hashed region of a virtually hashed table can be
empty.

Related Information

Create a Virtually Hashed Table [page 169]

5.5 Query Processor Support

The query processor uses a virtually hashed index only if you include search arguments that include an
equality qualifier (for example, where id=2) on all key columns.

If the query processor uses the virtually hashed index, it includes a line similar to this in the showplan output:

Using Virtually Hashed Index.

The query processor includes lines similar to this in the index selection output if it selects a virtually hashed
index:

Unique virtually hashed index found, returns 1 row, 1 pages

172 P U B L I C
Transact-SQL Users Guide
Virtually Hashed Tables

5.6 Monitor Counter Support

The am_srch_hashindex monitor counter counts the number of times SAP ASE performs a search using a
virtually hashed clustered index.

5.7 System Procedure Support

Virtually hashed tables are supported through system procedures.

● sp_addsegment – you cannot create a segment on a device that already has an exclusive segment.
● sp_extendsegment – you cannot extend a segment on a device that already has an exclusive segment,

and you cannot extend an exclusive segment on a device that has another segment.
● sp_placeobject – you cannot use sp_placeobject on a virtually hashed table, and you cannot place

other objects on an exclusive segment.
● sp_chgattribute – does not allow you to change attributes for virtually hashed tables.
● sp_help – for virtually hashed table, reports:

○ That a table is virtually hashed
○ The hash_key_factors for the table

For example:

attribute_class attribute int_value
char_value comments
 ------------------------ ------------------------------ misc table info hash key factors NULL id:10.0, id2:1.0,
max_hash_key=1000.0 NULL

Transact-SQL Users Guide
Virtually Hashed Tables P U B L I C 173

6 Create Indexes on Tables

An index provides quick access to data in a table, based on the values in specified columns. A table can have
more than one index. Indexes are transparent when accessing data from that table; SAP ASE automatically
determines when to use the indexes.

Indexes speed data retrieval by pointing to the location of a table column’s data on disk.

create index stor_id_ind on stores (stor_id)

The stor_id_ind index goes into effect automatically the next time you query the stor_id column in
stores. In other words, indexes are transparent to users. SQL includes no syntax for referring to an index in a
query. You can only create or drop indexes from a table; SAP ASE determines whether to use the indexes for
each query submitted for that table. As the data in a table changes over time, SAP ASE may change the table’s
indexes to reflect those changes. Again, these changes are transparent to users.

SAP ASE supports these types of indexes:

● Composite indexes – these indexes involve more than one column. Use this type of index when two or
more columns are best searched as a unit because of their logical relationship.

● Unique indexes – these indexes do not permit any two rows in the specified columns to have the same
value. SAP ASE checks for duplicate values when the index is created (if data already exists) and each time
data is added.

● Clustered or nonclustered indexes – clustered indexes force SAP ASE to continually sort and re-sort the
rows of a table so that their physical order is always the same as their logical (or indexed) order. You can
have only one clustered index per table. Nonclustered indexes do not require the physical order of rows to
be the same as their indexed order. Each nonclustered index can provide access to the data in a different
sort order.

● local indexes – local indexes are an index subtree that indexes only one data partition. They can be
partitioned, and they are supported on all types of partitioned tables.

● Global indexes – global indexes index span all data partitions in a table. Nonpartitioned, global clustered
indexes are supported on round-robin-partitioned tables, and nonclustered global indexes are supported
on all types of partitioned tables. You cannot partition global indexes.Clustered and nonclustered global
indexes on partitioned tables can only be created using syntax supported in SAP ASE version 12.5.x and
earlier.

For information on how you can design indexes to improve performance, see the Performance and Tuning
Series: Locking and Concurrency Control.

Related Information

Partition Tables and Indexes [page 138]

174 P U B L I C
Transact-SQL Users Guide
Create Indexes on Tables

6.1 Guidelines for Using Indexes

Placing an index on a column often makes the difference between a quick response to a query and a long wait.
However, building an index takes time and storage space.

For example, nonclustered indexes are automatically re-created when a clustered index is rebuilt.

Additionally, inserting, deleting, or updating data in indexed columns takes longer than in unindexed columns.
However, this cost is usually outweighed by the extent to which indexes improve retrieval performance.

When determining whether or not to create an index, following these general guidelines:

● If you plan to make manual insertions into the IDENTITY column, create a unique index to ensure that the
inserts do not assign a value that has already been used.

● A column that is often accessed in sorted order, that is, specified in the order by clause, should
genereally be indexed, so that SAP ASE can take advantage of the indexed order.

● Columns that are regularly used in joins should always be indexed, since the system can perform the join
faster if the columns are in sorted order.

● The column that stores the primary key of the table often has a clustered index, especially if it is frequently
joined to columns in other tables. Remember, there can be only one clustered index per table.

● A column that is often searched for ranges of values is often a good choice for a clustered index. Once the
row with the first value in the range is found, rows with subsequent values are guaranteed to be physically
adjacent. A clustered index does not offer as much of an advantage for searches on single values.

In some cases, indexes are not useful:

● Columns that are seldom or never referenced in queries do not benefit from indexes, since the system
seldom has to search for rows on the basis of values in these columns.

● Columns that have many duplicates, and few unique values relative to the number of rows in the table,
receive no real advantage from indexing.

If the system does have to search an unindexed column, it does so by looking at the rows one by one. The
length of time it takes to perform this kind of scan is directly proportional to the number of rows in the table.

6.2 Methods of Creating Indexes

You can create indexes on tables either by using the create index statement, or by using the unique or
primary key integrity constraints of the create table command.

However, integrity constraints are limited in the following ways:

● You cannot create nonunique indexes.
● You cannot use the options provided by the create index command to tailor how indexes work.
● You can only drop these indexes as a constraint using the alter table statement.

If your application requires these features, you should create your indexes using create index. Otherwise,
the unique or primary key integrity constraints offer a simpler way to define an index for a table.

Transact-SQL Users Guide
Create Indexes on Tables P U B L I C 175

Related Information

Databases and Tables [page 50]

6.3 Create Indexes

You must be the owner of a table to create or drop an index. The owner of a table can create or drop an
index at any time, whether or not there is data in the table. Indexes can be created on tables in another
database by qualifying the table name.

Before executing create index, turn on select into.

The syntax is:

sp_dboption,'select into', true

The simplest form of create index is:

create index <index_name> on <table_name> (<column_name>)

To create an index on the au_id column of the authors table, execute:

create index au_id_ind on authors(au_id)

The index name must conform to the rules for identifiers. The column and table name specify the column you
want indexed and the table that contains it.

You cannot create indexes on columns with bit, text, or image datatypes.

Note
The on <segment _name> extension to create index allows you to place your index on a segment that
points to a specific database device or a collection of database devices. Before creating an index on a
segment, see a system administrator or the database owner for a list of segments that you can use. Certain
segments may already be allocated to specific tables or indexes for performance reasons or for other
considerations.

176 P U B L I C
Transact-SQL Users Guide
Create Indexes on Tables

6.3.1 Issue create index in Parallel

SAP ASE includes a parallel form of create index that uses the query execution engine to more efficiently
execute the command.

6.3.1.1 Configuring Enhanced Parallel create index

Enhanced parallel create index is disabled by default, and is part of the enable functionality group
configuration parameter.

Procedure

1. Enable the enable functionality group configuration parameter:

sp_configure "enable functionality group", 1

2. Set the database option select into/bulkcopy/pllsort to true:

sp_dboption database_name, "select into", true

3. Set the following configuration parameter according to your hardware environment:

○ number of worker processes – set to the maximum number of concurrently executing parallel
threads used by all users

○ max parallel degree – set to the maximum parallel degree used for an individual user, but
not higher than number of worker processes

○ max online engines – SAP recommends that you configure a sufficient number of engines
when configuring parallel threads, depending on hardware avaialbility and other workloads. number
of worker processes is typically set higher than number of engines

6.3.1.2 Enhanced Parallel create index Usage

Once SAP ASE is configured for parallel create index, it determines if using parallel execution to execute
create index is the best choice.

If SAP ASE determines that a serial query plan is the most efficient, it does not use a parallel query plan. If SAP
ASE determines that a parallel query plan is the most efficient, it selects an enhanced parallel query plan if:

● The table upon which the index is to be created:
○ Uses a data-only-locked format, and
○ Is not partitioned, and
○ The table is not empty

● The index you are creating is a non-clustered index, and

Transact-SQL Users Guide
Create Indexes on Tables P U B L I C 177

● The leading column of the index has at least two distinct values

Use the create index ... with consumers = <N> to force SAP ASE to use parallel query plans when it
would typically use a serial query plan. For example, SAP ASE uses parallel query plans for the following even
though if the table contains too few rows:

create index i1 on t1(c1, c3) with consumers = 3

If you use with consumers to force a parallel create index, and SAP ASE does not select an enhanced
parallel query plan, SAP ASE uses a parallel create index query plan from a version of SAP ASE earlier than
15.7 ESD #2.

6.3.1.3 View Parallel create index Commands with
showplan

If SAP ASE is configured for parallel create index and chooses an enhanced parallel create index query
plan, showplan displays information about the create index commands below the PLL CREATE INDEX
COORDINATOR operator and CREATE INDEX operators.

For example:

create index i1 on t5(c1) with consumers = 3 . . .

QUERY PLAN FOR STATEMENT 1 (at line 1). Executed in parallel by coordinating process and 3 worker processes.
STEP 1
 The type of query is CREATE INDEX.
 5 operator(s) under root
|ROOT:EMIT Operator (VA = 5)
|
| |PLL CREATE INDEX COORDINATOR Operator
| |
| | |EXCHANGE Operator (VA = 3) (Merged)
| | |Executed in parallel by 3 Producer and 1 Consumer processes.
| | |
| | | |EXCHANGE:EMIT Operator (VA = 2)
| | | |
| | | | |CREATE INDEX Operator
| | | | |
| | | | | |SCAN Operator (VA = 0)
| | | | | | FROM TABLE
| | | | | | t5
| | | | | | Table Scan.
| | | | | | Forward Scan.
| | | | | | Positioning at start of table.
| | | | | | Executed in parallel with a 3-way range repartitioning scan.
| | | | | | Using I/O Size 16 Kbytes for data pages. | | | | | | With MRU Buffer Replacement Strategy for data pages.

178 P U B L I C
Transact-SQL Users Guide
Create Indexes on Tables

6.3.2 Function-Based Indexes

Function-based indexes contain one or more expressions as index keys.You can create indexes directly on
functions and expressions.

Like computed columns, function-based indexes are helpful for user-defined ordering and decision-support
system (DSS) applications, which frequently require intensive data manipulation. Function-based indexes
simplify the tasks in these applications and improve performance.

Function-based indexes are similar to computed columns in that they both allow you to create indexes on
expressions.

However, there are significant differences:

● A function-based index allows you to index the expression directly. It does not first create the column.
● A function-based index must be deterministic and cannot reference global variables, unlike a computed

column.
● You can create a clustered computed column index, but not a clustered function-based index.

Before you can execute create index, you must enable the database option select into:

sp_dboption <dbname>, 'select into', true

See the Reference Manual: Commands and the Reference Manual: Procedures.

Related Information

Computed Columns [page 114]

6.3.3 Create Indexes Without Blocking Access to Data

Use the create index ... online parameter to create indexes without blocking access to the data you
are indexing.

The syntax is:

create [unique] [clustered | nonclustered] index index_name on database.]owner.]table_name
 [with {...
 online, ...}

For example, to create the index pub_dates_ix on the titles table with the online parameter, use:

create index pub_dates_ix on titles (pub_id asc, pubdate desc) with online

Except for the sorted_data parameter, SAP ASE processes other create index parameters the same way,
both with or without the online parameter. For example, if you include the reservepagegap parameter with

Transact-SQL Users Guide
Create Indexes on Tables P U B L I C 179

the online parameter, SAP ASE reserves the pages while creating the new data layer. However, if you create
the index using the sorted_data option, SAP ASE creates the index on the existing data layer.

Restrictions

● User tables must include a unique index to use the create clustered index ... online command
(creating nonclustered indexes does not have this restriction).

● You can run create index ... online with a pll sort only on round robin partitioned tables
● If you issue an insert, delete, update, or select command while create index … online or

reorg … online are in the logical synchronization blocking phase:
○ The insert, delete, update, or select commands may wait and execute after create index …

online or reorg … online are finished
○ SAP ASE may issue error message 8233.

● You cannot:
○ Run dbcc commands and utility commands, such as reog rebuild, on the same table while you are

simultaneously running create index ... online.
○ Run more than one iteration of create index ... online simultaneously.
○ Perform a dump transaction after running create index ... online. Instead, you can:

○ Run create index ... online, then dump the database, or
○ Run a blocking create index, then issue dump transaction.

○ Run create index ... online within a multistatement transaction.
○ Create a functional index using the online parameter.

Note
Because create index ... online increments the schema count in the sysobjects row that reflects
the table's state change, concurrent activity waiting for create index ... online to commit may
encounter error 540 after create index ... online commits.

6.3.4 Unique Indexes

A unique index does not allow any two rows to have the same index value, including NULL. If data already
exists, the system checks for duplicate values when the index is created and subsequently checks each time
data is added or modified with an insert or update.

Specifying a unique index makes sense only when uniqueness is a characteristic of the data itself. For
example, you would not want a unique index on a last_name column, because there is likely to be more than
one “Smith” or “Wong” in tables of even a few hundred rows.

However, a unique index on a column holding social security numbers is a good idea. Uniqueness is a
characteristic of the data—each person has a different social security number. Furthermore, a unique index

180 P U B L I C
Transact-SQL Users Guide
Create Indexes on Tables

serves as an integrity check. For instance, a duplicate social security number probably reflects some kind of
error in data entry or on the part of the government.

If you try to create a unique index on data that includes duplicate values, the command is aborted, and SAP
ASE displays an error message that gives the first duplicate. You cannot create a unique index on a column
that contains null values in more than one row; these are treated as duplicate values for indexing purposes.

If you attempt to insert the same row during two concurrent sessions on a DOL table with a unique index, the
first session fails with error number 2601. SAP ASE fails the insert to avoid blocking, and leaves the database
in a consistent state. Additionally, a blocked second session could impact concurrency.

If you try to change data on which there is a unique index, the results depend on whether you have used the
ignore_dup_key option.

You can use the unique keyword on composite indexes.

Related Information

ignore_dup_key Option [page 189]

6.3.5 IDENTITY Columns in Nonunique Indexes

The identity in nonunique index database option automatically includes an IDENTITY column in a
table’s index keys so that all indexes created on the table are unique.

This option makes logically nonunique indexes internally unique and allows them to process updatable cursors
and isolation level 0 reads.

To enable identity in nonunique indexes, enter:

sp_dboption pubs2, "identity in nonunique index", true

The table must already have an IDENTITY column, either from a create table statement or by setting the
auto identity database option to true before creating the table.

Use identity in nonunique index to use cursors and isolation level 0 reads on tables with nonunique
indexes. A unique index ensures that the cursor is positioned at the correct row the next time a fetch is
performed on that cursor.

For example, after setting identity in nonunique index and auto identity to true, suppose you
create the following table, which has no indexes:

create table title_prices (title varchar(80) not null, price money null)

sp_help shows that the table contains an IDENTITY column, SYB_IDENTITY_COL, which is automatically
created by the auto identity database option. If you create an index on the title column, use
sp_helpindex to verify that the index automatically includes the IDENTITY column.

Transact-SQL Users Guide
Create Indexes on Tables P U B L I C 181

6.3.6 Ascending and Descending Index-Column Values

You can use the asc (ascending) and desc (descending) keywords to assign a sort order to each column in an
index. By default, sort order is ascending.

Creating indexes so that columns are in the same order specified in the order by clauses of queries
eliminates sorting the columns during query processing. The following example creates an index on the Orders
table. The index has two columns, the first is customer_ID, in ascending order, the second is date, in
descending order, so that the most recent orders are listed first:

create index nonclustered cust_order_date on Orders
 (customer_ID asc, date desc)

6.3.7 Using fillfactor, max_rows_per_page, and
reservepagegap

fillfactor, max_rows_per_page, and reservepagegap are space-management properties that apply to
tables, and indexes and affect the way physical pages are filled with data.

Table 3: Summary of Space-Management Properties for Indexes

Property Description Use Comments

fillfactor Specifies the percent of space on a page
that can be filled when the index is cre
ated. A fillfactor less than 100%
leaves space for inserts into a page
without immediately causing page
splits.

Benefits:

● Initially, fewer page splits.
● Reduced contention for pages, be

cause there are more pages and
fewer rows on a page.

Applies only to a clus
tered index on a data-
only-locked table.

The fillfactor per
centage is used only when
an index is created on a ta
ble with existing data. It
does not apply to pages and
inserts after a table is cre
ated.

If no fillfactor is
specified, the system-wide
default fillfactor is
used. Initially, this is set to
100%, but can be changed
using sp_configure.

max_rows_per_page Specifies the maximum number of rows
allowed per page.

Benefit:

● Can reduce contention for pages by
limiting the number of rows per
page and increasing the number of
pages.

Applies only to all
pages-locked tables.

The maximum value
that you can set this
property to is 256.

max_rows_per_page
applies at all times, from
the creation of an index, on
ward. If not specified, the
default is as many rows as
will fit on a page.

182 P U B L I C
Transact-SQL Users Guide
Create Indexes on Tables

Property Description Use Comments

reservepagegap Determines the number of pages left
empty when extents are allocated. For
example, a reservepagegap of 16
means that 1 page of the 16 pages in 2
extents is left empty when the extents
are allocated.

Benefits:

● Can reduce row forwarding and
lessen the frequency of mainte
nance activities such as running
reorg rebuild and re-creating
indexes.

Applies to pages in all
locking schemes.

If reservepagegap is
not specified, no pages are
left empty when extents are
allocated.

This statement sets the fillfactor for an index to 65% and sets the reservepagegap to one empty page
for each extent allocated:

create index postalcode_ind2 on authors (postalcode) with fillfactor = 10, reservepagegap = 8

6.4 Indexes on Computed Columns

You can create indexes on computed columns as though they were regular columns, as long as the datatype of
the result can be indexed. Computed column indexes provide a way to create indexes on complex datatypes
like XML, text, image, and Java classes.

For example, the following code sample creates a clustered index on the computed columns as though they
were regular columns:

CREATE CLUSTERED INDEX name_index on parts_table(name_order) CREATE INDEX adt_index on parts_table(version_order)
CREATE INDEX xml_index on parts_table(spec_index) CREATE INDEX text_index on parts_table(descr_index)

SAP ASE evaluates the computed columns and uses the results to build or update indexes when you create or
update an index.

Transact-SQL Users Guide
Create Indexes on Tables P U B L I C 183

6.5 Clustered or Nonclustered Index Usage
With a clustered index, SAP ASE sorts rows on an ongoing basis so that their physical order is the same as
their logical (indexed) order. The bottom or leaf level of a clustered index contains the actual data pages of the
table. With a nonclustered index, the physical order of the rows is not the same as their indexed order.

Create the clustered index before creating any nonclustered indexes, since nonclustered indexes are
automatically rebuilt when a clustered index is created.

There can be only one clustered index per table. It is often created on the primary key—the column or columns
that uniquely identify the row.

Logically, the database’s design determines a primary key. You can specify primary key constraints with the
create table or alter table statements to create an index and enforce the primary key attributes for
table columns. You can display information about constraints with sp_helpconstraint.

Also, you can explicitly define primary keys, foreign keys, and common keys (pairs of keys that are frequently
joined) by using sp_primarykey, sp_foreignkey, and sp_commonkey. However, these procedures do not
enforce key relationships.

You can display information about defined keys with sp_helpkey and about columns that are likely join
candidates with sp_helpjoins. See the Reference Manual: Procedures.

For a nonclustered index, the leaf level contains pointers to rows on data pages. More precisely, each leaf page
contains an indexed value and a pointer to the row with that value. In other words, a nonclustered index has an
extra level between the index structure and the data itself.

Each of the up to 249 nonclustered indexes permitted on a table can provide access to the data in a different
sorted order.

Finding data using a clustered index is almost always faster than using a nonclustered index. In addition, a
clustered index is advantageous when many rows with contiguous key values are being retrieved—that is, on
columns that are often searched for ranges of values. Once the row with the first key value is found, rows with
subsequent indexed values are guaranteed to be physically adjacent, and no further searches are necessary.

If neither the clustered nor the nonclustered keyword is used, SAP ASE creates a nonclustered index.

Here is how the titleidind index on the title_id column of the titles table is created. To try this
command, first drop the index:

drop index titles.titleidind

Then, create the clustered index:

create clustered index titleidind on titles(title_id)

If you think you will often want to sort the people in the friends_etc table, which you created earlier by
postal code, create a nonclustered index on the postalcode column:

create nonclustered index postalcodeind on friends_etc(postalcode)

A unique index does not make sense here, since some of your contacts are likely to have the same postal code.
A clustered index would not be appropriate either, since the postal code is not the primary key.

184 P U B L I C
Transact-SQL Users Guide
Create Indexes on Tables

The clustered index in friends_etc should be a composite index on the personal name and surname
columns, for example:

create clustered index nmind on friends_etc(pname, sname)

Related Information

Triggers: Enforce Referential Integrity [page 591]
Databases and Tables [page 50]

6.5.1 Create Clustered Indexes on Segments

The create index command allows you to create the index on a specified segment.

Since the leaf level of a clustered index and its data pages are the same by definition, creating a clustered
index and using the on segment_name extension moves a table from the device on which it was created to
the named segment.

See a system administrator or the database owner before creating tables or indexes on segments; certain
segments may be reserved for performance reasons.

6.6 Deferred Recovery of create index Commands

SAP ASE includes the create index ... with defer_recovery parameter, which enables you to defer
the recovery of the index during load transaction recovery.

When you issue a create index command that involves a parallel sort, subsequent load transaction
commands cannot recover the parallel sorts because the load transaction commands cannot reissue the
original create index command: interactions between parallel threads are difficult to replay. Therefore, if
create index involves a parallel sort, you cannot issue dump tran until you issue dump database (either
full or cumulative).

Deferring an index's recovery until the end of a load sequence, either during or after online database,
allows you to issue dump transaction commands after parallel sorts. Deferred recovery indexes are useful
for (but not restricted to) queries that create indexes but don't need to retain the indexes. That is, the
application needs only a temporary index and not a permanent index.

Use this syntax to create indexes that use deferred recovery:

create index ... with defer_recovery = {[parallel,] [auto | manual | none]}

Transact-SQL Users Guide
Create Indexes on Tables P U B L I C 185

Use this syntax to change existing databases so that, by default, all indexes are created with deferred
recovery:

alter database ... with defer_index_recovery = {[parallel,] [auto | manual | none]}

Use this syntax to create databases that, by default, use indexes with deferred recovery.

create database... with defer_index_recovery = {[parallel,] [auto | manual |
none]}

At the end of the load sequence, and just before the database is brought online, a deferred recovery index is
structurally similar to a null index: it has a row in sysindexes, and metadata in other system catalogs, but its
corresponding index pages are uninitialized. Additionally, the sysindexes entry associated with the index
specifies that it uses deferred recovery and defines when the index is to be re-created, which is specified with
these defer_recovery parameters:

● auto – the index is re-created automatically during online database using the metadata in the system
tables.

● manual – the index can be re-created manually any time after issuing online database. SAP ASE
includes a warning in the error log saying that the index creation is deferred and must be created
manually. Deferred recovery indexes are marked as suspect, ensuring that the optimizer does use them in
any ad-hoc queries, and that stored procedures containing references to the index as part of the query
tree are recompiled.

● none – online database removes the metadata for the index, dropping the index entirely. SAP ASE
includes this as an informational message in the error log.

If you issue create index ... with defer_recovery, but the command is not within the scope of a
load transaction command (that is, recovered by a load database command or by recovery at startup).
Index creation is not deferred, but is done immediately when the create index command is recovered.

Any drop index command that occurs during the load sequence for a deferred index is redone, removing any
metadata associated with the index. The index no longer exists after the database is brought online.

You cannot use deferred recovered indexes on:

● System tables
● Clustered indexes

6.6.1 Manually Re-creating Deferred Recovery Indexes

Use sp_defer_index_recovery or the ddlgen utility to re-create deferred recovery indexes.

Procedure

1. Use sp_defer_index_recovery to list all indexes for all tables whose recovery has been deferred. This
command lists all deferred recovery indexes for all the tables in the pubs2 database:

sp_defer_index_recovery list, pubs2

186 P U B L I C
Transact-SQL Users Guide
Create Indexes on Tables

Alternatively, query the sysindexes system table to determine which indexes are listed as deferred
recovery:

select o.name, i.name, i.id, i.indid from <database_name>.dbo.sysobjects o, <database_name>.dbo.sysindexes i where i.id = o.id
and ((i.status3 & 16384) = 16384
 or (i.status3 & -32768) = -32768
 or (i.status & 16384) = 16384) and (i.status & -32768) = -32768

2. Use sp_defer_index_recovery or ddlgen to re-create the deferred recovery indexes:
○ ddlgen – This example re-creates the indexes on the pubs2 database:

ddlgen -Usa -P -SHARBOR:1955 -TI -Npubs2.%.%.%

○ sp_defer_index_recovery – use the create parameter to re-create the deferred recovery
indexes:

sp_defer_index_recovery create, pubs2

The ddlgen-generated create index command includes these restrictions :
○ ddlgen generates only serial create index commands, even if the original command was a parallel

create index command.
○ It will not include any fillfactor, statistics using or defer_recovery clauses.

6.6.2 Interactions Between Deferred Recovery and Database
Options

There are a number of items you should keep in mind when you use deferred recovery indexes with databases
that use additional options.

Interaction with enforce dump tran sequence

The enforce dump tran sequence database option ensures that no command is executed that can break
the dump sequence.

create index commands are executed in serial if you do not set the deferred recovery option at the
database or index level and the enforce dump tran sequence option is enabled. However, create index
commands are executed in parallel if you set the deferred recovery option at the database or index level, even
if you enable enforce dump tran sequence (creating deferred recovery indexes does not break the dump
sequence).

SAP ASE creates the index and defers its load transaction recovery when you create a deferred recovery
index in parallel.

However, a clustered index on a round-robin partitioned table can be created only using a parallel sort.
Attempting to create a clustered index on a round-robin partitioned table returns an error if enforce dump

Transact-SQL Users Guide
Create Indexes on Tables P U B L I C 187

tran sequence is set to true because you cannot create deferred recovery indexes on clustered indexes.
Instead:

1. Disable enforce dump tran sequence.
2. Perform a parallel (not deferred) create index.
3. Enable enforce dump tran sequence.
4. SAP recommends that you dump the database immediately after performing the parallel create index.

Unique Indexes

Unique indexes are critical to the correctness of a database, ensuring that duplicate rows are not inserted into
the table, and allowing certain cursor operations to take place.

Do not create unique indexes that use manual or none to define their deferred recovery because the database
does not have a unique index to ensure its correctness until the index is rebuilt.

Instead make sure you create deferred indexes that use the auto parameter.

Space Issues with Deferred Recovery Indexes

Creating indexes generally requires a significant amount of space for data and log. There may not be enough
space to create the deferred index when the database is brought online.

SAP ASE aborts the create index if there is insufficient space (either log or data) and logs a message
stating that you may need to manually create the index.

Archive Databases

Archive databases can be brought online between every load transaction command in a load sequence.
When online, archive databases behave like read-only databases.

However, deferred recovery indexes created with the auto parameter in archived databases are treated as if
they were created with the manual deferred recovery mode, so the indexes are not rebuilt every time the
database is brought online. SAP ASE includes a message in the error log during online database indicating
that it overrode the auto mode and the archived database is using the manual mode instead.

Standby Access Mode

During standby access mode, the database can be brought online between every load transaction. Once
online, databases in standby access mode behave like read-only databases.

Issuing online for standby_access does not rebuild deferred indexes that were created with auto mode
to avoid a substantial overhead. SAP ASE includes a message in the error log during online database

188 P U B L I C
Transact-SQL Users Guide
Create Indexes on Tables

indicating that it did not rebuild these deferred recovery indexes. SAP ASE rebuilds these indexes when you
perform a full online database.

6.7 Index Options

The index options ignore_dup_key, ignore_dup_row, and allow_dup_row control what happens when a
duplicate key or duplicate row is created with insert or update.

This table shows which option to use, based on the type of index.

Index Type Options

Clustered ignore_dup_row | allow_dup_row

Unique clustered ignore_dup_key

Nonclustered None

Unique nonclustered None

6.7.1 ignore_dup_key Option

If you need to insert a duplicate value, you can use ignore_dup_key option with a unique index.

The unique index can be either clustered or nonclustered. When you begin data entry, any attempt to insert a
duplicate key is canceled with an error message. After the cancellation, any transaction that was active at the
time may continue as though the update or insert had never taken place. Nonduplicate keys are inserted
normally.

You cannot create a unique index on a column that already includes duplicate values, whether or not
ignore_dup_key is set. If you attempt to do so, SAP ASE prints an error message and a list of the duplicate
values. You must eliminate duplicates before you create a unique index on the column.

Here is an example of using the ignore_dup_key option:

create unique clustered index phone_ind on friends_etc(phone) with ignore_dup_key

Transact-SQL Users Guide
Create Indexes on Tables P U B L I C 189

6.7.2 ignore_dup_row and allow_dup_row

Use ignore_dup_row and allow_dup_row to create a nonunique, clustered index.

These options are not relevant when creating a nonunique, nonclustered index. Since an SAP ASE
nonclustered index attaches a unique row identification number internally, duplicate rows are never an issue—
even for identical data values.

ignore_dup_row and allow_dup_row are mutually exclusive.

A nonunique clustered index allows duplicate keys, but does not allow duplicate rows unless you specify
allow_dup_row.

If allow_dup_row is set, you can create a new nonunique, clustered index on a table that includes duplicate
rows, and you can subsequently insert or update duplicate rows.

If any index in the table is unique, the requirement for uniqueness—the most stringent requirement—takes
precedence over the allow_dup_row option. Thus, allow_dup_row applies only to tables with nonunique
indexes. You cannot use this option if a unique clustered index exists on any column in the table.

The ignore_dup_row option eliminates duplicates from a batch of data. When you enter a duplicate row, SAP
ASE ignores that row and cancels that particular insert or update with an informational error message.
After the cancellation, any transaction that may have been active at the time continues as though the insert or
update had never taken place. Nonduplicate rows are inserted normally.

The ignore_dup_row applies only to tables with nonunique indexes: you cannot use this keyword if a unique
index exists on any column in the table.

This table illustrates how allow_dup_row and ignore_dup_row affect attempts to create a nonunique,
clustered index on a table that includes duplicate rows, and to enter duplicate rows into a table.

Option Has Duplicates Enter Duplicates

Neither option set create index command fails. Command fails.

allow_dup_row set Command completes. Command completes.

ignore_dup_row set Index created but duplicate rows de
leted; error message.

Duplicates not inserted/updated; error mes
sage; transaction completes.

6.7.3 sorted_data Option

The sorted_data option of create index speeds index creation when the data in the table is already in
sorted order, for example, when you have used bcp to copy sorted data into an empty table.

The speed increase becomes significant on large tables and increases to several times faster in tables larger
than 1GB.

If you specify sorted_data, but data is not in sorted order, an error message appears and the command is
aborted.

190 P U B L I C
Transact-SQL Users Guide
Create Indexes on Tables

sorted_data speeds indexing only for clustered indexes or unique nonclustered indexes. Creating a
nonunique nonclustered index is, however, successful, unless there are rows with duplicate keys. If there are
rows with duplicate keys, an error message appears and the command is aborted.

Certain other create index options require a sort even if sorted_data is specified. See the Reference
Manual: Commands.

6.7.4 on segment_name Option

A nonclustered index can be created on a different segment than the data pages. The on segment_name
clause specifies a database segment name on which the index is to be created.

For example:

create index titleind on titles(title) on seg1

If you use segment_name when creating a clustered index, the table containing the index moves to the
segment you specify. See a system administrator or the database owner before creating tables or indexes on
segments; certain segments may be reserved for performance reasons.

6.8 Drop Indexes

The drop index command removes an index from the database, reclaiming their storage space

The drop index command cannot be used on any of the system tables in the master database or in the user
database.

You might want to drop an index if it is not used for most or all of your queries.

For example, to drop the index phone_ind in the friends_etc table:

drop index friends_etc.phone_ind

Use sp_post_xpload to check and rebuild indexes after a cross-platform load database where the endian
types are different.

Transact-SQL Users Guide
Create Indexes on Tables P U B L I C 191

6.9 Identifying the Indexes on a Table

Use sp_helpindex to see the indexes that exist on a table.

Here is a report on the friends_etc table:

sp_helpindex friends_etc

index_name index_keys index_description index_max_rows_per_page ------------- ---------- ----------------- --------------------------
nmind pname,sname clustered 0
postalcodeind postalcode nonclustered 0
index_fillfactor index_reservepagegap index_created index_local
----------------- -------------------- --------------- ------------
 0 0 May 24 2005 1:49PM Global Index
 0 0 May 24 2005 1:49PM Global Index
(2 rows affected)
index_ptn_name index_ptn_seg
------------------ ---------------
nmind_1152004104 default
postalcodeind_1152004104 default (2 rows affected)

sp_help runs sp_helpindex at the end of its report.

sp_statistics returns a list of indexes on a table. For example:

sp_statistics friends_etc

table_qualifier table_owner table_name non_unique index_qualifier index_name type seq_in_index column_name collation cardinality pages
-------------------------------- --------------------------------

pubs2 dbo friends_etc NULL NULL NULL 0 NULL NULL NULL 0 1
pubs2 dbo friends_etc 1 friends_et nmind 1 1 pname A 0 1
pubs2 dbo friends_etc 1 friends_etc nmind 1 2 sname A 0 1
pubs2 dbo friends_etc 1 friends_etc postalcodeind 3 1 postalcode
A NULL NULL

(4 rows affected)
table_qualifier table_owner table_name index_qualifier index_name
non_unique_type seq_in_index column_name collation index_id cardinality
pages status status2
---------------- --------- ---------- --------------- -----------

pubs2 dbo friends_etc friends_etc nmind 1 1 1 pname A 0 1 16 0
pubs2 dbo friends_etc friends_etc nmind 1 1 2 sname A 0 1 16 0
pubs2 dbo friends_etc friends_etc postalcodeind 1 3 1 postalcode A
NULL NULL 0 0
pubs2 dbo friends_etc NULL NULL NULL 0 NULL NULL NULL 0 0 1 0 0
(4 rows affected) (return status = 0)

In addition, if you follow the table name with “1”, sp_spaceused reports the amount of space used by a table
and its indexes. For example:

sp_spaceused friends_etc, 1

index_name size reserved unused

192 P U B L I C
Transact-SQL Users Guide
Create Indexes on Tables

-------------------- ---------- ---------- ----------
nmind 2 KB 32 KB 28 KB
postalcodeind 2 KB 16 KB 14 KB
name rowtotal reserved data index_size unused
------------ ---------- ------------ ------- --------------- --------
friends_etc 1 48 KB 2 KB 4 KB 42 KB
 (return status = 0)

6.10 Update Statistics for Indexes

Use update statistics when a large amount of data in an indexed column has been added, changed, or
deleted.

This command helps SAP ASE make the best decisions about which indexes to use when it processes a query,
by keeping it up to date about the distribution of the key values in the indexes.

When Component Integration Services is enabled, update statistics can generate accurate distribution
statistics for remote tables. See the Component Integration Users Guide.

Permission to issue the update statistics command defaults to the table owner and cannot be
transferred. Its syntax is:

update statistics <table_name> [<index_name>]

If you do not specify an index name, the command updates the distribution statistics for all the indexes in the
specified table. Giving an index name updates statistics only for that index.

Use sp_helpindex to find the names of indexes. See the Reference Manual: Procedures.

To update the statistics for all of the indexes, enter the name of the table:

update statistics authors

To update the statistics only for the index on the au_id column, enter:

update statistics authors auidind

Because Transact-SQL does not require index names to be unique in a database, you must give the name of
the table with which the index is associated. SAP ASE automatically runs update statistics when you
create an index on existing data.

You can set update statistics to run automatically during the time that best suits your site, and avoid
running it at times that hamper your system.

Transact-SQL Users Guide
Create Indexes on Tables P U B L I C 193

7 Datatypes

In Transact-SQL, datatypes specify the type of information, size, and storage format of table columns, stored
procedure parameters, and local variables.

You can use SAP ASE system datatypes when you are defining columns, or you can create user-defined
datatypes.

For example, the int (integer) datatype stores whole numbers in the range of plus or minus 231, and the
tinyint (tiny integer) datatype stores whole numbers between 0 and 255 only.

SAP ASE supplies several system datatypes, and two user-defined datatypes, timestamp and sysname. Use
sp_addtype to build user-defined datatypes based on the system datatypes.

You must specify a system datatype or user-defined datatype when declaring a column, local variable, or
parameter. The following example uses the system datatypes char, numeric, and money to define the
columns in the create table statement:

create table sales_daily (stor_id char(4),
 ord_num numeric(10,0), ord_amt money)

The next example uses the bit system datatype to define the local variable in the declare statement:

declare @switch bit

Use sp_help to determine which datatypes have been defined for columns of existing tables.

7.1 System-Supplied Datatypes

You can use either a system datatype or user-defined datatype when declaring a column, local variable, or
parameter.

The system datatypes are printed in lowercase characters, although SAP ASE allows you to enter them in
either uppercase or lowercase. Most SAP ASE-supplied datatypes are not reserved words and can be used to
name other objects. To build user-defined datatypes that are based on the system datatypes, use
sp_addtype.

This table shows the SAP ASE system-supplied datatypes:

Datatypes by Cate
gory

Synonyms Range Bytes of Storage

Exact numeric: integers

194 P U B L I C
Transact-SQL Users Guide

Datatypes

Datatypes by Cate
gory

Synonyms Range Bytes of Storage

bigint Whole numbers between 263 and -263 - 1
(from -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807, inclusive

8

int integer 231 -1 (2,147,483,647) to -231

(-2,147,483,648)
4

smallint 215 -1 (32,767) to -215 (-32,768) 2

tinyint 0 to 255 (negative numbers are not per
mitted)

1

unsigned
bigint

Whole numbers between 0 and
18,446,744,073,709,551,615

8

unsigned int Whole numbers between 0 and
4,294,967,295

4

unsigned
smallint

Whole numbers between 0 and 65535 2

Exact numeric: decimals

numeric
(precision,
scale)

1038 -1 to -1038 + 1 2 to 17

decimal
(precision,
scale)

dec 1038 -1 to -1038 + 1 2 to 17

Approximate numeric

float
(precision)

Machine-dependent 4 for default precision
< 16, 8 for default
precision >= 16

double
precision

Machine-dependent 8

real Machine-dependent 4

Money

smallmoney 214,748.3647 to -214,748.3648 4

Transact-SQL Users Guide
Datatypes P U B L I C 195

Datatypes by Cate
gory

Synonyms Range Bytes of Storage

money 922,337,203,685,477.5807 to
-922,337,203,685,477.5808

8

Date/time

smalldatetime January 1, 1900 to June 6, 2079 4

datetime January 1, 1753 to December 31, 9999 8

date January 1, 0001 to December 31, 9999 4

time 12:00:00 a.m to 11:59:59:999 p.m. 4

bigdatetime January 1, 0001 to December 31, 9999
and 12:00:00.000000 a.m. to
11:59:59.999999 p.m.

8

bigtime 12:00:00.000000 a.m 11:59:59.999999
p.m.

8

Character

char(n) character page size n

varchar(n) character
varying, char
varying

page size Actual entry length

unichar Unicode character page size <n> * <@@unicharsize>
(<@@unicharsize> equals 2)

univarchar Unicode character
varying, char
varying

page size actual number of characters *
<@@unicharsize>

nchar(n) national
character,
national char

page size <n> * <@@ncharsize>

nvarchar(n) nchar varying,
national char
varying, national
character
varying

page size <@@ncharsize> * number of
characters

text 231 -1 (2,147,483,647) bytes or fewer 0 when uninitialized; multiple of
2K after initialization

196 P U B L I C
Transact-SQL Users Guide

Datatypes

Datatypes by Cate
gory

Synonyms Range Bytes of Storage

unitext 1,073,741,823 Unicode characters or
fewer

0 when uninitialized; multiple of
2K after initialization

Binary

binary(n) pagesize <n>

varbinary(n) pagesize actual entry length

image 231 -1 (2,147,483,647) bytes or fewer 0 when uninitialized; multiple of
2K after initialization

Bit

bit 0 or 1 1 (one byte holds up to 8 bit
columns)

7.1.1 Exact Numeric Types: Integers

SAP ASE provides various datatypes for storing integers (whole numbers). These types are exact numeric
types, which means they preserve their accuracy during arithmetic operations.

Choose among the integer types based on the expected size of the numbers to be stored. Internal storage size
varies by datatype.

Implicit conversion from any integer type to a different integer type is supported only if the value is within the
range of the type being converted to.

Unsigned integer datatypes allow you to extend the range of the positive numbers for the existing integer
types without increasing the required storage size. That is, the signed versions of these datatypes extend both
in the negative direction and the positive direction (for example, from -32 to +32). However, the unsigned
versions extend only in the positive direction.

Datatype Range of Signed Datatypes Datatype Range of Unsigned Datatypes

bigint Whole numbers between -263 and 263 - 1
(from -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807, inclusive

unsigned
bigint

Whole numbers between 0 and
18,446,744,073,709,551,615

int Whole numbers between -231 and 231 - 1
(-2,147,483,648 and 2,147,483,647), inclu
sive

unsigned
int

Whole numbers between 0 and
4,294,967,295

smallint Whole numbers between -215 and 215 -1
(-32,768 and 32,767), inclusive

unsigned
smallint

Whole numbers between 0 and 65535

Transact-SQL Users Guide
Datatypes P U B L I C 197

7.1.2 Exact Numeric Types: Decimal Numbers

Use the exact numeric types, numeric and decimal, for numbers that include decimal points. Data stored in
these columns is packed to conserve disk space, and preserves its accuracy to the least significant digit after
arithmetic operations.

The numeric and decimal types are identical in all respects but one: only numeric types with a scale of 0 can
be used for the identity column.

The exact numeric types accept two optional parameters, precision and scale, enclosed within
parentheses and separated by a comma:

<datatype> [(<precision> [, <scale>])]

SAP ASE defines each combination of precision and scale as a distinct datatype. For example,
numeric(10,0) and numeric(5,0) are two separate datatypes. The precision and scale determine the range of
values that can be stored in a decimal or numeric column:

● precision specifies the maximum number of decimal digits that can be stored in the column. It includes
all digits to the right or left of the decimal point. You can specify a precision of 1 – 38 digits, or use the
default precision of 18 digits.

● scale specifies the maximum number of digits that can be stored to the right of the decimal point. The
scale must be less than or equal to precision. You can specify a scale of 0 – 38 digits, or use the default
scale of 0 digits.

Exact numeric types with a scale of 0 display without a decimal point. You cannot enter a value that exceeds
either the precision or the scale for the column.

The storage size for a numeric or decimal column depends on its precision. The minimum storage
requirement is 2 bytes for a 1- or 2-digit column. Storage size increases by 1 byte for each additional 2 digits of
precision, to a maximum of 17 bytes.

7.1.3 Approximate Numeric Datatypes

The numeric types float, double precision, and real store numeric data that can tolerate rounding
during arithmetic operations.

Approximate numeric datatypes store, as binary tractions, slightly inaccurate representations of real
numbers, stored as binary fractions. Anytime an approximate numeric value is shown, printed, transferred
between hosts, or used in calculations, the numbers lose precision. isql displays only six significant digits
after the decimal point, and rounds the remainder. See System and User-Defined Datatypes, in the Reference
Manual: Building Blocks.

Use the approximate numeric types for data that covers a wide range of values. They support all aggregate
functions and all arithmetic operations.

The real and double precision types are built on types supplied by the operating system. The float
type accepts an optional precision in parentheses. float columns with a precision of 1 – 15 are stored as
real; those with higher precision are stored as double precision. The range and storage precision for all
three types is machine-dependent.

198 P U B L I C
Transact-SQL Users Guide

Datatypes

7.1.4 Money Datatypes

The money datatypes, money and smallmoney, store monetary data.

You can use these datatypes for U.S. dollars and other decimal currencies, although SAP ASE provides no
means to convert from one currency to another. You can use all arithmetic operations except modulo, and all
aggregate functions, with money and smallmoney data.

Both money and smallmoney are accurate to one ten-thousandth of a monetary unit, but round values up to
two decimal places for display purposes. The default print format places a comma after every three digits.

7.1.5 Date and Time Datatypes

Use the datetime and smalldatetime datatypes to store date and time information from January 1, 1753
through December 31, 9999. Use date for dates from January 1, 0001 to December 31, 9999 or time for
12:00:00 a.m. to 11:59:59:999.

Dates outside this range must be entered, stored, and manipulated as char or varchar values.

● datetime columns hold dates between January 1, 1753 and December 31, 9999. datetime values are
accurate to 1/300 second on platforms that support this level of granularity. Storage size is 8 bytes: 4
bytes for the number of days since the base date of January 1, 1900 and 4 bytes for the time of day.

● smalldatetime columns hold dates from January 1, 1900 to June 6, 2079, with accuracy to the minute.
Its storage size is 4 bytes: 2 bytes for the number of days after January 1, 1900, and 2 bytes for the
number of minutes after midnight.

● bigdatetime columns hold dates from January 1, 0001 to December 31, 9999 and 12:00:00.000000
a.m. to 11:59:59.999999 p.m.. Its storage size is 8 bytes. bigdatetime values are accurate to a
microsecond. The internal representation of bigdatetime is a 64-bit integer containing the number of
microseconds since 01/01/0000.

● bigtime columns hold times from 12:00:00.000000 a.m. to 11:59:59.999999 p.m.. Its storage size is 8
bytes. The bigtime values are accurate to a microsecond. The internal representation of bigtime is a
64-bit integer containing the number of microseconds since midnight.

● date is a literal value consisting of a date portion in single or double quotes. This column can hold dates
between January 1, 0001 to December 31, 9999. Storage size is 4 bytes.

● time is a literal value consisting of a time portion enclosed in single or double quotes. This column holds
time from 12:00:00a.m. to 11:59:59:999p.m.. Storage size is 4 bytes.

Enclose date and time information in single or double quotes. You can enter it in either uppercase or lowercase
letters and include spaces between data parts. SAP ASE recognizes a wide variety of data entry formats.
However, SAP ASE rejects values such as 0 or 00/00/00, which are not recognized as dates.

The default display format for dates is “Apr 15 1987 10:23p.m.”. You can use the convert function for other
formats. You can also perform some arithmetic calculations on datetime values with the built-in date
functions, although SAP ASE may round or truncate millisecond values, unless you use the time datatype.

For bigdatetime and bigtime, the value that appears reflects microsecond precision. bigdatetime and
bigtime have default display formats that accomodate this increased precision.

● hh:mi:ss.zzzzzzAM or PM

Transact-SQL Users Guide
Datatypes P U B L I C 199

● hh:mi:ss.zzzzzz
● mon dd yyyy hh:mi:ss.zzzzzz
● yyyy-mm-dd hh:mi:ss.zzzzzz

Related Information

Managing Data [page 358]

7.1.6 Character Datatypes

Use the character datatypes to store strings of letters, numbers, and symbols entered within single or double
quotes.

Use the like keyword to search these strings for particular characters, and the built-in string functions to
manipulate their contents. Use the convert function to convert strings consisting of numbers to exact and
approximate numeric datatypes, which can then be used for arithmetic.

The char(<n>) datatype stores fixed-length strings, and the varchar(<n>) datatype stores variable-length
strings, in single-byte character sets such as English. Their international character counterparts, nchar(<n>)
and nvarchar(<n>), store fixed- and variable-length strings in multibyte character sets such as
Japanese.The unichar and univarchar datatypes store Unicode characters, which are a constant size. You
can specify the maximum number of characters with n or use the default column length of one character. For
strings larger than the page size, use the text datatype.

Datatype Stores

char(n) Fixed-length data, such as social security numbers or postal codes

varchar(n) Data, such as names, that is likely to vary greatly in length

unichar Fixed-length Unicode data, comparable to char

univarchar Unicode data that is likely to vary greatly in length, comparable to varchar

nchar(n) Fixed-length data in multibyte character sets

nvarchar(n) Variable-length data in multibyte character sets

text Up to 2,147,483,647 bytes of printable characters on linked lists of data pages

unitext Up to 1,073,741,823 Unicode characters on linked lists of data pages

SAP ASE truncates entries to the specified column length without warning or error, unless you set
string_rtruncation on. See the Reference Manual: Commands. The empty string, “ ”or ‘ ’, is stored as a
single space rather than as NULL. Thus, “abc” + “ ” + “def” is equivalent to “abc def”, not to “abcdef”.

Fixed- and variable-length columns behave somewhat differently:

200 P U B L I C
Transact-SQL Users Guide

Datatypes

● Data in fixed-length columns is blank-padded to the column length. For char and unichar datatypes,
storage size is <n> bytes, (unichar = n*@@unicharsize); for nchar, <n> times the average national
character length (<@@ncharsize>). When you create a char, unichar, or nchar column that allows
nulls, SAP ASE converts it to a varchar, univarchar, or nvarchar column and uses the storage rules
for those datatypes. This is not true of char and nchar variables and parameters.

● Data in variable-length columns is stripped of trailing blanks; storage size is the actual length of the data.
For varchar or univarchar columns, this is the number of characters; for nvarchar columns, it is the
number of characters times the average character length. Variable-length character data may require less
space than fixed-length data, but is accessed somewhat more slowly.

7.1.6.1 unichar Datatype

The unichar and univarchar datatypes support the UTF-16 encoding of Unicode in SAP ASE. These
datatypes are independent of the char and varchar datatypes, but mirror their behavior.

For example, the built-in functions that operate on char and varchar also operate on unichar and
univarchar. However, unichar and univarchar store only UTF-16 characters and have no connection to
the default character set ID or the default sort order ID, as char and varchar do.

Each unichar/univarchar character requires two bytes of storage. The declaration of a unichar/
univarchar column is the number of 16-bit Unicode values. The following example creates a table with one
unichar column for 10 Unicode values, requiring 20 bytes of storage:

create table unitbl (unicol unichar(10))

The length of a unichar/univarchar column is limited by the size of a data page, as is the length of char/
varchar columns.

Unicode surrogate pairs use the storage of two 16-bit Unicode values (in other words, four bytes). Be aware of
this when declaring columns intended to store Unicode surrogate pairs (a pair of 16 bit values that represent a
character in the range [0x010000..0x10FFFF]). By default, SAP ASE correctly handles surrogates, and does
not split the pair. Truncation of Unicode data is handled in a manner similar to that of char and varchar data.

You can use unichar expressions anywhere char expressions are used, including comparison operators,
joins, subqueries, and so forth. However, mixed-mode expressions of both unichar and char are performed
as unichar. The number of Unicode values that can participate in such operations is limited to the maximum
size of a unichar string.

The normalization process modifies Unicode data so there is only a single representation in the database for a
given sequence of abstract character (see Introduction to the Basics, in the Performance and Tuning Series:
Basics for a discussion of normalization). Often, characters followed by combined diacritics are replaced by
pre-combined forms. This allows significant performance optimizations. By default, the server assumes all
Unicode data should be normalized.

Transact-SQL Users Guide
Datatypes P U B L I C 201

7.1.6.1.1 Relational Expressions

All relational expressions involving at least one expression of unichar or univarchar, are based on the
default Unicode sort order. If one expression is unichar and the other is varchar (nvarchar, char, or
nchar), the latter is implicitly converted to unichar.

The following table shows which expressions are most often used in where clauses, and where they may be
combined with logical operators.

When comparing Unicode character data, “less than” means closer to the beginning of the default Unicode
sort order, and “greater than” means closer to the end. “Equality” means the Unicode default sort order makes
no distinction between two values (although they need not be identical). For example, the precomposed
character ê must be considered equal to the combining sequence consisting of the letter e followed by U
+0302. (A precomposed character is a Unicode character you can decompose into an equivalent string of
several other characters.) If the Unicode normalization feature is turned on (the default), Unicode data is
automatically normalized and the server never sees unnormalized data.

expr1 op_compare [any | all]
(subquery)

The use of any or all with comparison operators and subquery
expr2 , implicitly invokes min or max. For instance, “expr1>
any expr2” means, in effect, “expr1> min(expr2)”.

expr1 [not] in (expression list)

expr1 [not] in (subquery)

The in operator checks for equality with each of the elements in
expr2, which can be a list of constants, or the results of a sub
query.

expr1 [not] between expr2 and expr3 The between operator specifies a range. It is, in effect, short
hand for “expr1 = expr2 and expr1<= expr3”.

expr1 [not] like "match_string"
[escape"esc_char”]

The like operator specifies a pattern to be matched. The se
mantics for pattern matching with Unicode data are the same as
for regular character data. If expr1 is a unichar column
name, then “match_string” may be either a unichar
string or a varchar string. In the latter case, an implicit conver
sion takes place between varchar and unichar

7.1.6.1.2 Join Operators

Join operators appear in the same manner as comparison operators. You can use any comparison operator in
a join.

Expressions involving at least one expression of type unichar are based on the default Unicode sort order. If
one expression is of type unichar and the other type varchar (nvarchar, char, or nchar), the latter is
implicitly converted to unichar.

202 P U B L I C
Transact-SQL Users Guide

Datatypes

7.1.6.1.3 Union Operators

The union operator operates with unichar data much like it does with varchar data. Corresponding
columns from individual queries must be implicitly convertible to unichar, or explicit conversion must be
used.

7.1.6.1.4 Clauses and Modifiers

When unichar and univarchar columns are used in group by and order by clauses, equality is judged
according to the default Unicode sort order. This is also true when using the distinct modifier.

7.1.6.2 text Datatype

The text datatype stores up to 2,147,483,647 bytes of printable characters on linked lists of separate data
pages. Each page stores a maximum of 1800 bytes of data.

To save storage space, define text columns as NULL. When you initialize a text column with a non-null
insert or update, SAP ASE assigns a text pointer and allocates an entire 2K data page to hold the value.

If you are using databases connected with Component Integration Services, there are several differences in
the way text datatypes are handled. See the Component Integration Services Users Guide.

Related Information

Change text, unitext, and image data [page 378]

7.1.6.3 unitext Datatype

The variable-length unitext datatype can hold up to 1,073,741,823 Unicode characters (2,147,483,646
bytes). You can use unitext anywhere you use the text datatype, with the same semantics. unitext columns
are stored in UTF-16 encoding, regardless of the SAP ASE default character set.

The unitext datatype uses the same storage mechanism as text. To save storage space, define unitext
columns as NULL. When you initialize a unitext column with a non-null insert or update clause, SAP ASE
assigns a text pointer and allocates an entire 2K data page to hold the value.

The benefits of unitext include:

● Large Unicode character data. Together with unichar and univarchar datatypes, SAP ASE provides
complete Unicode datatype support, which is best for incremental multilingual applications.

● unitext stores data in UTF-16, which is the native encoding for Windows and Java environments.

Transact-SQL Users Guide
Datatypes P U B L I C 203

Related Information

Change text, unitext, and image data [page 378]

7.1.7 Binary Datatypes

Binary datatypes store raw binary data, such as pictures, in a hexadecimal-like notation.

Binary data begins with the characters “0x” and includes any combination of digits and the uppercase and
lowercase letters A – F. The two digits following “0x” in binary and varbinary data indicate the type of
number: “00” represents a positive number and “01” represents a negative number.

If the input value does not include “0x,” SAP ASE assumes that the value is an ASCII value and converts it.

Note
SAP ASE manipulates the binary types in a platform-specific manner. For true hexadecimal data, use the
hextoint and inttohex functions.

Use the binary(n) and varbinary(n) datatypes to store data up to 255 bytes in length. Each byte of
storage holds 2 binary digits. Specify the column length with <n>, or use the default length of 1 byte. If you
enter a value longer than <n>, SAP ASE truncates the entry to the specified length without warning or error.

● Use the fixed-length binary type, binary(n), for data in which all entries are expected to have a similar
length. Because entries in binary columns are zero-padded to the column length, they may require more
storage space than those in varbinary columns, but they are accessed somewhat faster.

● Use the variable-length binary type, varbinary(n), for data that is expected to vary greatly in length.
Storage size is the actual size of the data values entered, not the column length. Trailing zeros are
truncated.

When you create a binary column that allows nulls, SAP ASE converts it to a varbinary column and uses
the storage rules for that datatype.

You can search binary strings with the like keyword and operate on them with the string functions.

Note
Because the exact form in which you enter a particular value depends upon the hardware you are using,
calculations involving binary data may produce different results on different platforms.

Related Information

Transact-SQL Functions [page 475]

204 P U B L I C
Transact-SQL Users Guide

Datatypes

7.1.7.1 image Datatype

Use the image datatype to store larger blocks of binary data on external data pages. An image column can
store up to 2,147,483,647 bytes of data on linked lists of data pages separate from other data storage for the
table.

When you initialize an image column with a non-null insert or update, SAP ASE assigns a text pointer and
allocates an entire 2K data page to hold the value. Each page stores a maximum of 1800 bytes.

To save storage space, define image columns as NULL. To add image data without saving large blocks of
binary data in your transaction log, use writetext. See the Reference Manual: Commands.

You cannot use the image datatype:

● For parameters to stored procedures, as values passed to these parameters, or for local variables
● For parameters to remote procedure calls (RPCs)
● In order by, compute, group by, or union clauses
● In an index
● In subqueries or joins
● In a where clause, except with the keyword like
● With the + concatenation operator
● In the if update clause of a trigger

If you are using databases connected with Component Integration Services, there are several differences in
the way image datatypes are handled. See the Component Integration Services Users Guide.

Related Information

Change text, unitext, and image data [page 378]

7.1.8 bit Datatype

Use bit columns for true/false or yes/no types of data. bit columns hold either 0 or 1.

Integer values other than 0 or 1 are interpreted as 1. Storage size is 1 byte. Multiple bit datatypes in a table are
collected into bytes. For example, 7-bit columns fit into 1 byte; 9-bit columns take 2 bytes.

Columns of datatype bit cannot be NULL and cannot have indexes on them. The status column in the
syscolumns system table indicates the unique offset position for bit columns.

Transact-SQL Users Guide
Datatypes P U B L I C 205

7.1.9 timestamp Datatype

The timestamp user-defined datatype is used for columns in tables that are browsed in Open Client™ DB-
Library applications.

Every time a row containing a timestamp column is inserted or updated, the timestamp column is
automatically updated. A table can have only one column of the timestamp datatype. A column named
timestamp automatically has the system datatype timestamp. Its definition is:

varbinary(8) "NULL"

Because timestamp is a user-defined datatype, you cannot use it to define other user-defined datatypes. You
must enter it as “timestamp” in all lowercase letters.

7.1.10 sysname and longsysname Datatype

sysname and longsysname are user-defined datatypes used in the system tables.

sysname is defined as:

varchar(30) "NOT NULL"

longsysname is defined as:

varchar(255) "NOT NULL"

You can declare a column, parameter, or variable to be of type sysname or longsysname. Alternately, you can
also create a user-defined datatype with a base type of sysname or longsysname.

You can then use this user-defined datatype to create columns.

Related Information

User-Defined Datatypes [page 213]

7.2 LOB Locators in Transact-SQL Statements

Large object (LOB) locators let you reference an LOB in Transact-SQL statements rather than referencing the
LOB itself.

Because the size of a text, unitext, or image LOB can be many megabytes, using an LOB locator in
Transact-SQL statements reduces network traffic between the client and SAP ASE, and reduces the amount of
memory otherwise needed by the client to process the LOB.

206 P U B L I C
Transact-SQL Users Guide

Datatypes

SAP ASE lets client applications send and receive locators as host variables and parameter markers.

When you create an LOB locator, SAP ASE caches the LOB value in memory and generates an LOB locator to
reference it.

A LOB locator remains valid for the duration of the transaction in which it was created. SAP ASE invalidates the
locator when the transaction commits or is rolled back.

LOB locators use three different datatypes:

● text_locator – for text LOBs.
● unitext_locator – for unitext LOBs.
● image_locator – for image LOBs.

You can declare local variables for the locator datatypes. For example:

declare @v1 text_locator

Because LOBs and locators are stored only in memory, you cannot use locator datatypes as column datatypes
for user tables or views, or in constraints or defaults.

You can create a LOB locator explicitly or implicitly.

In general, when used in a Transact-SQL statement, locators are implicitly converted to the LOB they
reference. That is, when a locator is passed to a Transact-SQL function, the function operates on the LOB that
is referenced by the locator.

Any changes you make to the LOB referenced by the locator are not reflected in the source LOB in the
database—unless you explicitly save them. Similarly, any changes you make to the LOB stored in the database
are not reflected in the LOB referenced by the locator.

Note
Locators are best used in Transact-SQL statements that return only a few rows, or in cursor statements.
This allows locators and associated LOBs to be processed and released in a manner that conserves
memory. You may need to increase available memory if several LOBs are created in a single transaction.

7.2.1 Implicitly Create a Locator

If you assign one locator to another, a new locator value is assigned to the new variable. Each locator has a
unique locator value.

In this example, the third statement assigns a new LOCATOR which is created by copying the LOB value
referenced by @v to @w. For example:

declare @v text_locator, @w text_locator select @v = create_locator(text_locator, textvol)
from my_table where id = 5 select @w = @v

Transact-SQL Users Guide
Datatypes P U B L I C 207

You can use the set send_locator on command to implicitly create a locator by specifying that all LOB
values in a result set are to be converted to the relevant locator type and then sent as such to the client. For
example:

set send_locator on select textcol from my_table where id = 5

Because send_locator is on, SAP ASE creates a locator for each row value of textcol, and sends the
resulting locators to the client. If send_locator is off (the default), SAP ASE sends the actual text value.

7.2.2 Explicitly Create a Locator

Use the create_locator function to explicitly create a locator.

● To create a locator for a text LOB, enter:

select create_locator(text_locator, convert(text, "<some_text_value>"))

● To create a locator for an image LOB, enter:

select create_locator(image_locator, <image_col>) from <table_name>

For example, to create a locator for an image LOB stored in the image_column column of my_table,
enter:

select create_locator(image_locator, image_column) from my_table where id=7

Both examples create and return a LOB locator that references a LOB value stored in SAP ASE memory.

Note
When explicitly creating a locator, SAP ASE always sends a locator, regardless of the value of
send_locator.

Using a select statement to create a locator is most useful when the client application stores the received
locator for use in subsequent Transact-SQL statements. In an isql session, the locator is assigned to a local
variable. For example:

declare @v text_locator select @v = create_locator(text_locator, textcol) from my_table where id = 10

Note
You can also create a locator that references an empty LOB.

208 P U B L I C
Transact-SQL Users Guide

Datatypes

7.2.3 Convert the Locator Value to the LOB Value

After using a locator in a Transact-SQL statement, you can convert (dereference) the locator to the
corresponding LOB.

To explicitly convert a locator, use the return_lob function. For example, to return the LOB value for <@w>,
enter:

declare @w text_locator select return_lob(text, @w)

You can also implicitly convert the locator. For example, to insert the actual LOB value for <@w> into the
textcol column of my_table, enter:

insert my_table(textcol) values (@w)

The return_lob command overrides the set sent_locator on command. return_lob always returns
the LOB.

Parameter Markers

You can explicitly convert a locator when using parameter markers in Transact-SQL statements. For example:

insert my_table (textcol)) values(return_lob(text,?))

Use the locator_literal function to identify the locator:

insert my_table (imagecol) values (locator_literal(image_locator,
<binary_locator_value>))

7.2.4 Locator Scope

In general, a locator is valid for the duration of a transaction. Use the deallocate locator function to
override the default scoping, and deallocate the locator within the transaction.

deallocate locator can be especially useful in saving memory when you need to create many locators
within a transaction. For example:

begin tran declare @v text_locator
select @v = textcol from my_table where id=5
deallocate locator @v
... commit

deallocate locator removes the LOB value for <@v> from SAP ASE memory before the transaction
commits, and marks the locator as invalid.

Transact-SQL Users Guide
Datatypes P U B L I C 209

7.3 Convert Between Datatypes

SAP ASE automatically handles many conversions from one datatype to another. These are called implicit
conversions. Use the convert, inttohex, and hextoint functions to explicitly request other conversions.

Some conversions cannot be performed, either explicitly or automatically, because of incompatibilities
between the datatypes.

For example, SAP ASE automatically converts char expressions to datetime for the purposes of a
comparison, both expressions can be interpreted as datetime values. However, for display purposes, you
must use the convert function to convert char to int. Similarly, you must use convert on integer data for
SAP ASE to treat it as character data so that you can use the like keyword with it.

The syntax for the convert function is:

convert (<datatype>, <expression>, [<style>])

In the following example, convert displays the total_sales column using the char datatype, showing all
sales beginning with the digit 2:

select title, total_sales from titles where convert (char(20), total_sales) like "2%"

Use the optional style parameter to convert datetime values to char or varchar datatypes to get a wide
variety of date display formats.

Related Information

Transact-SQL Functions [page 475]

7.4 Mixed-Mode Arithmetic and Datatype Hierarchy

When you perform arithmetic on values with different datatypes, SAP ASE must determine the datatype and,
in some cases, the length and precision, of the result.

Each system datatype has a datatype hierarchy, which is stored in the systypes system table. User-defined
datatypes inherit the hierarchy of the system type on which they are based.

The SAP ASE datatype hierarchy applies only to computations or expressions involving numeric datatypes.

When comparing different datatypes related to date or time (for example, datetime versus date), only
components that are present in both datatypes are compared. For example, SAP ASE considers the datetime
value “20-Nov-2012 23:24:25” equal to the date value “20-Nov-2012” since it compares only the date
component (in this case, the string “20-Nov-2012”). This is complaint with the ANSI SQL standard.

210 P U B L I C
Transact-SQL Users Guide

Datatypes

The following query ranks the datatypes in a database by hierarchy. In addition to the information shown
below, query results include information about any user-defined datatypes in the database:

select name, hierarchy from systypes order by hierarchy

name hierarchy ---------- ---------
floatn 1
float 2
datetimn 3
datetime 4
real 5
numericn 6
numeric 7
decimaln 8
decimal 9
moneyn 10
money 11
smallmoney 12
smalldatet 13
intn 14
uintn 15
bigint 16
ubigint 17
int 18
uint 19
smallint 20
usmallint 21
tinyint 22
bit 23
univarchar 24
unichar 25
unitext 26
sysname 27
varchar 27
nvarchar 27
longsysnam 27
char 28
nchar 28
timestamp 29
varbinary 29
binary 30
text 31
image 32
date 33
time 34
daten 35
timen 36
bigdatetim 37
bigtime 38
bigdatetim 39
bigtimen 40 extended t 99

Note
u<integer_type> (for example, usmallint) is an internal representation. The correct syntax for
unsigned types is unsigned {int | integer | bigint | smallint }.

The datatype hierarchy determines the results of computations using values of different datatypes. The result
value is assigned the datatype that is closest to the top of the list.

Transact-SQL Users Guide
Datatypes P U B L I C 211

In the following example, qty from the sales table is multiplied by royalty from the roysched table. qty is
a smallint, which has a hierarchy of 20; royalty is an int, which has a hierarchy of 18. Therefore, the
datatype of the result is an int.

smallint(qty) * int(royalty) = int

This example multiplies an int, which has a hierarchy of 18; with an unsigned int, which has a hierarchy of
19, and the datatype of the result is a int:

int(10) * unsigned int(5) = int(50)

Note
Unsigned integers are always promoted to a signed datatype when you use a mixed-mode expression. If the
unsigned integer value is not in the signed integer range, SAP ASE issues a conversion error.

See the Reference Manual: Building Blocks for more information about the datatype hierarchy.

7.4.1 Working with money Datatypes

Combine money datatype with literals or variables, or with a float or numeric datatype.

If you are combining money and literals or variables, and you need results of money type, use money literals or
variables.

create table mytable (moneycol money,)
insert into mytable values ($10.00) select moneycol * $2.5 from mytable

If you are combining money with a float or numeric datatype from column values, use the convert
function:

select convert (money, moneycol * percentcol) from debits, interest drop table mytable

7.4.2 Determine Precision and Scale

For the numeric and decimal types, each combination of precision and scale is a distinct SAP ASE datatype.

If you perform arithmetic on two numeric or decimal values, n1 with precision p1 and scale s1, and n2 with
precision p2 and scale s2, SAP ASE determines the precision and scale of the results as in the following table.

212 P U B L I C
Transact-SQL Users Guide

Datatypes

Operation Precision Scale

n1 + n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 - n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 * n2 s1 + s2 + (p1 - s1) + (p2 - s2) + 1 s1 + s2

n1 / n2 max(s1 + p2 + 1, 6) + p1 - s1 + s2 max(s1 + p2 + 1, 6)

7.5 User-Defined Datatypes

A Transact-SQL enhancement to SQL allows you to design your own datatypes to supplement the system
datatypes. A user-defined datatype is defined in terms of system datatypes.

Note
To use a user-defined datatype in more than one database, create the datatype in the model database. You
can then use the user-defined datatype definition in any new databases you create.

Once you define a datatype, you can use it as the datatype for any column in the database. For example, tid is
used as the datatype for columns in several pubs2 tables: titles.title_id, titleauthor.title_id,
sales.title_id, and roysched.title_id.

The advantage of user-defined datatypes is that you can bind rules and defaults to them for use in several
tables.

Use sp_addtype to create user datatypes. It takes as parameters the name of the datatype being created, the
SAP ASE-supplied datatype from which it is being built, and an optional null, not null, or identity specification.

You can build a user-defined datatype using any system datatype other than timestamp. User-defined
datatypes have the same datatype hierarchy as the system datatypes on which they are based. Unlike SAP
ASE-supplied datatypes, user-defined datatype names are case-sensitive.

For example, to define datatype tid:

sp_addtype tid, "char(6)", "not null"

You must enclose a parameter within single or double quotes if it includes a blank or some form of
punctuation, or if it is a keyword other than null (for example, identity or sp_helpgroup). In this example,
quotes are required around char(6) because of the parentheses, but around “not null” because of the blank.
They are not required around tid.

Related Information

Transact-SQL Users Guide
Datatypes P U B L I C 213

Defining Defaults and Rules for Data [page 415]

7.5.1 Length, Precision, and Scale

For some user-defined datatypes, you must specify additional parameters for lengh, precision, and scale.

● The char, nchar, varchar, nvarchar, binary, and varbinary datatypes expect a length in
parentheses. If you do not supply one, SAP ASE assumes the default length of 1 character.

● The float datatype expects a precision in parentheses. If you do not supply one, SAP ASE uses the
default precision for your platform.

● The numeric and decimal datatypes expect a precision and scale, in parentheses and separated by a
comma. If you do not supply them, SAP ASE uses a default precision of 18 and scale of 0.

You cannot change a user-defined datatype’s length, precision, or scale when you include it in a create
table statement.

7.5.2 Null Type

The null type determines how the user-defined datatype treats nulls. You can create a user-defined datatype
with a null type of “null”, “NULL”, “nonull”, “NONULL”, “not null”, or “NOT NULL”. bit and identity types do
not allow null values.

If you omit the null type, SAP ASE uses the null mode defined for the database (by default, NOT NULL). For
compatibility with SQL standards, use sp_dboption to set the allow nulls by default option to true.

You can override the null type when you include the user-defined datatype in a create table statement.

7.5.3 Associate Rules and Defaults with User-Defined
Datatypes

Once you have created a user-defined datatype, use sp_bindrule and sp_bindefault to associate rules
and defaults with the datatype. Use sp_help to print a report that lists the rules, defaults, and other
information associated with the datatype.

Related Information

Defining Defaults and Rules for Data [page 415]

214 P U B L I C
Transact-SQL Users Guide

Datatypes

7.5.4 Create User-Defined Datatype with IDENTITY Property

Use sp_addtype to create a user-defined datatype with the IDENTITY property.

The new type must be based on a physical type of numeric with a scale of 0 or any integer type:

sp_addtype <typename>, "numeric (<precision>, 0)", "identity"

The following example creates a user-defined type, IdentType, with the IDENTITY property:

sp_addtype IdentType, "numeric(4,0)", "identity"

When you create a column from an IDENTITY type, you can specify either identity or not null—or neither
one—in the create or alter table statement. The column automatically inherits the IDENTITY property.

Here are three different ways to create an IDENTITY column from the IdentType user-defined type:

create table new_table (id_col IdentType) drop table new_table
create table new_table (id_col IdentType identity)
drop table new_table
create table new_table (id_col IdentType not null) drop table new_table

Note
If you try to create a column that allows nulls from an IDENTITY type, the create table or alter table
statement fails.

7.5.5 Create IDENTITY Columns from User-Defined
Datatypes

You can create IDENTITY columns from user-defined datatypes that do not have the IDENTITY property.

The user-defined types must have a physical datatype of numeric or with a scale of 0, or any integer type,
and must be defined as not null.

7.5.6 Drop a User-Defined Datatype

Use sp_droptype to drop a user-defined datatype.

See the Reference Manual: Procedures.

Note
You cannot drop a datatype that is in use in any table.

Transact-SQL Users Guide
Datatypes P U B L I C 215

7.6 Datatype Entry Rules

Several of the SAP ASE-supplied datatypes have special rules for entering and searching for data.

Related Information

Databases and Tables [page 50]

7.6.1 char, nchar, unichar, univarchar, varchar, nvarchar,
unitext, and text

Certain rules apply when using character data types.

All character and text data must be enclosed in single or double quotes when you enter it as a literal.

Use single quotes if the quoted_identifier option of the set command is set on. If you use double quotes,
SAP ASE treats the text as an identifier.

Character literals may be any length, whatever the logical page size of the database. If the literal is wider than
16KB (16384 bytes), SAP ASE treats it as text data, which has restrictive rules regarding implicit and explicit
conversion to other datatypes. See, System and User-Defined Datatypes, in the Reference Manual: Building
Blocks for a discussion of the different behavior of character and text datatypes.

When you insert character data into a char, nchar, unichar, univarchar, varchar, or nvarchar column
for which the specified length is less than the length of the data, the entry is truncated. Set the
string_rtruncation option on to receive a warning message when this occurs.

Note
This truncation rule applies to all character data, whether it resides in a column, a variable, or a literal string.

There are two ways to specify literal quotes within a character entry:

● Use two quotes. For example, if you begin a character entry with a single quote and you want to include a
single quote as part of the entry, use two single quotes: 'I don’t 'understand.' ' For double quotes: “He said,
“ “It’s not really confusing.” ”

● Enclose the quoted material in the opposite kind of quotation mark. In other words, surround an entry
containing a double quote with single quotes, or vice versa. For example: “George said, 'There must be a
better way.'”

To enter a character string that is longer than the width of your screen, enter a backslash (\) before going to
the next line.

Use the like keyword and wildcard characters to search for character, text, and datetime data.

See, System and User-Defined Datatypes, in the Reference Manual: Building Blocks for details on inserting
text data and information about trailing blanks in character data.

216 P U B L I C
Transact-SQL Users Guide

Datatypes

7.6.2 Date and Time

The SAP ASE datatypes used to store date and time information include datetime, smalldatetime, date,
time, bigdatetime, and bigtime.

All date and time data must be enclosed in single or double quotes when you enter it as a literal.

Display and entry formats for date and time data provide a wide range of date output formats, and recognize a
variety of input formats. The display and entry formats are controlled separately. The default display format
provides output that looks like “Apr 15 2003 10:23PM.” The convert command provides options to display
seconds and milliseconds and to display the date with other date-part ordering.

SAP ASE recognizes a wide variety of data entry formats for dates. Case is always ignored, and spaces can
occur anywhere between date parts. When you enter datetime and smalldatetime values, always enclose
them in single or double quotes. Use single quotes if the quoted_identifier option is on; if you use double
quotes, SAP ASE treats the entry as an identifier.

SAP ASE recognizes the two date and time portions of the data separately, so the time can precede or follow
the date. Either portion can be omitted, in which SAP ASE uses the default. The default date and time is
January 1, 1900, 12:00:00:000AM.

For datetime, the earliest date you can use is January 1, 1753; the latest is December 31, 9999. For
smalldatetime, the earliest date you can use is January 1, 1900; the latest is June 6, 2079. For
bigdatetime, the earliest date you can enter is January 1, 0001 and the latest is December 31, 9999. For
date, the earliest date you can use is January 1, 0001; the latest is December 31, 9999. Dates earlier or later
than these dates must be entered, stored, and manipulated as char, or unichar; or varchar or
univarchar values. SAP ASE rejects all values it cannot recognize as dates between those ranges.

For time, the earliest time is 12:00AM; the latest is 11:59:59:999. For bigtime, the earliest time is
12:00:00.000000AM; the latest is 11:59:59.999999PM.

Related Information

Transact-SQL Functions [page 475]

7.6.2.1 Enter Times

The order of time components is significant. Enter the hours first; then minutes; then seconds; then
milliseconds; then AM (or am) or PM (pm).

12AM is midnight; 12PM is noon. To be recognized as time, a value must contain either a colon or an AM or PM
signifier. smalldatetime is accurate only to the minute. time is accurate to the millisecond.

Milliseconds can be preceded by either a colon or a period. If preceded by a colon, the number means
thousandths of a second. If preceded by a period, a single digit means tenths of a second, two digits mean
hundredths of a second, and three digits mean thousandths of a second.

Transact-SQL Users Guide
Datatypes P U B L I C 217

For example, “12:30:20:1” means 20 and one-thousandth of a second past 12:30; “12:30:20.1” means 20 and
one-tenth of a second past 12:30.

Among the acceptable formats for time data are:

14:30 14:30[:20:999]
14:30[:20.9]
4am
4 PM [0]4[:30:20:500]AM

Display and entry formats for bigdatetime and bigtime include microseconds. The time for these
datatypes must be specified as:

● hours[:minutes[:seconds[.microseconds]] [<AM> | <PM>]

● hours[:minutes[:seconds[number of milliseconds]] [<AM> | <PM>]

Use 12 AM for midnight and 12 PM for noon. A bigtime value must contain either a colon or an AM or PM
signifier. AM or PM can be entered in uppercase, lowercase, or mixed case.

The seconds specification can include either a decimal portion preceded by a point, or a number of
milliseconds preceded by a colon. For example, “12:30:20:1” means twenty seconds and one millisecond past
12:30; “12:30:20.1” means twenty and one-tenth of a second past.

To store a bigdatetime or bigtime time value that includes microseconds, specify a string literal using a
point. “00:00:00.1” means one tenth of a second past midnight and “00:00:00.000001” means one millionth
of a second past midnight. Any value after the colon specifying fractional seconds will continue to refer to a
number of milliseconds. Such as “00:00:00:5” means 5 milliseconds.

7.6.2.2 Enter Dates

The set dateformat command specifies the order of the date parts (month, day, and year) when dates are
entered as strings of numbers with separators.

set language can also affect the format for dates, depending on the default date format for the language you
specify. The default language is us_english, and the default date format is <mdy>. See the Reference Manual:
Commands.

Note
dateformat affects only the dates entered as numbers with separators, such as “4/15/90” or “20.05.88”.
It does not affect dates where the month is provided in alphabetic format, such as “April 15, 1990” or where
there are no separators, such as “19890415”.

218 P U B L I C
Transact-SQL Users Guide

Datatypes

7.6.2.2.1 Date Formats

SAP ASE recognizes three basic date formats. Each format must be enclosed in quotes and can be preceded
or followed by a time specification.

● The month is entered in alphabetic format.
○ Valid formats for specifying the date alphabetically are:

 Apr[il] [15][,] 1997 Apr[il] 15[,] [19]97 Apr[il] 1997 [15]

 [15] Apr[il][,] 1997 15 Apr[il][,] [19]97
 15 [19]97 apr[il] [15] 1997 apr[il]

 1997 APR[IL] [15] 1997 [15] APR[IL]

○ Month can be a three-character abbreviation, or the full month name, as given in the specification for
the current language.

○ Commas are optional.
○ Case is ignored.
○ If you specify only the last two digits of the year, values of less than 50 are interpreted as “20yy,” and

values of 50 or more are interpreted as “19yy.”
○ Type the century only when the day is omitted or when you need a century other than the default.
○ If the day is missing, SAP ASE defaults to the first day of the month.
○ When you specify the month in alphabetic format, the dateformat setting is ignored (see the

Reference Manual: Commands).
● The month is entered in numeric format, in a string with a slash (/), hyphen (-), or period (.) separator.

○ The month, day, and year must be specified.
○ The strings must be in the form:

 <num> <sep> <num> <sep> <num> [<time spec>]

or:

 [<time spec>] <num> <sep> <num> <sep> <num>

○ The interpretation of the values of the date parts depends on the dateformat setting. If the ordering
does not match the setting, either the values are not interpreted as dates, because the values are out
of range, or the values are misinterpreted. For example, “12/10/08” can be interpreted as one of six
different dates, depending on the dateformat setting. See the Reference Manual: Commands.

○ To enter “April 15, 1997” in <mdy> dateformat, you can use any of these formats:

 [0]4/15/[19]97 [0]4-15-[19]97 [0]4.15.[19]97

○ The other entry orders are shown below with ‘‘/” as a separator; you can also use hyphens or periods:

 15/[0]4/[19]97 (dmy) 1997/[0]4/15 (ymd)

Transact-SQL Users Guide
Datatypes P U B L I C 219

 1997/15/[0]4 (ydm)
 [0]4/[19]97/15 (myd) 15/[19]97/[0]4 (dym)

● The date is given as an unseparated four-, six-, or eight-digit string, or as an empty string, or only the time
value, but no date value, is given.
○ The dateformat is always ignored with this entry format.
○ If four digits are given, the string is interpreted as the year, and the month is set to January, the day to

the first of the month. The century cannot be omitted.
○ Six- or eight-digit strings are always interpreted as <ymd>; the month and day must always be two

digits. This format is recognized: [19]960415.
○ An empty string (“”) or missing date is interpreted as the base date, January 1, 1900. For example, a

time value like “4:33” without a date is interpreted as “January 1, 1900, 4:33AM’’.

The set datefirst command specifies the day of the week (Sunday, Monday, and so on) when weekday or
dw is used with datename, and a corresponding number when used with datepart. Changing the language
with set language can also affect the format for dates, depending on the default first day of the week value
for the language. For the default language of us_english, the default datefirst setting is Sunday=1,
Monday=2, and so on; others produce Monday=1, Tuesday=2, and so on. Use set datefirst to change
default behavior on a per-session basis. See the Reference Manual: Commands.

Related Information

Enter Times [page 217]

7.6.2.3 Search Dates and Times

You can use the like keyword and wildcard characters with datetime, smalldatetime, bigdatetime,
bigtime, date, and time data, as well as with char, unichar, nchar, varchar, univarchar, nvarchar,
text, and unitext.

When you use like with date and time values, SAP ASE first converts the dates to the standard date/time
format, then converts them to varchar or univarchar. Since the standard display formats for datetime
and smalldatetime do not include seconds or milliseconds, you cannot search for seconds or milliseconds
with like and a match pattern. Use the type conversion function, convert, to search for seconds and
milliseconds.

Use like when you search for datetime, bigtime, bigdatetime or smalldatetime values, because
these types of data entries may contain a variety of date parts. For example, if you insert the value “9:20” into
a column named arrival_time, the following clause would not find it, because SAP ASE converts the entry
to “Jan 1, 1900 9:20AM”:

where arrival_time = "9:20"

However, this clause would find it:

where arrival_time like "%9:20%"

220 P U B L I C
Transact-SQL Users Guide

Datatypes

This applies to date and time datatypes as well.

If you are using like, and the day of the month is less than 10, you must insert two spaces between the month
and day to match the varchar conversion of the datetime value. Similarly, if the hour is less than 10, the
conversion places two spaces between the year and the hour. The clause like May 2%, with one space
between “May” and “2”, finds all dates from May 20 through May 29, but not May 2. You need not insert the
extra space with other date comparisons, only with like, since the datetime values are converted to
varchar only for the like comparison.

7.6.3 binary, varbinary, and image

When you enter binary, varbinary, or image data as literals, you must precede the data with “0x”. For
example, to enter “FF”, type “0xFF”. Do not, however, enclose data beginning with “0x” with quotation marks.

Binary literals can be of any length, regardless of the logical page size of the database. If the length of the
literal is less than 16KB (16384 bytes), SAP ASE treats the literal as varbinary data. If the length of the literal
is greater than 16KB, SAP ASE treats it as image data.

When you insert binary data into a column for which the specified length is less than the length of the data,
the entry is truncated without warning.

A length of 10 for a binary or varbinary column means 10 bytes, each storing 2 hexadecimal digits.

When you create a default on a binary or varbinary column, precede it with “0x”.

See, System and User-Defined Datatypes in the Reference Manual: Building Blocks for the different behaviors
of binary datatypes and image datatypes and for information about trailing zeros in hexadecimal values.

7.6.4 money and smallmoney

Monetary values entered with the E notation are interpreted as float. This may cause an entry to be rejected
or to lose some of its precision when it is stored as a money or smallmoney value.

money and smallmoney values can be entered with or without a preceding currency symbol such as the dollar
sign ($), yen sign (¥), or pound sterling sign (£). To enter a negative value, place the minus sign after the
currency symbol. Do not include commas in your entry.

You cannot enter money or smallmoney values with commas, although the default print format for money or
smallmoney data places a comma after every three digits. When money or smallmoney values appear, they
are rounded up to the nearest cent. All the arithmetic operations except modulo are available with money.

Transact-SQL Users Guide
Datatypes P U B L I C 221

7.6.5 float, real, and double precision

Enter approximate numeric types—float, real, and double precision—as a mantissa followed by an
optional exponent.

The mantissa can include a positive or negative sign and a decimal point. The exponent, which begins after the
character “e” or “E”, can include a sign but not a decimal point.

To evaluate approximate numeric data, SAP ASE multiplies the mantissa by 10 raised to the given exponent.
This table shows examples of float, real, and double precision data:

Data Entered Mantissa Exponent Value

10E2 10 2 10 * 102

15.3e1 15.3 1 15.3 * 101

-2.e5 -2 5 -2 * 105

2.2e-1 2.2 -1 2.2 * 10-1

+56E+2 56 2 56 * 102

The column’s binary precision determines the maximum number of binary digits allowed in the mantissa. For
float columns, you can specify a precision of up to 48 digits; for real and double precision columns, the
precision is machine-dependent. If a value exceeds the column’s binary precision, SAP ASE flags the entry as
an error.

7.6.6 decimal and numeric

The exact numeric types—dec, decimal, and numeric—begin with an optional positive or negative sign and
can include a decimal point.The value of exact numeric data depends on the column’s decimal <precision>
and <scale>.

The syntax is:

<datatype> [(<precision> [, <scale>])]

SAP ASE treats each combination of precision and scale as a distinct datatype. For example, numeric
(10,0) and numeric (5,0) are two separate datatypes. The precision and scale determine the range of
values that can be stored in a decimal or numeric column:

● The precision specifies the maximum number of decimal digits that can be stored in the column. It
includes all digits to the right and left of the decimal point. You can specify a precision ranging from 1 to 38
digits, or use the default precision of 18 digits.

● The scale specifies the maximum number of digits that can be stored to the right of the decimal point. The
scale must be less than or equal to the precision. You can specify a scale ranging from 0 to 38 digits, or
use the default scale of 0 digits.

If a value exceeds the column’s precision or scale, SAP ASE flags the entry as an error. Here are some
examples of valid dec and numeric data:

222 P U B L I C
Transact-SQL Users Guide

Datatypes

Table 4: Valid precision and scale for numeric data

Data entered Datatype Precision Scale Value

12.345 numeric(5,3) 5 3 12.345

-1234.567 dec(8,4) 8 4 -1234.567

The following entries result in errors because they exceed the column’s precision or scale:

Table 5: Invalid precision and scale for numeric data

Data entered Datatype Precision Scale

1234.567 numeric(3,3) 3 3

1234.567 decimal(6) 6 1

7.6.7 Integer Types and Their Unsigned Counterparts

You can insert numeric values into bigint, int, smallint, tinyint, unsigned bigint, unsigned int,
and unsigned smallint columns with the E notation.

7.6.8 timestamp

You cannot insert data into a timestamp column. You must either insert an explicit null by typing NULL in the
column, or use an implicit null by providing a column list that skips the timestamp column.

SAP ASE updates the timestamp value after each insert or update.

Related Information

Insert Data into Specific Columns [page 361]

7.7 Get Information About Datatypes

Use sp_help to display information about the properties of a system datatype or a user-defined datatype.

The output from sp_help includes the base type from which the datatype was created, whether it allows nulls,
the names of any rules and defaults bound to the datatype, and whether it has the IDENTITY property.

Transact-SQL Users Guide
Datatypes P U B L I C 223

The following examples show information about the money system datatype and the tid user-defined
datatype:

sp_help money

Type_name Storage_type Length Prec Scale ---------- ------------ ------ ----- -----
money money 8 NULL NULL
Nulls Default_name Rule_name Identity
----- ------------ --------- --------
1 NULL NULL NULL
(return status = 0)
sp_help tid
Type_name Storage_type Length Prec Scale
---------- ------------ ------ ----- -----
tid varchar 6 NULL NULL
Nulls Default_name Rule_name Identity
----- ------------ --------- --------
0 NULL NULL 0 (return status = 0)

224 P U B L I C
Transact-SQL Users Guide

Datatypes

8 Queries: Selecting Data from a Table

An SQL query requests data from the database and receives the results. This process, also known as data
retrieval, is expressed using the select statement.

A query has three main parts: the select clause, the from clause, and the where clause.

The query process, also known as data retrieval, is used for selections, which retrieve a subset of the rows in
one or more tables, or for projections, which retrieve a subset of the columns in one or more tables.

A simple example of a select statement is:

select <select_list> from <table_list> where <search_conditions>

The select clause specifies the columns you want to retrieve. The from clause specifies the tables to search.
The where clause specifies which rows in the tables you want to see. For example, the following select
statement finds, in the pubs2 database, the first and the last names of writers living in Oakland from the
authors table:

select au_fname, au_lname from authors where city = "Oakland"

Results of this query appear in columnar format:

au_fname au_lname -------------- -----------
Marjorie Green
Dick Straight
Dirk Stringer
Stearns MacFeather
Livia Karsen
 (5 rows affected)

8.1 select Syntax

A simple select statement contains only the select clause; the from clause is almost always included, but is
necessary only in select statements that retrieve data from tables.

All other clauses, including the where clause, are optional.

The full syntax of the select statement is in the Reference Manual: Commands.

TOP <unsigned_integer> lets you limit the number of rows in a result set; specify the number of rows you
want to view. TOP is also used in the delete and update commands, for the same purpose.

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 225

If the statement includes a group by clause and an order by clause, the group by clause must precede the
order by clause.

Qualify the names of database objects if there is ambiguity about the object referred to. If several columns in
multiple tables are called “name,” you may need to qualify “name” with the database name, owner name, or
table name. For example:

select au_lname from pubs2.dbo.authors

The holdlock, noholdlock, and shared keywords (which are for locking in SAP ASE) and the index clause
are described in, Using Locking Commands in the Performance and Tuning Series: Locking and Concurrency
Control guide. For information about the for read only and for update clauses, see the declare
cursor command in Reference Manual: Commands.

Note
The for browse clause is used only in DB-Library applications. See the Open Client DB-Library/C
Reference Manual for details.

Related Information

Aggregates, Grouping, and Sorting [page 288]
Databases and Tables [page 50]
Transactions: Maintain Data Consistency and Recovery [page 640]
Browse Mode Versus Cursors [page 588]

8.1.1 Check for Identifiers in a select Statement

The syscomments system table contains entries for each view, rule, default, trigger, table constraint, and
procedure.When the source text of a stored procedure or trigger is stored in syscomments, a query using
select * is also stored in syscomments expanding the column list referenced in the select *.

For example, a select * from a table containing the columns col1 and col2 is stored as:

select <table>.col1, <table>.col2 from <table>

The column list verifies that identifiers (table names, column names and so on) comply with the rules for
identifiers.

For example, if a table includes the columns col1 and 2col, the second column name starts with a number,
which can be included only by using brackets in the create table statement.

When performing a select * in a stored procedure or trigger from this table, the text in syscomments looks
similar to:

select <table>.col1, <table>[2col] from <table>

226 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

For all identifiers used in the text that extends a select *, brackets are added when the identifier does not
comply with the rules for identifiers.

8.2 Choose Columns Using the select Clause

The items in the select clause make up the select list. When the select list consists of a column name, a
group of columns, or the wildcard character (*), the data is retrieved in the order in which it is stored in the
table (create table order).

8.2.1 Choose all Columns Using select *

The asterisk (*) selects all the column names in all the tables specified by the from clause.

Use the asterisk to save typing time and errors when you want to see all the columns in a table. When you use
the asterisk in a query, data is retrieved in create table order.

The syntax for selecting all the columns in a table is:

select * from <table_list>

The following statement retrieves all columns in the publishers table and displays them in create table
order. This statement retrieves all rows since it contains no where clause:

select * from publishers

The results look like this:

pub_id pub_name city state ----- -------------- --------- -----
0736 New Age Books Boston WA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA
 (3 rows affected)

If you listed all the column names in the table in order after the select keyword, you would get exactly the
same results:

select pub_id, pub_name, city, state from publishers

You can also use “*” more than once in a query:

select *, * from publishers

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 227

This query displays each column name and each piece of column data twice. Like a column name, you can
qualify an asterisk with a table name. For example:

select publishers.* from publishers

However, because select * finds all the columns currently in a table, changes in the structure of a table such
as adding, removing, or renaming columns automatically modify the results of select *. Listing columns
individually gives you more precise control over the results.

8.2.2 Choose Specific Columns

You can select specific columns in a table by separating column names with commas.

To select only specific columns in a table, use:

select <column_name>[, <column_name>]... from <table_name>

For example:

select au_lname, au_fname from authors

8.2.3 Rearrange the Column Order

The order in which you list column names in the select clause determines the order in which the columns
appear in the query results.

The examples that follow show how to specify column order, displaying publisher names and identification
numbers from all three rows in the publishers table. The first example prints pub_id first, followed by
pub_name; the second reverses that order. The information is the same but the organization changes.

select pub_id, pub_name from publishers

pub_id pub_name ----- ---------------
0736 New Age Books
0877 Binnet & Hardley
1389 Algodata Infosystems
 (3 rows affected)

select pub_name, pub_id from publishers

pub_name pub_id --------------------- ------
New Age Books 0736

228 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

Binnet & Hardley 0877
Algodata Infosystems 1389
 (3 rows affected)

8.2.4 Rename Columns in Query Results

The default heading for each column is the name given to the query results when it was created. You can
rename a column heading for display purposes.

To rename a column heading, use one of these options instead of the column name in a select list:

● <column_heading> = <column_name>

● <column_name> <column_heading>

● <column_name> as <column_heading>

This provides a substitute name for the column. For example, to change pub_name to “Publisher” in the
previous query, type any of the following statements:

● select Publisher = pub_name, pub_id from publishers

● select pub_name Publisher, pub_id from publishers

● select pub_name as Publisher, pub_id from publishers

The results of any of these statements look like this:

Publisher pub_id ---------------------- ------
New Age Books 0736
Binnet & Hardley 0877
Algodata Infosystems 1389
 (3 rows affected)

8.2.5 Expressions

The select statement can also include one or more expressions, which allow you to manipulate the data that
is retrieved.

select <expression> [, <expression>]... from <table_list>

An expression is any combination of constants, column names, functions, subqueries, or case expressions,
connected by arithmetic or bitwise operators and parentheses. Expressions can include nested items (you can
nest up to 32 functions in an expression).

If any table or column name in the list does not conform to the rules for valid identifiers, set the
quoted_identifier option on and enclose the identifier in double quotes.

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 229

8.2.5.1 Quoted Strings in Column Headings

You can include any characters—including blanks—in a column heading if you enclose the entire heading in
quotation marks.

You need not set the quoted_identifier option on. If the column heading is not enclosed in quotation
marks, it must conform to the rules for identifiers. Both of these queries produce the same result:

select "Publisher's Name" = pub_name from publishers

select pub_name "Publisher's Name" from publishers

Publisher’s Name ----------------
New Age Books
Binnet & Hardley
Algodata Infosystems
 (3 rows affected)

You can also use Transact-SQL reserved words in quoted column headings. For example, the following query,
using the reserved word sum as a column heading, is valid:

select "sum" = sum(total_sales) from titles

Quoted column headings cannot be more than 255 bytes long.

Note
Before using quotes around a column name in a create table, alter table, select into, or
create view statement, you must set quoted_identifier on.

8.2.5.2 Character Strings in Query Results

You can write queries so that the results contain strings of characters. Enclose the string in single or double
quotation marks, and separate it from other elements in the select list with a comma.

Use double quotation marks if there is an apostrophe in the string—otherwise, the apostrophe is interpreted as
a single quotation mark.

Here is a query with a character string:

select "The publisher’s name is", Publisher = pub_name from publishers

 Publisher ------------------------ --------------------
The publisher’s name is New Age Books
The publisher’s name is Binnet & Hardley
The publisher’s name is Algodata Infosystems
 (3 rows affected)

230 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

8.2.5.3 Computed Values in the select List

You can perform certain arithmetic operations on date/time columns using the date functions.

You can use all of these operators in the select list with column names and numeric constants in any
combination. For example, to see what a projected sales increase of 100 percent for all the books in the
titles table looks like, enter:

select title_id, total_sales, total_sales * 2 from titles

Here are the results:

title_id total_sales -------- ----------- ---------
BU1032 4095 8190
BU1111 3876 7752
BU2075 18722 37444
BU7832 4095 8190
MC2222 2032 4064
MC3021 22246 44492
MC3026 NULL NULL
PC1035 8780 17560
PC8888 4095 8190
PC9999 NULL NULL
PS1372 375 750
PS2091 2045 4090
PS2106 111 222
PS3333 4072 8144
PS7777 3336 6672
TC3218 375 750
TC4203 15096 30192
TC7777 4095 8190
 (18 rows affected)

Notice the null values in the total_sales column and the computed column. Null values have no explicitly
assigned values. When you perform any arithmetic operation on a null value, the result is NULL. You can give
the computed column a heading, “proj_sales” for example, by entering:

select title_id, total_sales, proj_sales = total_sales * 2 from titles

title_id total_sales proj_sales --------- ----------- -----------
BU1032 4095 8190

Try adding character strings such as “Current sales =” and “Projected sales are” to the select statement.
The column from which the computed column is generated does not have to appear in the select list. The
total_sales column, for example, is shown in these sample queries only for comparison of its values with
the values from the total_sales * 2 column. To see only the computed values, enter:

select title_id, total_sales * 2 from titles

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 231

Arithmetic operators also work directly with the data values in specified columns, when no constants are
involved. For example:

select title_id, total_sales * price from titles

title_id -------- ----------
BU1032 81,859.05
BU1111 46,318.20
BU2075 55,978.78
BU7832 81,859.05
MC2222 40,619.68
MC3021 66,515.54
MC3026 NULL
PC1035 201,501.00
PC8888 81,900.00
PC9999 NULL
PS1372 8,096.25
PS2091 22,392.75
PS2106 777.00
PS3333 81,399.28
PS7777 26,654.64
TC3218 7,856.25
TC4203 180,397.20
TC7777 61,384.05
 (18 rows affected)

Computed columns can also come from more than one table. The joining and subqueries chapters in this
manual include information on multitable queries.

As an example of a join, this query multiplies the number of copies of a psychology book sold by an outlet (the
qty column from the salesdetail table) by the price of the book (the price column from the titles
table).

select salesdetail.title_id, stor_id, qty * price from titles, salesdetail
where titles.title_id = salesdetail.title_id and titles.title_id = "PS2106"

title_id stor_id ---------------- ----------- ------
PS2106 8042 210.00
PS2106 8042 350.00
PS2106 8042 217.00
 (3 rows affected)

Related Information

Transact-SQL Functions [page 475]

232 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

8.2.5.4 Arithmetic Operator Precedence

When there is more than one arithmetic operator in an expression; multiplication, division, and modulo are
calculated first, followed by subtraction and addition.

If all arithmetic operators in an expression have the same level of precedence, the order of execution is left to
right. Expressions in parentheses take precedence over all other operations.

For example, the following select statement multiplies the total sales of a book by its price to calculate a total
dollar amount, then subtracts from that one half of the author’s advance.

select title_id, total_sales * price - advance / 2 from titles

The product of total_sales and price is calculated first, because the operator is multiplication. Next, the
advance is divided by 2, and the result is subtracted from total_sales * price.

To avoid misunderstandings, use parentheses. The following query has the same meaning and gives the same
results as the previous one, but it is easier to understand:

select title_id,(total_sales * price) - (advance /2) from titles

title_id -------- ----------
 BU1032 79,359.05
 BU1111 43,818.20
 BU2075 50,916.28
 BU7832 79,359.05
 MC2222 40,619.68
 MC3021 59,015.54
 MC3026 NULL
 PC1035 198,001.00
 PC8888 77,900.00
 PC9999 NULL
 PS1372 4,596.25
 PS2091 21,255.25
 PS2106 -2,223.00
 PS3333 80,399.28
 PS7777 24,654.64
 TC3218 4,356.25
 TC4203 178,397.20
 TC7777 57,384.05
 (18 rows affected)

Use parentheses to change the order of execution; calculations inside parentheses are handled first. If
parentheses are nested, the most deeply nested calculation has precedence. For example, the result and
meaning of the preceding example is changed if you use parentheses to force evaluation of the subtraction
before the division:

select title_id, (total_sales * price - advance) /2 from titles

title_id -------- -----------------------
BU1032 38,429.53
BU1111 20,659.10
BU2075 22,926.89

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 233

BU7832 38,429.53
MC2222 20,309.84
MC3021 25,757.77
MC3026 NULL
PC1035 97,250.50
PC8888 36,950.00
PC9999 NULL
PS1372 548.13
PS2091 10,058.88
PS2106 -2,611.50
PS3333 39,699.64
PS7777 11,327.32
TC3218 428.13
TC4203 88,198.60
TC7777 26,692.03
 (18 rows affected)

8.2.6 Select Text, Unitext, and Image Values

text, unitext, and image values can be quite large. When a select list includes the values for these
datatypes, the limit on the length of the data returned depends on the setting of the <@@textsize> global
variable.

The default setting for <@@textsize> depends on the software you use to access SAP ASE; the default value
for for isql is 32K. To change the value, use the set command:

set textsize 2147483648

With this setting of <@@textsize>, a select statement that includes a text column displays only the first 2
gigabytes of the data.

Note
When you select image data, the returned value includes the characters “0x”, which indicates that the data
is hexadecimal. These two characters are counted as part of <@@textsize>.

To reset <@@textsize> to the SAP ASE default value, use:

set textsize 0

If the actual length of returned data is less than textsize, the entire data string appears.

Related Information

Datatypes [page 194]

234 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

8.2.6.1 readtext Usage

The readtext command provides a way to retrieve text, unitext, and image values and retrieve only a
selected portion of a column’s data.

readtext requires the name of the table and column, the text pointer, a starting offset within the column, and
the number of characters or bytes to retrieve. This example finds six characters in the copy column in the
blurbs table:

declare @val binary(16) select @val = textptr(copy) from blurbs
where au_id = "648-92-1872" readtext blurbs.copy @val 2 6 using chars

In the example, after the <@val> local variable has been declared, readtext displays characters 3 – 8 of the
copy column, since the offset was 2.

Instead of storing potentially large text, unitext, and image data in the table, SAP ASE stores it in a special
structure. A text pointer (textptr) which points to the page where the data is actually stored is assigned.
When you retrieve data using readtext, you actually retrieve textptr, which is a 16-byte varbinary string.
To avoid this, declare a local variable to hold textptr, and then use the variable with readtext, as in the
example above.

Related Information

Text and Image Functions [page 479]

8.2.7 select List Summary

The select list can include * (all columns in create table order), a list of column names in any order,
character strings, column headings, and expressions (including arithmetic operators).

For example:

select titles.* from titles

select Name = au_fname, Surname = au_lname from authors

select Sales = total_sales * price, ToAuthor = advance,
ToPublisher = (total_sales * price) - advance from titles

select "Social security #", au_id from authors

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 235

select this_year = advance, next_year = advance + advance/10, third_year = advance/2,
 "for book title #", title_id from titles

select "Total income is", Revenue = price * total_sales,
"for", Book# = title_id from titles

Related Information

Aggregates, Grouping, and Sorting [page 288]

8.3 select for update

select for update exclusively locks rows in datarows-locked tables for subsequent updates within the
same transaction, and for updatable cursors.

functionality is automatically available to clients when the for update clause is added to a select statement and
to any updatable cursors opened within the clients. select for update is supported at isolation levels 1, 2,
and 3.

select for update can be issued as a language statement outside of a cursor context. With both language
statements and cursors, you must execute select for update within a begin transaction command
or in chained mode.

If you run select for update within a cursor context, the cursor open and fetch statements must be
within the context of a transaction.

The synax is:

select <col-list> from … where … [for update[of <col-list>]

Note
To obtain exclusive locks, you must set the select for update configuration parameter to 1, and include
the for update clause.

236 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

8.3.1 Use select for update in Cursors and DML

select for update behavior is based on the value of the configuration parameter select for update.

● 0 – select for update is available only through cursors.
● 1 – you can use select for update at the language level, outside of a cursor context.

● select for update is supported for language statements and for cursors.
● Exclusive locks are acquired for qualifying rows of select for update, thereby blocking other readers

and writers provided that you are:
○ Using datarows-locked tables
○ Using the command within a transaction-context, or in chained mode

● select for update can have an order by clause for both language statements and cursors. Using an
order by clause with a for update clause allows the cursor to be updatable.

8.3.2 Concurrency Issues

If a session has an open transaction that is executing select for update at isolation levels 1, 2, or 3, a
second concurrent session issuing data manipulation language (DML) statements on the same table may be
blocked, depending on the type of transaction issued by the second session and its isolation level.

The states of transactions in second concurrent session are:

Transaction Isolation Level

0 1 2 3

select qualified rows Not blocked Not blocked1 Blocked Blocked

select unqualified rows Not blocked Not blocked Not blocked2 Not blocked2

update qualified rows Blocked3 Blocked Blocked Blocked

update unqualified rows Not blocked2,3 Not blocked2 Not blocked2 Not blocked2

select for update qualified rows N/A4 Blocked Blocked Blocked

select for update unqualified rows N/A4 Not blocked2 Not blocked2 Not blocked2

delete qualified rows Blocked3 Blocked Blocked Blocked

delete unqualified rows Not blocked2,3 Not blocked2 Not blocked2 Not blocked2

insert Not blocked2,3 Not blocked2 Not blocked2 Not blocked2

1SAP ASE does not block select commands at isolation level 1 unless the select list contains a large object
(LOB) such as text, image, or unitext.

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 237

2 If the first session issues select for update at isolation level 3, SAP ASE prevents “phantom rows” by
exclusively locking more rows than just the qualifying rows. In this case, SAP ASE blocks the second session
on these additional unqualified rows.

3 Although the second session issues these DMLs at isolation level 0, SAP ASE executes them at isolation level
2.

4SAP ASE does not support select for update at isolation level 0.

8.4 Eliminate Duplicate Query Results with Distinct

The distinct keyword eliminates duplicate rows from the default results of a select statement.

For compatibility with other implementations of SQL, the use of all is allowed to explicitly query all rows. The
default for the select statements is all. If you do not specify distinct, by default, all rows are returned,
including duplicates.

For example, here is the result of searching for all the author identification codes in the titleauthor table
without distinct:

select au_id from titleauthor

au_id -----------
172-32-1176
213-46-8915
213-46-8915
238-95-7766
267-41-2394
267-41-2394
274-80-9391
409-56-7008
427-17-2319
472-27-2349
486-29-1786
486-29-1786
648-92-1872
672-71-3249
712-45-1867
722-51-5454
724-80-9391
724-80-9391
756-30-7391
807-91-6654
846-92-7186
899-46-2035
899-46-2035
998-72-3567
998-72-3567
 (25 rows affected)

There are some duplicate listings. Use distinct to eliminate them.

select distinct au_id

238 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

from titleauthor

au_id -----------
172-32-1176
213-46-8915
238-95-7766
267-41-2394
274-80-9391
409-56-7008
427-17-2319
472-27-2349
486-29-1786
648-92-1872
672-71-3249
712-45-1867
722-51-5454
724-80-9391
756-30-7391
807-91-6654
846-92-7186
899-46-2035
998-72-3567
 (19 rows affected)

distinct treats multiple null values as duplicates. In other words, when distinct is included in a select
statement, only one NULL is returned, no matter how many null values are encountered.

When used with the order by clause, distinct can return multiple values.

Related Information

order by and group by Used with select distinct [page 311]

8.5 Specify Tables with the from Clause

The from clause is required in every select statement that retrieves data from tables or views. Use it to list all
the tables and views containing columns included in the select list and in the where clause.

If the from clause includes more than one table or view, separate them with commas.

At most, a query can reference 250 tables and 46 worktables (such as those created by aggregate functions).
The 250-table limit includes:

● Tables (or views on tables) listed in the from clause
● Each instance of multiple references to the same table (self-joins)
● Tables referenced in subqueries
● Tables being created with into
● Base tables referenced by the views listed in the from clause

For more information, see Reference Manual: Commands.

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 239

● Table names can be 1 – 255 bytes long.
● You can use a letter, @, #, or _ as the first character.
● The characters that follow can be digits, letters, or @, #, $, _, ¥, or £.
● Temporary table names must begin either with “#” (pound sign), if they are created outside tempdb, or

with “tempdb”.
● Temporary table names cannot be longer than 238 bytes, as SAP ASE adds an internal numeric suffix of 17

bytes to ensure that the name is unique.

The full naming syntax for tables and views is always permitted in the from clause:

<database>.<owner>.<table_name> <database>.<owner>.<view_name>

However, the full naming syntax is required only if there is potential confusion about the name.

To save typing, you can assign table names correlation names. Assign the correlation name in the from clause
by giving the correlation name after the table name, like this:

select p.pub_id, p.pub_name from publishers p

All other references to that table (for example, in a where clause) must also use the correlation name.
Correlation names cannot begin with a numeral.

Related Information

Databases and Tables [page 50]

8.6 Select Rows Using the where Clause

The where clause in a select statement specifies the search conditions that determine which rows are
retrieved.

The general format is:

select <select_list> from <table_list> where <search_conditions>

Search conditions, or qualifications, in the where clause include:

● Comparison operators (=, <, >, and so on)

where advance * 2 > total_sales * price

● Ranges (between and not between)

where total_sales between 4095 and 12000

240 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

● Lists (in, not in)

where state in ("CA", "IN", "MD")

● Character matches (like and not like)

where phone not like "415%"

● Unknown values (is null and is not null)

where advance is null

● Combinations of search conditions (and, or)

where advance < 5000 or total_sales between 2000 and 2500

The where keyword can also introduce:

● Join conditions
● Subqueries

Note
The only where condition that you can use on text columns is like (or not like).

SAP ASE does not necessarily evaluate and execute predicates in left-to-right order. Instead, SAP ASE can
evaluate and execute predicates in any order. For example, for this query:

where x != 0 and y = 10 or z = 100

SAP ASE may not evaluate and execute x != 0 first.

For more information on search conditions, see the Reference Manual: Commands.

Related Information

Joins: Retrieve Data from Several Tables [page 323]
Subqueries: Queries Within Other Queries [page 260]

8.6.1 Comparison Operators in where Clauses

Place apostrophes or quotation marks around all char, nchar, unichar, unitext, varchar, nvarchar,
univarchar, text, and date/time data.

For the purposes of comparison, trailing blanks are ignored. For example, “Dirk” is the same as “Dirk ”. In
comparing dates, < means earlier than, and > means later than.

select * from titleauthor

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 241

where royaltyper < 50

select authors.au_lname, authors.au_fname from authors where au_lname > "McBadden"

select au_id, phone from authors where phone != "415 658-9932"

select title_id, newprice = price * 1.15 from pubs2..titles where advance > 5000

not negates an expression. Either of the following two queries finds all business and psychology books that
have advances of less than 5500. Note the difference in position between the negative logical operator (not)
and the negative comparison operator (!>).

select title_id, type, advance from titles
where (type = "business" or type = "psychology") and not advance >5500

select title_id, type, advance from titles
where (type = "business" or type = "psychology") and advance !>5500

Both return the same result set:

title_id type advance -------- ------------ --------
BU1032 business 5,000.00
BU1111 business 5,000.00
BU7832 business 5,000.00
PS2091 psychology 2,275.00
PS3333 psychology 2,000.00
PS7777 psychology 4,000.00
 (6 rows affected)

Related Information

Managing Data [page 358]

8.6.2 Ranges (between and not between)

Use the between keyword to specify an inclusive range.

For example, to find all the books with sales between and including 4095 and 12,000, use:

select title_id, total_sales

242 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

 from titles where total_sales between 4095 and 12000

title_id total_sales ------ -----------
BU1032 4095
BU7832 4095
PC1035 8780
PC8888 4095
TC7777 4095
 (5 rows affected)

You can specify an exclusive range using the greater than (>) and less than (<) operators:

select title_id, total_sales from titles where total_sales > 4095 and total_sales < 12000

title_id total_sales ------ -----------
PC1035 8780
 (1 row affected)

not between finds all rows outside the specified range. To find all the books with sales outside the 4095 to
12,000 range, enter:

select title_id, total_sales from titles where total_sales not between 4095 and 12000

title_id total_sales -------- -----------
BU1111 3876
BU2075 18722
MC2222 2032
MC3021 22246
PS1372 375
PS2091 2045
PS2106 111
PS3333 4072
PS7777 3336
TC3218 375
TC4203 15096
 (11 rows affected)

8.6.3 Lists (in and not in)
The in keyword allows you to select values that match any one of a list of values. not in finds rows that do
not match the values in the list.

The expression can be a constant or a column name, and the values list can be a set of constants or a
subquery. Separate items following the in keyword by commas, and enclose then entire list of values in
parentheses. Use single or double quotes around char, varchar, unichar, unitext, univarchar, and
datetime values.

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 243

For example, to list the names and states of all authors who live in California, Indiana, or Maryland, use:

select au_lname, state from authors where state in ("CA", "IN", "MD")

 au_lname state ----------- -----
 White CA
 Green CA
 Carson CA
 O’Leary CA
 Straight CA
 Bennet CA
 Dull CA
 Gringlesby CA
 Locksley CA
 Yokomoto CA
 DeFrance IN
 Stringer CA
 MacFeather CA
 Karsen CA
 Panteley MD
 Hunter CA McBadden CA

Using the in keyword in the query produces the same result set as the following, longer query:

select au_lname, state from authors where state = "CA" or state = "IN" or state = "MD"

Perhaps the most important use for the in keyword is in nested queries, which are also called subqueries.

For example, suppose you want to know the names of the authors who receive less than 50 percent of the total
royalties on the books they coauthor. The authors table stores author names and the titleauthor table
stores royalty information. By putting the two tables together using in, but without listing the two tables in the
same from clause, you can extract the information you need. The following query:

● Searches the titleauthor table for all au_ids of authors making less than 50 percent of the royalty on
any one book.

● Selects from the authors table all the author names with au_ids that match the results from the
titleauthor query. The results show that several authors fall into the less than 50 percent category.

select au_lname, au_fname from authors
where au_id in
 (select au_id
 from titleauthor where royaltyper <50)

au_lname au_fname -------------- ------------
Green Marjorie
O’Leary Michael
Gringlesby Burt
Yokomoto Akiko
MacFeather Stearns
Ringer Anne
 (6 rows affected)

244 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

not in finds the authors that do not match the items in the list. The following query finds the names of
authors who do not make less than 50 percent of the royalties on at least one book.

select au_lname, au_fname from authors
where au_id not in
 (select au_id
 from titleauthor where royaltyper <50)

au_lname au_fname --------------- ------------
White Johnson
Carson Cheryl
Straight Dick
Smith Meander
Bennet Abraham
Dull Ann
Locksley Chastity
Greene Morningstar
Blotchet-Halls Reginald
del Castillo Innes
DeFrance Michel
Stringer Dirk
Karsen Livia
Panteley Sylvia
Hunter Sheryl
McBadden Heather
Ringer Albert
Smith Gabriella
 (18 rows affected)

Related Information

Subqueries: Queries Within Other Queries [page 260]

8.6.4 Matching Character Strings: like

The like keyword searches for a character string that matches a pattern.

like is used with:

● char
● varchar
● nchar
● nvarchar
● unichar
● unitext
● univarchar binary
● varbinary

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 245

● text,
● date/time

The syntax for like is:

{where | having} [not] <column_name> [not] like "<match_string>"

These are the special symbols for matching character strings:

Symbols Meaning

% Matches any string of zero or more characters.

_ Matches a single character.

[<specifier>] Brackets enclose ranges or sets, such as [a – f] or [abcdef]. <specifier> can take two forms:

● <rangespec1> – <rangespec2>:

○ <rangespec1> indicates the start of a range of characters.

○ <rangespec2> indicates the end of a range of characters.

○ The symbol – is a special character, indicating a range.
● <set> can be composed of any discrete set of values, in any order, such as [a2bR].The range [a –

f], and the sets [abcdef] and [fcbdae] return the same set of values.

Specifiers are case-sensitive.

[^<specifier>] A caret (^) preceding a specifier indicates noninclusion. [^a – f] means “not in the range a – f”;
[^a2bR] means “not a, 2, b, or R.”

You can match the column data to constants, variables, or other columns that contain the wildcard characters.
When using constants, enclose the match strings and character strings in quotation marks. For example, using
like with the data in the authors table:

● like “Mc%” searches for every name that begins with ‘‘Mc’’ (McBadden).
● like “%inger” searches for every name that ends with ‘‘inger’’ (Ringer, Stringer).
● like “%en%” searches for every name containing ‘‘en’’ (Bennet, Green, McBadden).
● like “_heryl” searches for every six-letter name ending with ‘‘heryl’’ (Cheryl).
● like “[CK]ars[eo]n” searches for ‘‘Carsen,’’ ‘‘Karsen,’’ ‘‘Carson,’’ and ‘‘Karson’’ (Carson).
● like “[M-Z]inger” searches for all names ending with ‘‘inger’’ that begin with any single letter from M to Z

(Ringer).
● like “M[^c]%” searches for all names beginning with ‘‘M’’ that do not have ‘‘c’’ as the second letter.

This query finds all the phone numbers in the authors table that have an area code of 415:

select phone from authors where phone like "415%"

The only where condition you can use on text columns is like. This query finds all the rows in the blurbs
table where the copy column includes the word “computer”:

select * from blurbs

246 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

where copy like "%computer%"

SAP ASE interprets wildcard characters used without like as literals rather than as a pattern; they represent
exactly their own values. The following query attempts to find any phone numbers that consist of the four
characters “415%” only. It does not find phone numbers that start with 415.

select phone from authors where phone = "415%"

When you use like with datetime values, SAP ASE converts the values to the standard datetime format,
and then to varchar or univarchar. Since the standard storage format does not include seconds or
milliseconds, you cannot search for seconds or milliseconds with like and a pattern.

Use like when you search for date and time values, since these datatype entries may contain a variety of
date parts. For example, if you insert “9:20” into a datetime column named arrival_time, the query below
does not find the value, because SAP ASE converts the entry into “Jan 1 1900 9:20AM”:

where arrival_time = "9:20"

However, this query finds the 9:20 value:

where arrival_time like "%9:20%"

You can also use the date and time datatypes for like transactions.

8.6.4.1 not like Usage

You can use the same wildcard characters with not like that you can use with like.

For example, to find all the phone numbers in the authors table that do not have 415 as the area code, use
either of these queries:

select phone from authors where phone not like "415%"

select phone from authors where not phone like "415%"

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 247

8.6.4.2 Different Results Using not like and ^

You cannot always duplicate not like patterns with like and the negative wildcard character [^]. Match
strings with negative wildcard characters are evaluated in steps, one character at a time. If the match fails at
any point in the evaluation, it is eliminated.

For example, this query finds the system tables in a database that have names beginning with “sys”:

select name from sysobjects where name like "sys%"

If you have a total of 32 objects and like finds 13 names that match the pattern, not like finds the 19
objects that do not match the pattern.

where name not like "sys%"

However, this pattern may produce different results:

like [^s][^y][^s]%

Instead of 19, you might get only 14, with all the names that begin with “s” or have “y” as the second letter or
have “s” as the third letter eliminated from the results, as well as the system table names.

8.6.4.3 Use Wildcard Characters as Literal Characters

You can search for wildcard characters by using the escape character and searching for them as literals. There
are two ways to use the wildcard characters as literals in a like match string: square brackets and the
escape clause.

The match string can also be a variable or a value in a table that contains a wildcard character.

Square Brackets (Transact-SQL Extension)

Use square brackets for the percent sign, the underscore, and right and left brackets. To search for a dash,
rather than using it to specify a range, use the dash as the first character inside a set of brackets.

like Clause Searches for

like "5%" 5 followed by any string of 0 or more characters

like "5[%]" 5%

like "_n" an, in, on, and so forth

like "[_]n" _n

248 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

like Clause Searches for

like "[a-cdf]" a, b, c, d, or f

like "[-acdf]" -, a, c, d, or f

like "[[]" [

like "[]]"]

escape Clause (SQL-Compliant)

Use the escape clause to specify an escape character in the like clause. An escape character must be a
single-character string. Any character in the server’s default character set can be used.

like clause Searches for

like "5@%" escape "@" 5%

like "*_n" escape "*" _n

like "%80@%%" escape "@" String containing 80%

like "*_sql**%" escape "*" String containing _sql*

like "%#####_#%%" escape "#" String containing ##_%

8.6.4.4 Interaction of Wildcard Characters and Square
Brackets

An escape character retains its special meaning within square brackets, unlike wildcard characters.

Do not use existing wildcard characters as escape characters in the escape clause, for these reasons:

● If you specify square brackets or percent sign (“_” or “%”) as an escape character, it loses its special
meaning within that like clause and acts only as an escape character.

● If you specify a left or right square bracket (“[” or “]”) as an escape character, the Transact-SQL meaning
of the bracket is disabled within that like clause.

● If you specify a hyphen or carrot (“-” or “^”) as an escape character, it loses the special meaning that it
normally has within square brackets and acts only as an escape character.

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 249

8.6.4.5 Use Trailing Blanks and %

SAP ASE truncates trailing blanks following “%” in a like clause to a single trailing blank. like ‘‘% ’’ (percent
sign followed by 2 spaces) matches ‘‘X ’’ (one space); ‘‘X ’’ (two spaces); ‘‘X ’’ (three spaces), or any number of
trailing spaces.

8.6.4.6 Use Wildcard Characters in Columns

You can use wildcard characters for columns and column names. You might want to create a table called
special_discounts in the pubs2 database to run a price projection for a special sale:

create table special_discounts id_type char(3), discount int)
insert into special_discounts
values("BU%", 10) ...

The table should contain the following data:

id_type discount ------- -----------
BU% 10
PS% 12 MC% 15

The following query uses wildcard characters in id_type in the where clause:

select title_id, discount, price, price - (price*discount/100) from special_discounts, titles where title_id like id_type

Here are the results of that query:

 title_id discount price -------- ----------- -------------- --------------
 BU1032 10 19.99 17.99
 BU1111 10 11.95 10.76
 BU2075 10 2.99 2.69
 BU7832 10 19.99 17.99
 PS1372 12 21.59 19.00
 PS2091 12 10.95 9.64
 PS2106 12 7.00 6.16
 PS3333 12 19.99 17.59
 PS7777 12 7.99 7.03
 MC2222 15 19.99 16.99
 MC3021 15 2.99 2.54
 MC3026 15 NULL NULL
 (12 rows affected)

This type of example permits sophisticated pattern matching without having to construct a series of or
clauses.

250 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

8.6.5 “Unknown” Values: NULL

A NULL value in a column means no entry has been made in that column. A data value for the column is
“unknown” or “not available.”

NULL is not synonymous with “zero” or “blank.” Rather, null values allow you to distinguish between a
deliberate entry of zero for numeric columns (or blank for character columns) and a non-entry, which is NULL
for both numeric and character columns.

In a column where null values are permitted:

● If you do not enter any data, SAP ASE automatically enters “NULL”.
● Users can explicitly enter the word “NULL” or “null” without quotation marks.

If you type the word ‘‘NULL’’ in a character column and include quotation marks, it is treated as data, rather
than a null value.

Query results display the word NULL. For example, the advance column of the titles table allows null
values. By inspecting the data in that column, you can tell whether a book had no advance payment by
agreement (the row MC2222 has zero in the advance column) or whether the advance amount was not known
when the data was entered (the row MC3026 has NULL in the advance column).

select title_id, type, advance from titles where pub_id = "0877"

title_id type advance -------- ---------- ---------
MC2222 mod_cook 0.00
MC3021 mod_cook 15,000.00
MC3026 UNDECIDED NULL
PS1372 psychology 7,000.00
TC3218 trad_cook 7,000.00
TC4203 trad_cook 4,000.00
TC7777 trad_cook 8,000.00
 (7 rows affected)

8.6.5.1 SQL Standard for NULL Concatenation

Use set sqlnull on to implement SQL standard for NULL concatenation.

Standard SQL requires that string concatenation involving a NULL generates a NULL output. SAP ASE
evaluates a string concatenated with NULL to the value of the string. A string concatenation involving a NULL
is treated as a string with a 0 length and an empty string ("") is interpreted as a single space.

SAP ASE allows you to use the set sqlnull option to implement SQL standard for NULL concatenation.

This example, based on the table staff_profile, demonstrates the different output generated using the
sqlnull option:

create table staff_profile(id int, firstname char(10) NULL, surname char(10) NULL, city varchar(10) NULL, country varchar(10) NULL)
go

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 251

insert staff_profile values(001, 'Tom', 'Griffin', 'Dublin', 'US')
insert staff_profile values(002, 'Kumar', NULL, 'Pune', 'India')
insert staff_profile values(003, NULL , 'Kobe', 'Tokyo', NULL)
insert staff_profile values(004, 'Steve', 'Lewis', 'London', 'UK')
insert staff_profile values(005, 'Hana', 'SAP', NULL, 'Germany')
insert staff_profile values(006, 'Wei', 'Ming', 'Shanghai', 'China')
insert staff_profile values(007, 'city-state', ' ', 'Singapore', '')

Output with the default value of set sqlnull off:

set sqlnull off select id, rtrim(firstname) + '' + rtrim(surname) name, rtrim(city) + '' +
rtrim(country)
location from staff_profile
id name location
-------- ------------ ---------------------
1 Tom Griffin Dublin US
2 Kumar Pune India
3 Kobe Tokyo
4 Steve Lewis London UK
5 Hana SAP Germany
6 Wei Ming Shanghai China
7 city-state Singapore (6 rows affected)

Output with set sqlnull on:

set sqlnull on select id, rtrim(firstname) + '' + rtrim(surname) name, rtrim(city) + '' +
rtrim(country)
location from staff_profile

id name location
-------- ------------ ---------------------
1 Tom Griffin Dublin US
2 NULL Pune India
3 NULL NULL
4 Steve Lewis London UK
5 Hana SAP NULL
6 Wei Ming Shanghai China
7 city-state Singapore (6 rows affected)

8.6.5.2 Test a Column for Null Values

Use is null in where, if, and while clauses to compare column values to NULL, and to select them or
perform a particular action based on the results of the comparison.

Only columns that return a value of true are selected or result in the specified action; those that return false or
unknown do not.

The following example selects only rows for which advance is less than 5000 or NULL:

select title_id, advance from titles where advance < 5000 or advance is null

SAP ASE treats null values in different ways, depending on the operators that you use and the type of values
you are comparing. In general, the result of comparing null values is unknown, since it is impossible to

252 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

determine whether NULL is equal (or not equal) to a given value or to another NULL. The following cases
return true when <expression> is any column, variable or literal, or combination of these, which evaluates as
NULL:

● <expression> is null
● <expression> = null
● <expression> = @<x> where @<x> is a variable or parameter containing NULL. This exception facilitates

writing stored procedures with null default parameters.
● <expression> != <n> where <n> is a literal not containing NULL and <expression> evaluates to NULL.

The negative versions of these expressions return true when the expression does not evaluate to NULL:

● <expression> is not null
● <expression> != null
● <expression> != @<x>

When the keywords like and not like are used instead of the operators = and !=, the opposite occurs. This
comparison returns true:

● <expression> not like null

While this comparison returns false:

● <expression> like null

The far-right side of these expressions is a literal null, or a variable or parameter containing NULL. If the far-
right side of the comparison is an expression (such as @<nullvar> + 1), the entire expression evaluates to
NULL.

Null column values do not join with other null column values. Comparing null column values to other null
column values in a where clause always returns unknown, regardless of the comparison operator, and the
rows are not included in the results. For example, this query returns no result rows where column1 contains
NULL in both tables (although it may return other rows):

select <column1> from <table1>, <table2> where <table1>.<column1> = <table2>.<column1>

These operators return results when used with a NULL:

● = returns all rows that contain NULL.
● != or <> returns all rows that do not contain NULL.

When set ansinull is on for SQL compliance, the = and != operators do not return results when used with a
NULL. Regardless of the set ansinull option value, the following operators never return values when used
with a NULL: <, <=, !<, >, >=, !>.

SAP ASE can determine that a column value is NULL. Thus, this is considered true:

<column1> = NULL

However, the following comparisons can never be determined, since NULL means “having an unknown value:”

where <column1> > null

There is no reason to assume that two unknown values are the same.

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 253

This logic also applies when you use two column names in a where clause, that is, when you join two tables. A
clause like “where column1 = column2” does not return rows where the columns contain null values.

You can also find null values or non-null values with this pattern:

where <column_name> is [not] null

For example:

where advance < 5000 or advance is null

Some of the rows in the titles table contain incomplete data. For example, a book called The Psychology
of Computer Cooking (title_id = MC3026) has been proposed and its title, title identification number,
and probable publisher have undetermined, null values in the price, advance, royalty, total_sales, and
notes columns. Because null values do not match anything in a comparison, a query for all the title
identification numbers and advances for books with advances of less than 5000 does not include The
Psychology of Computer Cooking.

select title_id, advance from titles where advance < 5000

title_id advance -------- ----------
MC2222 0.00
PS2091 2,275.00
PS3333 2,000.00
PS7777 4,000.00
TC4203 4,000.00
 (5 rows affected)

Here is a query for books with an advance of less than 5000 or a null value in the advance column:

select title_id, advance from titles
where advance < 5000 or advance is null

title_id advance -------- ----------
MC2222 0.00
MC3026 NULL
PC9999 NULL
PS2091 2,275.00
PS3333 2,000.00
PS7777 4,000.00
TC4203 4,000.00
 (7 rows affected)

Related Information

Batches and Control-of-Flow Language [page 439]

254 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

Databases and Tables [page 50]
Managing Data [page 358]

8.6.5.3 Difference Between False and Unknown

There is an important logical difference between false and unknown: the opposite of false (“not false”) is true,
while the opposite of unknown is still unknown.

For example, “1 = 2” evaluates to false and its opposite, “1 != 2”, evaluates to true. But “not unknown” is still
unknown. If null values are included in a comparison, you cannot negate the expression to get the opposite set
of rows or the opposite truth value.

8.6.5.4 Substitute a Value for NULLs

Use the isnull built-in function to substitute a particular value for nulls. The substitution is made only for
display purposes; actual column values are not affected.

The syntax is:

isnull(<expression>, <value>)

For example, use the following statement to select all the rows from titles, and display all the null values in
column notes with the value unknown.

select isnull(notes, "unknown") from titles

8.6.5.5 Expressions that Evaluate to NULL

An expression with an arithmetic or bitwise operator evaluates to NULL if any of the operands is null.

For example, this evaluates to NULL if column1 is NULL:

1 + column1

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 255

8.6.5.6 Concatenate Strings and NULL

If you concatenate a string and NULL, the expression evaluates to the string.

For example:

select "abc" + NULL + "def"

----- abcdef

8.6.5.7 System-Generated NULLs

In Transact-SQL, system-generated NULLs, such as those that result from a system function like convert,
behave differently than user-assigned NULLs.

For example, in the following statement, a not equals comparison of the user-provided NULL and 1 returns
true:

if (1 != NULL) print "yes" else print "no"

yes

The same comparison with a system-generated NULL returns unknown:

if (1 != convert(integer, NULL)) print "yes" else print "no"

no

For more consistent behavior, enable set ansinull (set to on), so both system-generated and user-provided
NULLs cause the comparison to return unknown.

8.6.6 Connect Conditions with Logical Operators

The logical operators and, or, and not connect search conditions in where clauses.

The syntax is:

{where | having} [not] <column_name> <join_operator> <column_name>

where <join_operator> is a comparison operator and <column_name> is the column used in the
comparison. Qualify the name of the column if there is any ambiguity.

256 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

and joins two or more conditions and returns results only when all of the conditions are true. For example, the
following query finds only the rows in which the author’s last name is Ringer and the author’s first name is
Anne. It does not find the row for Albert Ringer.

select * from authors where au_lname = "Ringer" and au_fname = "Anne"

or also connects two or more conditions, but it returns results when any of the conditions is true. The
following query searches for rows containing Anne or Ann in the au_fname column.

select * from authors where au_fname = "Anne" or au_fname = "Ann"

You can specify as many as 252 and and or conditions.

not negates the expression that follows it. The following query selects all the authors who do not live in
California:

select * from authors where not state = "CA"

When more than one logical operator is used in a statement, and operators are normally evaluated before or
operators. You use parentheses to change the order of execution. For example:

select * from authors where (city = "Oakland" or city = "Berkeley") and state = "CA"

8.6.6.1 Logical Operator Precedence

Arithmetic and bitwise operators are handled before logical operators. When more than one logical operator is
used in a statement, not is evaluated first, then and, and finally or.

For example, the following query finds all the business books in the titles table, no matter what their
advances are, as well as all psychology books that have an advance of more than 5500. The advance condition
pertains only to psychology books because the and is handled before the or.

select title_id, type, advance from titles
where type = "business" or type = "psychology" and advance > 5500

title_id type advance -------- ---------- ----------
BU1032 business 5,000.00
BU1111 business 5,000.00
BU2075 business 10,125.00
BU7832 business 5,000.00
PS1372 psychology 7,000.00
PS2106 psychology 6,000.00
 (6 rows affected)

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 257

You can change the meaning of the query by adding parentheses to force evaluation of the or first. This query
finds all business and psychology books with advances of more than 5500:

select title_id, type, advance from titles
where (type = "business" or type = "psychology") and advance > 5500

title_id type advance -------- ---------- ---------
BU2075 business 10,125.00
PS1372 psychology 7,000.00
PS2106 psychology 6,000.00
 (3 rows affected)

Related Information

Bitwise Operators [page 36]

8.7 Multiple select Items in a Nested exists Query

You can use multiple select items in nested queries.

The use of multiple columns in this example is the same as selecting a single c1 or c2 column in the nested
exists query:

1> create table t1(c1 int, c2 int) 2> go
1> create table t2(c1 int, c2 int)
2> go
1> select * from t1 where exists (select c1, c2
 from t2) 2> go

You cannot mix an asterisk with other select items, such as:

1> select * from t1 where exists (select t2.*, c1 from t2) 2> go

Msg 102, Level 15, State 1: Line 1: Incorrect syntax near ','.

258 P U B L I C
Transact-SQL Users Guide

Queries: Selecting Data from a Table

8.8 Use a Column Alias in Nested select Statements

You can use an column alias in the select list of nested select statements.

The column alias uses one of these forms:

● column_heading = <expression>
● <expression> column_heading
● <expression> as column_heading

For example, this example is equivalent to a select statement with the as tableid clause removed:

1> select * 2> from syscolumns c
3> where c.id in (
4> select o.id as tableid
5> from sysobjects o 6> where o.name like '%attr%')

SAP ASE ignores the alias (the allowed column heading) in this example.

Transact-SQL Users Guide
Queries: Selecting Data from a Table P U B L I C 259

9 Subqueries: Queries Within Other
Queries

A subquery is a select statement that is nested inside another select, insert, update, or delete
statement, inside a conditional statement, or inside another subquery.

You can also express subqueries as join operations.

Subqueries, also called inner queries, appear within a where or having clause of another SQL statement, or in
the select list of a statement.

You can use subqueries to handle query requests that are expressed as the results of other queries. A
statement that includes a subquery operates on rows from one table, based on its evaluation of the subquery’s
select list, which can refer either to the same table as the outer query, or to a different table. In Transact-
SQL, you can use a subquery almost anywhere an expression is allowed, if the subquery returns a single value.
A case expression can also include a subquery.

For example, this subquery lists the names of all authors whose royalty split is more than $75:

select au_fname, au_lname from authors
where au_id in
 (select au_id
 from titleauthor where royaltyper > 75)

select statements that contain one or more subqueries are sometimes called nested queries or nested select
statements.

The result of a subquery that returns no values is NULL. If a subquery returns NULL, the query failed.

Subquery Example

This is an example of how to find the books that have the same price as Straight Talk About Computers.

First find the price of Straight Talk:

select price from titles where title = "Straight Talk About Computers"

price -------------
 $19.99
 (1 row affected)

Use the results of the first query in a second query to find all the books that cost the same as Straight Talk:

select title, price

260 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

 from titles where price = $19.99

title price -- -----
The Busy Executive’s Database Guide 19.99
Straight Talk About Computers 19.99
Silicon Valley Gastronomic Treats 19.99 Prolonged Data Deprivation: Four Case Studies 19.99

You can use a subquery to receive the same results in only one step:

select title, price from titles
where price =
 (select price
 from titles where title = "Straight Talk About Computers")

title price --------------------------------------- -----
The Busy Executive’s Database Guide 19.99
Straight Talk About Computers 19.99
Silicon Valley Gastronomic Treats 19.99 Prolonged Data Deprivation: Four Case Studies 19.99

Related Information

Joins: Retrieve Data from Several Tables [page 323]

9.1 Subquery Restrictions

A subquery is subject to certain restrictions.

● The <subquery_select_list> can consist of only one column name, except in the exists subquery,
where an (*) is usually used in place of the single column name. You can use an asterisk (*) in a nested
select statement that is not an exists subquery.
Do not specify more than one column name. Qualify column names with table or view names if there is
ambiguity about the table or view to which they belong.

● Subqueries can be nested inside the where or having clause of an outer select, insert, update, or
delete statement, inside another subquery, or in a select list. Alternatively, you can write many
statements that contain subqueries as joins; SAP ASE processes such statements as joins.

● In Transact-SQL, a subquery can appear almost anywhere an expression can be used, if it returns a single
value. SQL derived tables can be used in the from clause of a subquery wherever the subquery is used

● You cannot use subqueries in an order by, group by, or compute by list.
● You cannot include a for browse clause in a subquery.
● You cannot include a union clause in a subquery unless it is part of a derived table expression within the

subquery.

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 261

● The select list of an inner subquery introduced with a comparison operator can include only one
expression or column name, and the subquery must return a single value. The column you name in the
where clause of the outer statement must be join-compatible with the column you name in the subquery
select list.

● You cannot include text, unitext, or image datatypes in subqueries.
● Subqueries cannot manipulate their results internally, that is, a subquery cannot include the order by

clause, the compute clause, or the into keyword.
● Correlated (repeating) subqueries are not allowed in the select clause of an updatable cursor defined by

declare cursor.
● There is a limit of 50 nesting levels.
● The maximum number of subqueries on each side of a union is 250.
● The where clause of a subquery can contain an aggregate function only if the subquery is in a having

clause of an outer query and the aggregate value is a column from a table in the from clause of the outer
query.

● The result expression from a subquery is subject to the same limits as for any expression. The maximum
length of an expression is 16K. See, “Expressions, Identifiers, and Wildcard “Characters,” in the Reference
Manual: Building Blocks.

Related Information

SQL-Derived Tables [page 129]

9.2 Qualify Column Names

Column names in a statement are implicitly qualified by tables that are referenced in the from clause at the
same level.

In the following example, the table name publishers implicitly qualifies the pub_id column in the where
clause of the outer query. The reference to pub_id in the select list of the subquery is qualified by the
subquery’s from clause—that is, by the titles table:

select pub_name from publishers
where pub_id in
 (select pub_id
 from titles where type = "business")

This is what the query looks like with the implicit assumptions spelled out:

select pub_name from publishers
where publishers.pub_id in
 (select titles.pub_id
 from titles where type = "business")

262 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

It is never wrong to state the table name explicitly, and you can override implicit assumptions about table
names by using explicit qualifications.

9.3 Subqueries with Correlation Names

Table correlation names are required in self-joins because the table being joined to itself appears in two
different roles. You can use correlation names in nested queries that refer to the same table in both an inner
query and an outer query.

For example, to find authors who live in the same city as Livia Karsen:

select au1.au_lname, au1.au_fname, au1.city from authors au1
where au1.city in
 (select au2.city
 from authors au2
 where au2.au_fname = "Livia" and au2.au_lname = "Karsen")

au_lname au_fname city ----------- --------- -------
Green Marjorie Oakland
Straight Dick Oakland
Stringer Dirk Oakland
MacFeather Stearns Oakland Karsen Livia Oakland

Explicit correlation names make it clear that the reference to authors in the subquery is not the same as the
reference to authors in the outer query.

Without explicit correlation, the subquery is:

select au_lname, au_fname, city from authors
where city in
 (select city
 from authors
 where au_fname = "Livia" and au_lname = "Karsen")

Alternatively, state the above query, as well as other statements in which the subquery and the outer query
refer to the same table, as self-joins:

select au1.au_lname, au1.au_fname, au1.city from authors au1, authors au2
where au1.city = au2.city
and au2.au_lname = "Karsen" and au2.au_fname = "Livia"

A subquery restated as a join may not return the results in the same order; additionally, the join may require
the distinct keyword to eliminate duplicates.

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 263

Related Information

Joins: Retrieve Data from Several Tables [page 323]

9.4 Multiple Levels of Nesting

A subquery can include one or more subqueries. You can nest up to 250 subqueries in a statement.

To find the names of authors who have participated in writing at least one popular computing book, enter:

select au_lname, au_fname from authors
where au_id in
 (select au_id
 from titleauthor
 where title_id in
 (select title_id
 from titles where type = "popular_comp"))

au_lname au_fname ---------------------- ------------
Carson Cheryl
Dull Ann
Locksley Chastity
Hunter Sheryl
 (4 rows affected)

The outermost query selects all author names. The next query finds the authors’ IDs, and the innermost query
returns the title ID numbers PC1035, PC8888, and PC9999.

You can also express this query as a join:

select au_lname, au_fname from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id and type = "popular_comp"

9.5 Using an Asterisk in Nested select Statements

You can use an asterisk (*) in a nested select statement that is not an exists subquery as long as the
asterisk follows certain conditions.

The asterisk:

● Is the only item in the select statement.
● Resolves to a single table column for the nested query.

264 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

In addition, you can:

● Restrict the selected columns in your nested query to only those belonging to a specific table by using the
<qualifier>.* format, where <qualifier> is one of the tables in the from clause.

● Use the asterisk in a nested query that includes a group by clause.

When an asterisk resolves to a single table column for the nested query, the query is equivalent to explicitly
using a single table column.

This is a valid nested query, because t2 only has one column:

1> create table t1(c1 int, c2 int) 2> create table t2(c1 int)
3>go
1>select * from t1 where c1 in (select * from t2) 2>go

The nested select statement is equivalent to:

1> select * t1 where c1 in (select c1 from t2) 2> go

9.5.1 Use Table-Name Qualifiers

You can use an asterisk in the form of <qualifier>.* (<qualifier> <period> asterisk), to select only
those columns that are in your specified table.

For example:

1> create table t1(c1 int, c2 int) 2> go
1> create table t2(c1 int)
2> go
1> select * from t1
2> where c1 in (select t2.* from t1, t2) 3> go

The nested select statement is equivalent to:

1> select * from t1 2> where c1 in (select t2.c1 from t1, t2) 3> go

9.5.2 Use Nested Queries with group by

You can use an asterisk in a nested group by query as long as the group-by table has a single column.

Such as:

1> select * from t1 2> where c1 in (select * from t2 group by c1) 3> go

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 265

The nested group by query example is equivalent to:

1> select * from t1 2> where c1 in (select c1 from t2 group by c1) 3> go

9.5.3 Usage and Examples of Asterisks in select Statements

SAP ASE automatically replaces asterisks in queries with actual column names before saving new stored
procedures, views, and triggers.

This replacement persists even if you alter a table to add columns. SAP ASE does not allow more than one
column, however, when the replacement of the asterisk introduces an additional column. This incorrect
behavior persists until you drop and re-create the text. For example:

1> create table t1(c1 int, c2 int) 2> go
1> create table t2(c1 int)
2> go
1> create proc p1
2> as
3> select * from t1 where c1 in (select * from t2)
4> go
1> exec p1
2> go
 c1 c2
 ----------- -----------
(0 rows affected)
(return status = 0)
1> sp_helptext p1
2> go
Lines of Text

 2
(1 row affected)
text
--
create proc p1
as/* SAP ASE has expanded all '*' elements in the following statement */
select t1.c1, t1.c2
 from t1 where c1 in (select t2.c1 from t2)
(2 rows affected)
(return status = 0)
1> alter table t2 add c2 int null
2> go
1> exec p1
2> go
 c1 c2
 ----------- -----------
(0 rows affected)
(return status = 0)
1> exec p1 with recompile
2> go
 c1 c2
 ----------- -----------
(0 rows affected)
(return status = 0)
1> drop proc p1
2> go
1> create proc p1
2> as

266 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

3> select * from t1 where c1 in (select * from t2)
4> go
Msg 299, Level 16, State 1:
Procedure 'p1', Line 4:
The symbol '*' can only be used for a non-EXISTS
subquery select list when the subquery is on a single table with a single column.

SAP ASE expects the asterisk to resolve to a single column, and generates an error when it encounters more
than one column after it converts the asterisk.

Examples

Examples of using an asterisk in nested select statements.

This example deletes any discount from stores that have no sales, or that have discounts greater than 10:

create view store_with_nosales(stor_id) as
select stores.stor_id
from stores left join sales
 on stores.stor_id = sales.stor_id
where sales.stor_id IS NULL
go
delete from discounts
where (stor_id in (select *
 from store_with_nosales)
 or discount > 10.0) go

This example returns an error because there is more than one column in the join between stores and sales:

create view store_with_nosales(stor_id) as
select stores.stor_id
from stores left join sales
 on stores.stor_id = sales.stor_id
where (stor_id in (select *
 from stores left join sales
 on stores.stor_id = sales.stor_id
 where sales.stor_id IS NULL)
 or discount > 10.0)
go
delete from discounts
where (stor_id in (select *
 from store_with_nosales)
 or discount > 10.0) go

Msg 299, Level 16, State 1: Line 1:
The symbol '*' can only be used for a subquery select
list when the subquery is introduced with EXISTS or NOT
EXISTS or the subquery references a single table and column.

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 267

9.6 Subqueries in update, delete, and insert Statements

You can nest subqueries in update, delete, and insert statements as well as in select statements.

Note
Running the sample queries in this section changes the pubs2 database. If you require the original pubs2
database after you have run these queries, ask a system administrator to reload the pubs2 database.

The following query doubles the price of all books published by New Age Books. The statement updates the
titles table; its subquery references the publishers table.

update titles set price = price * 2
where pub_id in
 (select pub_id
 from publishers where pub_name = "New Age Books")

An equivalent update statement using a join is:

update titles set price = price * 2
from titles, publishers
where titles.pub_id = publishers.pub_id and pub_name = "New Age Books"

Remove all records of sales of business books with this nested select statement:

delete salesdetail where title_id in
 (select title_id
 from titles where type = "business")

An equivalent delete statement using a join is:

delete salesdetail from salesdetail, titles
where salesdetail.title_id = titles.title_id and type = "business"

9.7 Subqueries in Conditional Statements

You can use subqueries in conditional statements.

Rewrite the subquery that removes all records of sales of business books, as shown in the next example, to
check for the records before deleting them:

if exists (select title_id from titles

268 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

 where type = "business")
begin
 delete salesdetail
 where title_id in
 (select title_id
 from titles
 where type = "business") end

9.8 Subqueries Instead of Expressions

In Transact-SQL, you can substitute a subquery almost anywhere you can use an expression in a select,
update, insert, or delete statement.

You cannot use a subquery in an order by list, or as an expression in the values list in an insert statement.

The following statement shows how to find the titles and types of books that have been written by authors
living in California and that are also published there:

select title, type from titles
where title in
 (select title
 from titles, titleauthor, authors
 where titles.title_id = titleauthor.title_id
 and titleauthor.au_id = authors.au_id
 and authors.state = "CA")
and title in
 (select title
 from titles, publishers
 where titles.pub_id = publishers.pub_id and publishers.state = "CA")

title type ----------------------------------- ----------
The Busy Executive’s Database Guide business
Cooking with Computers:
 Surreptitious Balance Sheets business
Straight Talk About Computers business
But Is It User Friendly? popular_comp
Secrets of Silicon Valley popular_comp
Net Etiquette popular_comp
 (6 rows affected)

The following statement selects the book titles that have had more than 5000 copies sold, lists their prices,
and the price of the most expensive book:

select title, price, (select max(price) from titles)
 from titles where total_sales > 5000

title price ----------------------------------- ----- ------
You Can Combat Computer Stress! 2.99 22.95
The Gourmet Microwave 2.99 22.95

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 269

But Is It User Friendly? 22.95 22.95
Fifty Years in Buckingham Palace
 Kitchens 11.95 22.95
 (4 rows affected)

9.9 Types of Subqueries

There are two basic types of subqueries: expression and quantified predicate.

● Expression subqueries are introduced with an unmodified comparison operator, must return a single
value, and can be used almost anywhere an expression is allowed in SQL.

● Quantified predicate subqueries operate on lists that are introduced with in or with a comparison
operator that is modified by any or all. Quantified predicate subqueries return zero or more values. This
type is also used as an existence test (which checks whether a subquery produces any rows), introduced
with exists.

Subqueries of either type are either noncorrelated or correlated (repeating).

● A noncorrelated subquery can be evaluated as if it were an independent query. Conceptually, the results of
the subquery are substituted in the main statement, or outer query. This is not how SAP ASE actually
processes statements with subqueries. Noncorrelated subqueries can alternatively be stated as joins and
are processed as joins by SAP ASE.

● A correlated subquery cannot be evaluated as an independent query, but can reference columns in a table
listed in the from list of the outer query.

9.9.1 Expression Subqueries

Expression subqueries include subqueries in a select list (introduced with in) and in a where or having
clause connected by a comparison operator (=, !=, > , > =, <, <=)

This is the general form of expression subqueries:

[Start of select, insert, update, delete statement or subquery]

where <expression> <comparison_operator> (<subquery>)

[End of select, insert, update, delete statement or subquery]

An expression consists of a subquery or any combination of column names, constants, and functions
connected by arithmetic or bitwise operators.

The <comparison_operator> is one of:

Operator Meaning

= Equal to

270 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

Operator Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

!= Not equal to

<> Not equal to

!> Not greater than

!< Not less than

If you use a column name in the where or having clause of the outer statement, make sure a column name in
the <subquery_select_list> is join-compatible with it.

A subquery that is introduced with an unmodified comparison operator (that is, a comparison operator that is
not followed by any or all) must resolve to a single value. If such a subquery returns more than one value,
SAP ASE returns an error message.

For example, suppose that each publisher is located in only one city. To find the names of authors who live in
the city where Algodata Infosystems is located, write a statement with a subquery that is introduced with the
comparison operator =:

select au_lname, au_fname from authors
where city =
 (select city
 from publishers where pub_name = "Algodata Infosystems")

au_lname au_fname -------------- --------------
Carson Cheryl Bennet Abraham

9.9.1.1 Use Scalar Aggregate Functions to Guarantee a
Single Value

Subqueries that are introduced with unmodified comparison operators often include scalar aggregate
functions, which return a single value.

For example, to find the names of books that are priced higher than the current minimum price:

select title from titles

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 271

where price >
 (select min(price) from titles)

title ---
The Busy Executive’s Database Guide
Cooking with Computers: Surreptitious Balance
 Sheets
Straight Talk About Computers
Silicon Valley Gastronomic Treats
But Is It User Friendly?
Secrets of Silicon Valley
Computer Phobic and Non-Phobic Individuals:
 Behavior Variations
Is Anger the Enemy?
Life Without Fear
Prolonged Data Deprivation: Four Case Studies
Emotional Security: A New Algorithm
Onions, Leeks, and Garlic: Cooking Secrets of the
 Mediterranean
Fifty Years in Buckingham Palace Kitchens Sushi, Anyone?

9.9.1.2 Use group by and having in Expression Subqueries

Because subqueries that are introduced by unmodified comparison operators must return a single value, they
cannot include group by and having clauses unless you know that the group by and having clauses will
return a single value.

For example, this query finds the books that are priced higher than the lowest priced book in the trad_cook
category:

select title from titles
where price >
 (select min(price)
 from titles
 group by type having type = "trad_cook")

9.9.1.3 Use distinct with Expression Subqueries

Subqueries that are introduced with unmodified comparison operators often include the distinct keyword
to ensure the return of a single value.

For example, without distinct, this subquery fails because it returns more than one value:

select pub_name from publishers where pub_id =
 (select distinct pub_id
 from titles where pub_id = publishers.pub_id)

272 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

9.9.2 Quantified Predicate Subqueries

Quantified predicate subqueries, which return a list of zero or more values, are subqueries in a where or
having clause that are connected by any, all, in, or exists. The any or all subquery operators modify
comparison operators.

There are three types of quantified predicate subqueries:

● any/all subqueries. Subqueries introduced with a modified comparison operator, which may include a
group by or having clause, take this general form:
[Start of select, insert, update, delete statement; or subquery]

where <expression> <comparison_operator> [any | all] (<subquery>)

[End of select, insert, update, delete statement; or subquery]
● in/not in subqueries. Subqueries introduced with in or not in take this general form:

[Start of select, insert, update, delete statement; or subquery]

where <expression> [not] in (<subquery>)

[End of select, insert, update, delete statement; or subquery]
● exists/not exists subqueries. Subqueries introduced by exists or not exists are existence tests

which take this general form:
[Start of select, insert, update, delete statement; or subquery]

where [not] exists (<subquery>)

[End of select, insert, update, delete statement; or subquery]

Although SAP ASE allows the keyword distinct in quantified predicate subqueries, it always processes the
subquery as if distinct were not included.

9.9.2.1 Subqueries with any and all

The keywords all and any can modify comparison operators that introduce a subquery.

When any is used with <, >, or = with a subquery, it returns results when any value retrieved in the subquery
matches the value in the where or having clause of the outer statement.

When all is used with < or > in a subquery, it returns results when all values retrieved in the subquery match
the value in the where or having clause of the outer statement.

The syntax for any and all is:

{where | having} [not] <expression> <comparison_operator> {any | all} (<subquery>)

Using the > comparison operator as an example:

● > all means greater than every value, or greater than the maximum value. For example, > all (1, 2, 3)
means greater than 3.

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 273

● > any means greater than at least one value, or greater than the minimum value. Therefore, > any (1, 2,
3) means greater than 1.

If you introduce a subquery with all and a comparison operator does not return any values, the entire query
fails.

all and any can be tricky. For example, you might ask “Which books commanded an advance greater than
any book published by New Age Books?”

You can paraphrase this question to make its SQL “translation” more clear: “Which books commanded an
advance greater than the largest advance paid by New Age Books?” The all keyword, not the any keyword, is
required here:

select title from titles
where advance > all
 (select advance
 from publishers, titles
 where titles.pub_id = publishers.pub_id and pub_name = "New Age Books")

title -- The Gourmet Microwave

For each title, the outer query gets the titles and advances from the titles table, and it compares these to
the advance amounts paid by New Age Books returned from the subquery. The outer query looks at the
largest value in the list and determines whether the title being considered has commanded an even greater
advance.

9.9.2.1.1 > all Means Greater Than All Values

The > all operator means that, for a row to satisfy the condition in the outer query, the value in the column
that introduces the subquery must be greater than each of the values returned by the subquery.

For example, to find the books that are priced higher than the highest-priced book in the mod_cook category:

select title from titles where price > all (select price from titles where type = "mod_cook")

title ---
But Is It User Friendly?
Secrets of Silicon Valley
Computer Phobic and Non-Phobic Individuals:
 Behavior Variations
Onions, Leeks, and Garlic: Cooking Secrets of
 the Mediterranean
 (4 rows affected)

However, if the set returned by the inner query contains a NULL, the query returns 0 rows. This is because
NULL stands for “value unknown,” and it is impossible to tell whether the value you are comparing is greater
than an unknown value.

274 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

For example, try to find the books that are priced higher than the highest-priced book in the popular_comp
category:

select title from titles where price > all (select price from titles where type = "popular_comp")

title ---
 (0 rows affected)

No rows are returned because the subquery finds that one of the books, Net Etiquette, has a null price.

9.9.2.1.2 = all Means Equal to Every Value

The = all operator means that for a row to satisfy the outer query the value in the column that introduces the
subquery must be the same as each value in the list of values returned by the subquery.

For example, the following query identifies the authors who live in the same city at the postal code:

select au_fname, au_lname, city from authors
where city = all
 (select city
 from authors where postalcode like "946%")

9.9.2.1.3 > any Means Greater Than at Least One Value

> any means that, for a row to satisfy the outer query, the value in the column that introduces the subquery
must be greater than at least one of the values in the list returned by the subquery.

The following example is introduced with a comparison operator modified by any. It finds each title that has an
advance larger than any advance amount paid by New Age Books.

select title from titles
where advance > any
 (select advance
 from titles, publishers
 where titles.pub_id = publishers.pub_id and pub_name = "New Age Books")

title ---
The Busy Executive’s Database Guide
Cooking with Computers: Surreptitious Balance
 Sheets
You Can Combat Computer Stress!
Straight Talk About Computers
The Gourmet Microwave

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 275

But Is It User Friendly?
Secrets of Silicon Valley
Computer Phobic and Non-Phobic Individuals:
 Behavior Variations
Is Anger the Enemy?
Life Without Fear
Emotional Security: A New Algorithm
Onions, Leeks, and Garlic: Cooking Secrets of
 the Mediterranean
Fifty Years in Buckingham Palace Kitchens Sushi, Anyone?

For each title selected by the outer query, the inner query finds a list of advance amounts paid by New Age
Books. The outer query looks at all the values in the list and determines whether the title being considered has
commanded an advance that is larger than any of those values. In other words, this example finds titles with
advances as large as or larger than the lowest value paid by New Age Books.

If the subquery does not return any values, the entire query fails.

9.9.2.1.4 = any Means Equal to Some Value

The = any operator is an existence check; it is equivalent to in.

For example, to find authors that live in the same city as any publisher, you can use either = any or in:

select au_lname, au_fname from authors
where city = any
 (select city
 from publishers)
select au_lname, au_fname
from authors
where city in
 (select city from publishers)

au_lname au_fname -------------- --------------
Carson Cheryl Bennet Abraham

However, the != any operator is different from not in. The != any operator means “not = a or not = b or not
= c”; not in means “not = a and not = b and not = c”.

For example, to find the authors who live in a city where no publisher is located:

select au_lname, au_fname from authors
where city != any
 (select city from publishers)

The results include all 23 authors. This is because every author lives in some city where no publisher is located,
and each author lives in only one city.

The inner query finds all the cities in which publishers are located, and then, for each city, the outer query finds
the authors who do not live there.

276 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

Here is what happens when you substitute not in in the same query:

select au_lname, au_fname from authors
where city not in
 (select city from publishers)

au_lname au_fname -------------- ------------
White Johnson
Green Marjorie
O’Leary Michael
Straight Dick
Smith Meander
Dull Ann
Gringlesby Burt
Locksley Chastity
Greene Morningstar
Blotchet-Halls Reginald
Yokomoto Akiko
del Castillo Innes
DeFrance Michel
Stringer Dirk
MacFeather Stearns
Karsen Livia
Panteley Sylvia
Hunter Sheryl
McBadden Heather
Ringer Anne Ringer Albert

These are the results you want. They include all the authors except Cheryl Carson and Abraham Bennet, who
live in Berkeley, where Algodata Infosystems is located.

You get the same results if you use !=all, which is equivalent to not in:

select au_lname, au_fname from authors
where city != all
 (select city from publishers)

9.9.3 Subqueries Used with in

Subqueries that are introduced with the keyword in return a list of zero or more results.

For example, this query finds the names of the publishers who have published business books:

select pub_name from publishers
where pub_id in
 (select pub_id
 from titles where type = "business")

pub_name --
New Age Books

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 277

 Algodata Infosystems

This statement is evaluated in two steps. The inner query returns the identification numbers of the publishers
who have published business books, 1389 and 0736. These values are then substituted in the outer query,
which finds the names that go with the identification numbers in the publishers table. The query looks like
this:

select pub_name from publishers where pub_id in ("1389", "0736")

Another way to formulate this query using a subquery is:

select pub_name from publishers
where "business" in
 (select type
 from titles where pub_id = publishers.pub_id)

The expression following the where keyword in the outer query can be a constant as well as a column name.
You can use other types of expressions, such as combinations of constants and column names.

The preceding queries, like many other subqueries, can be alternatively formulated as a join query:

select distinct pub_name from publishers, titles
where publishers.pub_id = titles.pub_id and type = "business"

Both this query and the subquery versions find publishers who have published business books. All are equally
correct and produce the same results, though you may need to use the distinct keyword to eliminate
duplicates.

However, one advantage of using a join query rather than a subquery is that a join query shows columns from
more than one table in the result. For example, to include the titles of the business books in the result, use the
join version:

select pub_name, title from publishers, titles
where publishers.pub_id = titles.pub_id and type = "business"

pub_name title -------------------- --
Algodata Infosystems The Busy Executive’s Database Guide
Algodata Infosystems Cooking with Computers: Surreptitious
 Balance Sheets
New Age Books You Can Combat Computer Stress! Algodata Infosystems Straight Talk About Computers

Here is another example of a statement that you can formulate with either a subquery or a join query: “Find the
names of all second authors who live in California and receive less than 30 percent of the royalties on a book.”
Using a subquery, the statement is:

select au_lname, au_fname from authors
where state = "CA"

278 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

and au_id in
 (select au_id
 from titleauthor
 where royaltyper < 30 and au_ord = 2)

au_lname au_fname ------------------------ ------------ MacFeather Stearns

The outer query produces a list of the 15 authors who live in California. The inner query is then evaluated,
producing a list of the IDs of the authors who meet the qualifications.

More than one condition can be included in the where clause of both the inner and the outer query.

Using a join, the query is expressed like this:

select au_lname, au_fname from authors, titleauthor
where state = "CA"
 and authors.au_id = titleauthor.au_id
 and royaltyper < 30 and au_ord = 2

A join can always be expressed as a subquery. A subquery can often be expressed as a join.

9.9.4 Subqueries Used with not in

Subqueries that are introduced with the keyword phrase not in also return a list of values that are zero (0)
and greater.

not in means “not = a and not = b and not = c.”

This query finds the names of the publishers who have not published business books:

select pub_name from publishers where pub_id not in
 (select pub_id
 from titles where type = "business")

pub_name -- Binnet & Hardley

The query is the same as the previous one except that not in is substituted for in. However, you cannot
convert this statement to a join; the “not equal” join finds the names of publishers who have published some
book that is not a business book.

Related Information

Subqueries Used with in [page 277]

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 279

Joins: Retrieve Data from Several Tables [page 323]

9.9.5 Subqueries Using not in with NULL

A subquery that uses not in returns a set of values for each row in the outer query.

If the value in the outer query is not in the set returned by the inner query, the not in evaluates to TRUE, and
the outer query puts the record being considered in the results.

However, if the set returned by the inner query contains no matching value, but it does contain a NULL, the
not in returns UNKNOWN. This is because NULL stands for “value unknown,” and it is impossible to tell
whether the value you are looking for is in a set containing an unknown value. The outer query discards the
row. For example:

select pub_name from publishers
 where $100.00 not in
 (select price
 from titles where titles.pub_id = publishers.pub_id)

pub_name ------ New Age Books

New Age Books is the only publisher that does not publish any books that cost $100. Binnet & Handley and
Algodata Infosystems were not included in the query results because each publishes a book for which the price
is undecided.

9.9.6 Subqueries Used with exists

Use the exists keyword with a subquery to test for the existence of some result from the subquery.

The syntax is:

{where | having} [not] exists (<subquery>)

That is, the where clause of the outer query tests for the existence of the rows returned by the subquery. The
subquery does not actually produce any data, but returns a value of TRUE or FALSE.

For example, this query finds the names of all the publishers who publish business books:

select pub_name from publishers
where exists
 (select *
 from titles
 where pub_id = publishers.pub_id and type = "business")

pub_name

280 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

 --
New Age Books Algodata Infosystems

To conceptualize the resolution of this query, consider each publisher’s name in turn. Does this value cause
the subquery to return at least one row? In other words, does it cause the existence test to evaluate to TRUE?

In the results of the preceding query, the second publisher’s name is Algodata Infosystems, which has an
identification number of 1389. Are there any rows in the titles table for which the pub_id is 1389 and type
is business? If so, “Algodata Infosystems” should be one of the values selected. The same process is repeated
for each of the other publisher’s names.

A subquery that is introduced with exists is different from other subqueries, in these ways:

● The keyword exists is not preceded by a column name, constant, or other expression.
● The subquery exists evaluates to TRUE or FALSE rather than returning any data.
● The select list of the subquery usually consists of the asterisk (*). You need not specify column names,

since you are simply testing for the existence of rows that meet the conditions specified in the subquery.
Otherwise, the select list rules for a subquery introduced with exists are identical to those for a standard
select list.

The exists keyword is very important, because there is often no alternative non-subquery formulation. In
practice, a subquery introduced by exists is always a correlated subquery.

Although you cannot express some queries formulated with exists in any other way, you can express all
queries that use in or a comparison operator modified by any or all with exists. Some examples of
statements using exists and their equivalent alternatives follow.

Here are two ways to find authors that live in the same city as a publisher:

select au_lname, au_fname from authors
where city = any
 (select city from publishers)

select au_lname, au_fname from authors
where exists
 (select *
 from publishers where authors.city = publishers.city)

au_lname au_fname -------------- --------------
Carson Cheryl Bennet Abraham

Here are two queries that find titles of books published by any publisher located in a city that begins with the
letter “B”:

select title from titles
where exists
 (select *
 from publishers
 where pub_id = titles.pub_id

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 281

 and city like "B%")

select title from titles
where pub_id in
 (select pub_id
 from publishers where city like "B%")

title ---
You Can Combat Computer Stress!
Is Anger the Enemy?
Life Without Fear
Prolonged Data Deprivation: Four Case Studies
Emotional Security: A New Algorithm
The Busy Executive’s Database Guide
Cooking with Computers: Surreptitious Balance
 Sheets
Straight Talk About Computers
But Is It User Friendly?
Secrets of Silicon Valley Net Etiquette

Related Information

Correlated Subqueries [page 284]

9.9.7 Subqueries Used with not exists

not exists is just like exists except that the where clause in which it is used is satisfied when no rows are
returned by the subquery.

For example, to find the names of publishers who do not publish business books, the query is:

select pub_name from publishers
where not exists
 (select *
 from titles
 where pub_id = publishers.pub_id and type = "business")

pub_name -- Binnet & Hardley

This query finds the titles for which there have been no sales:

select title from titles
where not exists
 (select title_id
 from salesdetail

282 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

 where title_id = titles.title_id)

title ---
The Psychology of Computer Cooking Net Etiquette

9.9.8 Find Intersection and Difference with exists

You can use subqueries that are introduced with exists and not exists for two set theory operations:
intersection and difference.

The intersection of two sets contains all elements that belong to both of the original sets. The difference
contains the elements that belong only to the first set.

The intersection of authors and publishers over the city column is the set of cities in which both an
author and a publisher are located:

select distinct city from authors
where exists
 (select *
 from publishers where authors.city = publishers.city)

city -------------------- Berkeley

The difference between authors and publishers over the city column is the set of cities where an author
lives but no publisher is located, that is, all the cities except Berkeley:

select distinct city from authors
where not exists
 (select *
 from publishers where authors.city = publishers.city)

city --------------------
Gary
Covelo
Oakland
Lawrence
San Jose
Ann Arbor
Corvallis
Nashville
Palo Alto
Rockville
Vacaville
Menlo Park
Walnut Creek
San Francisco Salt Lake City

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 283

9.9.9 Subqueries Using SQL Derived Tables

You can use SQL derived tables in subquery from clauses.

For example, this query finds the names of the publishers who have published business books:

select pub_name from publishers where "business" in
 (select type from
 (select type from titles, publishers
 where titles.pub_id = publishers.pub_id) dt_titles)

Here, dt_titles is the SQL derived table defined by the innermost select statement.

You can use SQL derived tables in the from clause of subqueries wherever subqueries are legal.

Related Information

SQL-Derived Tables [page 129]

9.10 Correlated Subqueries

In queries that include a repeating subquery, or correlated subquery, the subquery depends on the outer query
for its values. The subquery is executed repeatedly, once for each row that is selected by the outer query.

This example finds the names of all authors who earn 100 percent royalty on a book:

select au_lname, au_fname from authors
where 100 in
 (select royaltyper
 from titleauthor where au_id = authors.au_id)

au_lname au_fname -------------- ----------
White Johnson
Green Marjorie
Carson Cheryl
Straight Dick
Locksley Chastity
Blotchet-Hall Reginald
del Castillo Innes
Panteley Sylvia
Ringer Albert (9 rows affected)

The subquery in this statement cannot be resolved independently of the main query. It needs a value for
authors.au_id, but this value is variable—it changes as SAP ASE examines different rows of the authors
table.

284 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

This is how the preceding query is evaluated: Transact-SQL considers each row of the authors table for
inclusion in the results, by substituting the value in each row in the inner query. For example, suppose
Transact-SQL first examines the row for Johnson White. Then, authors.au_id takes the value “172-32-1176,”
which Transact-SQL substitutes for the inner query:

select royaltyper from titleauthor where au_id = "172-32-1176"

The result is 100, so the outer query evaluates to:

select au_lname, au_fname from authors where 100 in (100)

Since the where condition is true, the row for Johnson White is included in the results. If you go through the
same procedure with the row for Abraham Bennet, you can see how that row is not included in the results.

This query uses a correlated variable as the outer member of a Transact-SQL outer join:

select t2.b1, (select t2.b2 from t1 where t2.b1 *= t1.a1) from t2

9.10.1 Correlated Subqueries with Correlation Names

You can use a correlated subquery to find the types of books that are published by more than one publisher.

select distinct t1.type from titles t1
where t1.type in
 (select t2.type
 from titles t2 where t1.pub_id != t2.pub_id)

type --------------------
business psychology

Correlation names are required in the following query to distinguish between the two roles in which the
titles table appears. This nested query is equivalent to the self-join query:

select distinct t1.type from titles t1, titles t2
where t1.type = t2.type and t1.pub_id != t2.pub_id

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 285

9.10.2 Correlated Subqueries with Comparison Operators
Expression subqueries can be correlated subqueries.

For example, to find the sales of psychology books where the quantity is less than average for sales of that
title:

select s1.ord_num, s1.title_id, s1.qty from salesdetail s1
where title_id like "PS%"
and s1.qty <
 (select avg(s2.qty)
 from salesdetail s2 where s2.title_id = s1.title_id)

ord_num title_id qty ------------------ -------- ---
91-A-7 PS3333 90
91-A-7 PS2106 30
55-V-7 PS2106 31
AX-532-FED-452-2Z7 PS7777 125
BA71224 PS7777 200
NB-3.142 PS2091 200
NB-3.142 PS7777 250
NB-3.142 PS3333 345
ZD-123-DFG-752-9G8 PS3333 750
91-A-7 PS7777 180 356921 PS3333 200

The outer query selects the rows of the sales table (or s1 one by one). The subquery calculates the average
quantity for each sale being considered for selection in the outer query. For each possible value of s1,
Transact-SQL evaluates the subquery and includes the record being considered in the results, if the quantity is
less than the calculated average.

Sometimes a correlated subquery mimics a group by statement. To find titles of books that have prices
higher than average for books of the same type, the query is:

select t1.type, t1.title from titles t1
where t1.price >
 (select avg(t2.price)
 from titles t2 where t1.type = t2.type)

type title --------- --------------------------------------
business The Busy Executive’s Database Guide
business Straight Talk About Computers
mod_cook Silicon Valley Gastronomic Treats
popular_comp But Is It User Friendly?
psychology Computer Phobic and Non-Phobic
 Individuals: Behavior Variations
psychology Prolonged Data Deprivation: Four Case
 Studies
trad_cook Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean

For each possible value of t1, Transact-SQL evaluates the subquery and includes the row in the results if the
price value of that row is greater than the calculated average. You need not group explicitly by type, because
the rows for which the average price is calculated are restricted by the where clause in the subquery.

286 P U B L I C
Transact-SQL Users Guide

Subqueries: Queries Within Other Queries

9.10.3 Correlated Subqueries in a having Clause

Quantified predicate subqueries can be correlated subqueries.

This example of a correlated subquery in the having clause of an outer query finds the types of books in which
the maximum advance is more than twice the average within a given group:

select t1.type from titles t1
group by t1.type
having max(t1.advance) >= any
 (select 2 * avg(t2.advance)
 from titles t2 where t1.type = t2.type)

type ---------- mod_cook

The subquery above is evaluated once for each group that is defined in the outer query, that is, once for each
type of book.

Transact-SQL Users Guide
Subqueries: Queries Within Other Queries P U B L I C 287

10 Aggregates, Grouping, and Sorting

You can use aggregate functions let you summarize the data retrieved in a query.

The aggregate functions are: sum, avg, count, min, max, count_big, count(*), and
count_big(*). .

If your SAP ASE server is not case sensitive, see group by and having clauses and compute clause in
the Reference Manual: Commands for examples on how case sensitivity affects the data returned by these
clauses.

To find out the number of books sold in the titles table of the pubs2 database, enter:

select sum(total_sales) from titles

------------- 97746

There is no column heading for the aggregate column in the example.

An aggregate function takes as an argument the column name on which values it operates. You can apply
aggregate functions to all the rows in a table, to a subset of the table specified by a where clause, or to one or
more groups of rows in the table. From each set of rows to which an aggregate function is applied, SAP ASE
generates a single value.

Here is the syntax of the aggregate function:

<aggregate_function> ([all | distinct] <expression>)

expression is usually a column name. However, it can also be a constant, a function, or any combination of
column names, constants, and functions connected by arithmetic or bitwise operators. You can also use a
case expression or subquery in an expression.

For example, with this statement, you can calculate the average price of all books if prices were doubled:

select avg(price * 2) from titles

------------- 29.53
 (1 row affected)

Use the optional keyword distinct with sum, avg, count, min, and max to eliminate duplicate values before
the aggregate function is applied. all, which performs the operation on all rows, is the default.

This is the syntax of the aggregate functions and the results they produce:

288 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

Aggregate Function Result

sum([all | distinct] <expression>) Total of the (distinct) values in the expression

avg([all | distinct] <expression>) Average of the (distinct) values in the expression

count([all | distinct]
<expression>)

Number of (distinct) non-null values in the expression returned as an
integer

count_big ([all | distinct]
<expression>)

Number of (distinct) non-null values in the expression returned as a
bigint

count(*) Number of selected rows as an integer

count_big(*) Number of selected rows as a bigint

max(<expression>) Highest value in the expression

min(<expression>) Lowest value in the expression

You can use the aggregate functions in a select list, as shown in the previous example, or in the having clause.

You cannot use aggregate functions in a where clause, but most select statements with an aggregate
function in the select list include a where clause that restricts the rows to which the aggregate is applied. In
the examples given earlier in this section, each aggregate function produced a single summary value for the
entire table.

If a select statement includes a where clause, but not a group by clause, an aggregate function produces a
single value for the subset of rows, called a scalar aggregate. However, a select statement can also include a
column in its select list (a Transact-SQL extension), that repeats the single value for each row in the result
table.

This query returns the average advance and the sum of sales for only business books, preceded by a column
named “advance and sales:”

select "advance and sales", avg(advance), sum(total_sales) from titles where type = "business"

----------------- ----------------- ----------- advance and sales 6,281.25 30788 (1 row affected)

10.1 Aggregate Functions and Datatypes

You can use the aggregate functions with any type of column, with a few exceptions.

The exceptions are:

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 289

● You can use sum and avg with numeric columns only—bigint, int, smallint, tinyint, unsigned
bigint, unsigned int, unsigned smallint, decimal, numeric, float, and money.

● You cannot use min and max with bit datatypes.
● You cannot use aggregate functions other than count(*) and count_big(*) with text and image

datatypes.

For example, you can use min (minimum) to find the lowest value—the one closest to the beginning of the
alphabet—in a character type column:

select min(au_lname) from authors

-------------------------- Bennet
 (1 row affected)

However, you cannot average the contents of a text column:

select avg(au_lname) from authors

Msg 257, Level 16, State 1: --------------------------
(1 row affected)
Line 1: Implicit conversion from datatype ’VARCHAR’ to ’INT’ is not allowed. Use the
CONVERT function to run this query.

10.2 count versus count (*)

count finds the number of non-null values in an expression; count(*) finds the total number of rows in a
table.

This statement finds the total number of books:

select count(*) from titles

------------------ 18
 (1 row affected)

count(*) returns the number of rows in the specified table without eliminating duplicates. It counts each row,
including those containing null values.

Like other aggregate functions, you can combine count(*) with other aggregates in the select list, with
where clauses, and so on:

select count(*), avg(price) from titles

290 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

where advance > 1000

---------- --------- 15 14.42
 (1 row affected)

10.3 Aggregate Functions with distinct

You can use the optional keyword distinct only with sum, avg, count_big, and count. When you use
distinct, SAP ASE eliminates duplicate values before performing calculations.

If you use distinct, you cannot include an arithmetic expression in the argument. The argument can use
only a column name. distinct appears inside the parentheses and before the column name. For example, to
find the number of different cities in which there are authors, enter:

select count(distinct city) from authors

------------- 16
 (1 row affected)

For an accurate calculation of the average price of all business books, omit distinct. The following
statement returns the average price of all business books:

select avg(price) from titles where type = "business"

------------- 13.73
 (1 row affected)

However, if two or more books have the same price and you use distinct, the shared price is included only
once in the calculation:

select avg(distinct price) from titles where type = "business"

------------- 11.64
 (1 row affected)

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 291

10.4 Null Values and the Aggregate Functions

SAP ASE ignores any null values in the column on which an aggregate function is operating for the purposes of
the function (except count(*) and count_big(*), which includes them).

If you have set ansinull to on, SAP ASE returns an error message whenever a null value is ignored. See the
Reference Manual: Commands.

For example, the count of advances in the titles table is not the same as the count of title names, because
of the null values in the advance column:

select count(advance) from titles

------------- 16
 (1 row affected)

select count(title) from titles

------------- 18
 (1 row affected)

If all the values in a column are null, count returns 0. If no rows meet the conditions specified in the where
clause, count returns 0. The other functions all return NULL. Here are examples:

select count(distinct title) from titles where type = "poetry"

------------- 0
 (1 row affected)

select avg(advance) from titles where type = "poetry"

------------- NULL
 (1 row affected)

292 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

10.5 Using Statistical Aggregates

SAP ASE supports statistical aggregate functions, which permit statistical analysis of numeric data. Statistical
aggregate functions include stddev, stddev_samp, stddev_pop, variance, var_samp, and var_pop.

Simple aggregate functions, such as sum, avg, max, min, count_big, and count are allowed only in the select
list and in the having and order by clauses as well as the compute clause of a select statement.

These functions, including stddev and variance, are true aggregate functions in that they can compute
values for a group of rows as determined by the query’s group by clause. As with other basic aggregate
functions such as max or min, their calculations ignore null values in the input. All variance and standard
deviation computation uses IEEE double-precision floating-point standard.

If the input to any variance or standard deviation function is an empty set, each aggregate function returns a
null value. If the input to any variance or standard deviation function is a single value, then each function
returns 0 as its result.

The statistical aggregate functions (and their aliases) are:

● stddev_pop (also stdevp) – standard deviation of a population. Computes the population standard
deviation of the provided value expression evaluated for each row of the group (if distinct was specified,
then each row that remains after duplicates have been eliminated), defined as the square root of the
population variance.

● stddev_samp (also stdev, stddev) – standard deviation of a sample. Computes the population standard
deviation of the provided value expression evaluated for each row of the group (if distinct was specified,
then each row that remains after duplicates have been eliminated), defined as the square root of the
sample variance.

● var_pop (also varp) – variance of a population. Computes the population variance of value expression
evaluated for each row of the group (if distinct was specified, then each row that remains after
duplicates have been eliminated), defined as the sum of squares of the difference of value expression from
the mean of value expression, divided by the number of rows in the group.

● var_samp (also var, variance) – variance of a sample. Computes the sample variance of value
expression evaluated for each row of the group (if distinct was specified, then each row that remains
after duplicates have been eliminated), defined as the sum of squares of the difference from the mean of
the value expression, divided by one less than the number of rows in the group.

10.6 Organize Query Results into Groups: the group by
Clause

The group by clause divides the output of a query into groups. You can group by one or more column names,
or by the results of computed columns using numeric datatypes in an expression.

When used with aggregates, group by retrieves the calculations in each subgroup, and may return multiple
rows.

The maximum number of group by columns (or expressions) is not explicitly limited. The only limit of group by
results is that the width of the group by columns plus the aggregate results cannot be larger than 64K.

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 293

Note
You cannot use group by with columns of text, unitext, or image datatypes.

While you can use group by without aggregates, such a construction has limited functionality and may
produce confusing results. The following example groups results by title type:

select type, advance from titles group by type

type advance ------------ ---------
popular comp 7,000.00
popular comp 8,000.00
popular comp NULL
business 5,000.00
business 5,000.00
business 10,125.00
mod_cook 0.00
mod_cook 15,000.00
trad_cook 7,000.00
trad_cook 4,000.00
trad_cook 8,000.00
UNDECIDED NULL
psychology 7,000.00
psychology 2,275.00
psychology 6,000.00
psychology 2,000.00
psychology 4,000.00
 (18 rows affected)

With an aggregate for the advance column, the query returns the sum for each group:

select type, sum(advance) from titles group by type

type ------------ ------------------------
popular_comp 15,000.00
business 25,125.00
mod_cook 15,000.00
trad_cook 19,000.00
UNDECIDED NULL
psychology 21,275.00 (6 rows affected)

The summary values in a group by clause using aggregates are called vector aggregates, as opposed to
scalar aggregates, which result when only one row is returned.

See the Reference Manual:Commands.

294 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

10.6.1 group by and SQL Standards

The SQL standards for group by are more restrictive than the default SAP ASE standard.

The SQL standard requires that:

● The columns in a select list to be in the group by expression or to be arguments of aggregate functions.
● A group by expression can contain only column names in the select list, but not those used only as

arguments for vector aggregates.

Several Transact-SQL extensions (described in the following sections) relax these restrictions. However,
complex result sets may be more difficult to understand. If you set the fipsflagger option as follows, you
will receive a warning message stating that Transact-SQL extensions are used:

set fipsflagger on

For more information about the fipsflagger option, see the set command in the Reference Manual:
Commands.

10.6.2 Nest Groups with group by

Nest groups by including more than one column in the group by clause. Once the sets are established with
group by, the aggregates are applied.

This statement finds the average price and the sum of book sales, grouped first by publisher identification
number, then by type:

select pub_id, type, avg(price), sum(total_sales) from titles
group by pub_id, type
pub_id type
------ ------------ ------ ------- 0736 business 2.99 18,722

0736 psychology 11.48 9,564 0877 UNDECIDED NULL NULL
0877 mod_cook 11.49 24,278
0877 psychology 21.59 375
0877 trad_cook 15.96 19,566
1389 business 17.31 12,066 1389 popular_comp 21.48 12,875(8 rows affected)

You can nest groups within groups. The maximum number of group by columns (or expressions) is not
explicitly limited.

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 295

10.6.3 Reference Other Columns in Queries Using group by

SQL standards state that the group by clause must contain items from the select list. However, Transact-
SQL allows you to specify any valid column name in either the group by or select list, whether they employ
aggregates or not.

SAP ASE lifts restrictions on what you can include or omit in the select list of a query that includes group
by:

● The columns in the select list are not limited to the grouping columns and columns used with the vector
aggregates.

● The columns specified by group by are not limited to nonaggregate columns in the select list.

A vector aggregate must be accompanied by a group by clause. The SQL standards require nonaggregate
columns in the select list to match the group by columns. However, the first bulleted item above allows you
to specify additional, extended columns in the select list of the query.

For example, many versions of SQL do not allow the inclusion of the extended title_id column in the
select list, but Transact-SQL: allows this:

select type, title_id, avg(price), avg(advance) from titles
group by type type title_id

------------ -------- ----- ------- business BU1032 13.73 6,281.25
business BU1111 13.73 6,281.25
business BU2075 13.73 6,281.25
business BU7832 13.73 6,281.25
mod_cook MC2222 11.49 7,500.00
mod_cook MC3021 11.49 7,500.00
UNDECIDED MC3026 NULL NULL
popular_comp PC1035 21.48 7,500.00
popular_comp PC8888 21.48 7,500.00
popular_comp PC9999 21.48 7,500.00
psychology PS1372 13.50 4,255.00
psychology PS2091 13.50 4,255.00
psychology PS2106 13.50 4,255.00
psychology PS3333 13.50 4,255.00
psychology PS7777 13.50 4,255.00
trad_cook TC3218 15.96 6,333.33
trad_cook TC4203 15.96 6,333.33
trad_cook TC7777 15.96 6,333.33 (18 rows affected)

The above example still aggregates the price and advance columns based on the type column, but its
results also display the title_id for the books included in each group.

The second bullet item described above allows you to group columns that are not specified as columns in the
select list of the query. These columns do not appear in the results, but the vector aggregates still compute
their summary values. For example:

select state, count(au_id) from authors group by state, city

state

296 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

----- --------
CA 2
CA 1
CA 5
CA 5
CA 2
CA 1
CA 1
CA 1
CA 1
IN 1
KS 1
MD 1
MI 1
OR 1
TN 1
UT 2 (16 rows affected)

This example groups the vector aggregate results by both state and city, even though it does not display which
city belongs to each group. Therefore, results are potentially misleading.

You may think the following query should produce similar results to the previous query, since only the vector
aggregate seems to tally the number of each city for each row:

select state, count(au_id) from authors group by city

However, its results are much different. By not using group by with both the state and city columns, the
query tallies the number of each city, but it displays the tally for each row of that city in authors rather than
grouping them into one result row per city.

state ----- -----------
CA 1
CA 5
CA 2
CA 1
CA 5
KS 1
CA 2
CA 2
CA 1
CA 1
TN 1
OR 1
CA 1
MI 1
IN 1
CA 5
CA 5
CA 5
MD 1
CA 2
CA 1
UT 2
UT 2 (23 rows affected)

When you use the Transact-SQL extensions in complex queries that include the where clause or joins, the
results may become even more difficult to understand. To avoid confusing or misleading results with group by,
SAP suggests that you use the fipsflagger option to identify queries that contain Transact-SQL extensions.

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 297

Related Information

group by and SQL Standards [page 295]

10.6.4 Expressions and group by

Use group by for an expression that does not include aggregate functions.

For example:

select avg(total_sales), total_sales * price from titles group by total_sales * price

--------- ------------- 2045 22,392.75
 2032 40,619.68
 4072 81,399.28
 NULL NULL
 4095 61,384.05
 18722 55,978.78
 375 7,856.25
 15096 180,397.20
 3876 46,318.20
 111 777.00
 3336 26,654.64
 4095 81,859.05
 22246 66,515.54
 8780 201,501.00
 375 8,096.25
 4095 81,900.00
 (16 rows affected)

The expression “total_sales * price” is allowed.

You cannot use group by on a column heading, also known as an alias, although you can still use one in your
select list. This statement produces an error message:

select Category = type, title_id, avg(price), avg(advance) from titles
group by Category

Msg 207, Level 16, State 4:
Line 1:
Invalid column name 'Category'
Msg 207, Level 16, State 4:
Line 1: Invalid column name 'Category'

The group by clause should be “group by type,” not “group by Category.”

select Category = type, title_id, avg(price), avg(advance) from titles
group by type

 21.48
 13.73

298 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

 11.49
 15.96
 NULL
13.50 (6 rows affected)

10.6.5 group by in Nested Aggregates

Use group by to nest a vector aggregate inside a scalar aggregate.

For example, to find the average price of all types of books using a nonnested aggregate, enter:

select avg(price) from titles group by type

--------------- NULL
13.73
11.49
21.48
13.50
15.96
 (6 rows affected)

Nesting the average price inside the max function produces the highest average price of a group of books,
grouped by type:

select max(avg(price)) from titles group by type

------------- 21.48
 (1 row affected)

By definition, the group by clause applies to the innermost aggregate—in this case, avg.

10.6.6 Null Values and group by

If the grouping column contains a null value, that row becomes its own group in the results. If the grouping
column contains more than one null value, all null values form a single group.

This example uses group by and the advance column, which contains some null values:

select advance, avg(price * 2) from titles group by advance

advance

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 299

------------------ -----------------
 NULL NULL
 0.00 39.98
 2000.00 39.98
 2275.00 21.90
 4000.00 19.94
 5000.00 34.62
 6000.00 14.00
 7000.00 43.66
 8000.00 34.99
 10125.00 5.98
 15000.00 5.98
 (11 rows affected)

If you are using the count(<column_name>) aggregate function, grouping by a column that contains null
values returns a count of zero for the grouping row, since count(<column_name>) does not include null
values. In most cases, use count(*) instead. This example groups and counts on the price column from the
titles table, which contains null values, and shows count(*) for comparison:

select price, count(price), count(*) from titles group by price

price ------------- ----- -----
 NULL 0 2
 2.99 2 2
 7.00 1 1
 7.99 1 1
 10.95 1 1
 11.95 2 2
 14.99 1 1
 19.99 4 4
 20.00 1 1
 20.95 1 1
 21.59 1 1
 22.95 1 1
 (12 rows affected)

10.6.7 where Clause and group by

You can use a where clause in a statement with group by.

Rows that do not satisfy the conditions in the where clause are eliminated before any grouping is done:

select type, avg(price) from titles
where advance > 5000 group by type

type ------------- --------
business 2.99
mod_cook 2.99
popular_comp 21.48
psychology 14.30

300 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

trad_cook 17.97
 (5 rows affected)

Only the rows with advances of more than $5000 are included in the groups that are used to produce the
query results.

The way SAP ASE handles extra columns in the select list and the where clause may seem contradictory. For
example:

select type, advance, avg(price) from titles
where advance > 5000 group by type

type advance ------------- --------- --------
business 5,000.00 2.99
business 5,000.00 2.99
business 10,125.00 2.99
business 5,000.00 2.99
mod_cook 0.00 2.99
mod_cook 15,000.00 2.99
popular_comp 7,000.00 21.48
popular_comp 8,000.00 21.48
popular_comp NULL 21.48
psychology 7,000.00 14.30
psychology 2,275.00 14.30
psychology 6,000.00 14.30
psychology 2,000.00 14.30
psychology 4,000.00 14.30
trad_cook 7,000.00 17.97
trad_cook 4,000.00 17.97
trad_cook 8,000.00 17.97
 (17 rows affected)

When you look at the results for the advance (extended) column, it may seem as though the query is ignoring
the where clause. SAP ASE still computes the vector aggregate using only those rows that satisfy the where
clause, but it also displays all rows for any extended columns that you include in the select list. To further
restrict these rows from the results, use a having clause.

Related Information

Select Groups of Data: the having Clause [page 304]

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 301

10.6.8 group by and all

The keyword all in the group by clause is a Transact-SQL enhancement. It is meaningful only if the select
statement in which it is used also includes a where clause.

If you use all, the query results include all the groups produced by the group by clause, even if some groups
do not have any rows that meet the search conditions. Without all, a select statement that includes group
by does not show groups for which no rows qualify.

Here is an example:

select type, avg(advance) from titles
where advance > 1000 and advance < 10000 group by type

type ------------ ------------------------
business 5,000.00
popular_comp 7,500.00
psychology 4,255.00
trad_cook 6,333.33
 (4 rows affected)

select type, avg(advance) from titles
where advance > 1000 and advance < 10000 group by all type

type ------------ ------------------------
UNDECIDED NULL
business 5,000.00
mod_cook NULL
popular_comp 7,500.00
psychology 4,255.00
trad_cook 6,333.33
 (6 rows affected)

The first statement produces groups only for those books that commanded advances of more than $1000 but
less than $10,000. Since no modern cooking books have an advance within that range, there is no group in the
results for the mod_cook type.

The second statement produces groups for all types, including modern cooking and “UNDECIDED,” even
though the modern cooking group does not include any rows that meet the qualification specified in the where
clause. SAP ASE returns a NULL result for all groups that lack qualifying rows.

302 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

10.6.9 Aggregates Without group by

By definition, scalar aggregates apply to all rows in a table, producing a single value for the entire table for each
function.

This Transact-SQL extension allows you to include extended columns with vector aggregates also allows you
to include extended columns with scalar aggregates. For example, look at the publishers table:

pub_id pub_name city state ------ ------------------ -------------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC 1389 Algodata Infosystems Berkeley CA

It contains three rows. The following query produces a three-row scalar aggregate based on each row of the
table:

select pub_id, count(pub_id) from publishers

pub_id ---------- ---------
0736 3
0877 3
1389 3
 (3 rows affected)

Because SAP ASE treats publishers as a single group, the scalar aggregate applies to the (single-group)
table. The results display every row of the table for each column you include in the select list, in addition to the
scalar aggregate.

The where clause behaves the same way for scalar aggregates as with vector aggregates. The where clause
restricts the columns included in the aggregate summary values, but it does not affect the rows that appear in
the results for each extended column you specify in the select list. For example:

select pub_id, count(pub_id) from publishers where pub_id < "1000"

pub_id -------------- -----------
0736 2
0877 2
1389 2
 (3 rows affected)

Like the other Transact-SQL extensions to group by, this extension provides results that may be difficult to
understand, especially for queries on large tables, or queries with multitable joins.

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 303

10.7 Select Groups of Data: the having Clause
Use the having clause to display or reject rows defined by the group by clause.

The having clause sets conditions for the group by clause in the same way where sets conditions for the
select clause, except where cannot include aggregates, while having often does. This example is allowed:

select title_id from titles
where title_id like "PS%" having avg(price) > $2.0

But this example is not:

select title_id from titles
where avg(price) > $20

Msg 147, Level 15, State 1
Line 1:
An aggregate function may not appear in a WHERE clause unless it is in a subquery
that is in a HAVING clause, and the column being aggregated is in a table named in a FROM clause outside of the subquery.

having clauses can reference any of the items that appear in the select list.

This statement is an example of a having clause with an aggregate function. It groups the rows in the titles
table by type, but eliminates the groups that include only one book:

select type from titles
group by type having count(*) > 1

type ----------------
business
mod_cook
popular_comp
psychology
trad_cook
 (5 rows affected)

Here is an example of a having clause without aggregates. It groups the titles table by type and returns
only those types that start with the letter “p”:

select type from titles
group by type having type like "p%"

type ------------
popular_comp
psychology
 (2 rows affected)

304 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

When you include more than one condition in the having clause, combine the conditions with and, or, or not.
For example, to group the titles table by publisher, and to include only those publishers who have paid more
than $15,000 in total advances, whose books average less than $18 in price, and for which the book
identification numbers (pub_id) are greater than 0800, the statement is:

select pub_id, sum(advance), avg(price) from titles
group by pub_id
having sum(advance) > 15000
 and avg(price) < 18 and pub_id > "0800"

pub_id ------ ---------------- ----------------
0877 41,000.00 15.41
 (1 row affected)

10.7.1 Interactions between having, group by, and where
Clauses

When you include the having, group by, and where clauses in a query, the sequence in which each clause
affects the rows determines the final results.

● The where clause excludes rows that do not meet its search conditions.
● The group by clause collects the remaining rows into one group for each unique value in the group by

expression.
● Aggregate functions specified in the select list calculate summary values for each group.
● The having clause excludes rows from the final results that do not meet its search conditions.

The following query illustrates the use of where, group by, and having clauses in one select statement
containing aggregates:

select stor_id, title_id, sum(qty) from salesdetail
where title_id like "PS%"
group by stor_id, title_id having sum(qty) > 200

stor_id title_id ------- -------- -----------
5023 PS1372 375
5023 PS2091 1,845
5023 PS3333 3,437
5023 PS7777 2,206
6380 PS7777 500
7067 PS3333 345
7067 PS7777 250
 (7 rows affected)

The query executed in this order:

1. The where clause identified only rows with title_id beginning with “PS” (psychology books),

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 305

2. group by collected the rows by common stor_id and title_id,
3. The sum aggregate calculated the total number of books sold for each group, and
4. The having clause excluded from the final results the groups for which the book totals do not exceed 200

books.

All of the previous having examples in this section adhere to the SQL standards, which specify that columns
in a having expression must have a single value, and must be in the select list or group by clause. However,
the Transact-SQL extensions to having allow columns or expressions not in the select list and not in the
group by clause.

The following example determines the average price for each title type, but excludes those types that do not
have more than $10,000 in total sales, even though the sum aggregate does not appear in the results.

select type, avg(price) from titles
group by type having sum(total_sales) > 10000

type ------------ ----------
business 13.73
mod_cook 11.49
popular_comp 21.48
trad_cook 15.96
 (4 rows affected)

The extension behaves as if the column or expression were part of the select list but not part of the results. If
you include a nonaggregated column with having, but it is not part of the select list or the group by clause,
the query produces results similar to the “extended” column extension. For example:

select type, avg(price) from titles
group by type having total_sales > 4000

type ------------ ----------
business 13.73
business 13.73
business 13.73
mod_cook 11.49
popular_comp 21.48
popular_comp 21.48
psychology 13.50
trad_cook 15.96
trad_cook 15.96
 (9 rows affected)

Unlike an extended column, the total_sales column does not appear in the final results, yet the number of
displayed rows for each type depends on the total_sales for each title. The query indicates that three
business, one mod_cook, two popular_comp, one psychology, and two trad_cook titles exceed $4000 in total
sales.

306 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

As mentioned earlier, the way SAP ASE handles extended columns may seem as if the query is ignoring the
where clause in the final results. To make the where conditions affect the results for the extended column,
repeat the conditions in the having clause. For example:

select type, advance, avg(price) from titles
where advance > 5000
group by type having advance > 5000

type advance ------------- --------- --------
business 10,125.00 2.99
mod_cook 15,000.00 2.99
popular_comp 7,000.00 21.48
popular_comp 8,000.00 21.48
psychology 7,000.00 14.30
psychology 6,000.00 14.30
trad_cook 7,000.00 17.97
trad_cook 8,000.00 17.97
 (8 rows affected)

10.7.2 having Without group by

A query with a having clause should also have a group by clause. If you omit group by, all the rows not
excluded by the where clause return as a single group.

Because no grouping is performed between the where and having clauses, they cannot act independently of
each other. having acts like where because it affects the rows in a single group rather than groups, except the
having clause can still use aggregates.

This example uses the having clause averages the price, excludes from the results titles with advances
greater than $4,000, and produces results where price is less than the average price:

select title_id, advance, price from titles
where advance < 4000 having price > avg(price)

title_id advance price ------------- --------- --------
BU1032 5,000.00 19.99
BU7832 5,000.00 19.99
MC2222 0.00 19.99
PC1035 7,000.00 22.95
PC8888 8,000.00 20.00
PS1372 7,000.00 21.59
PS3333 2,000.00 19.99
TC3218 7,000.00 20.95
 (8 rows affected)

You can also use the having clause with the Transact-SQL extension that allows you to omit the group by
clause from a query that includes an aggregate in its select list. These scalar aggregate functions calculate
values for the table as a single group, not for groups within the table.

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 307

In this example, the group by clause is omitted, which makes the aggregate function calculate a value for the
entire table. The having clause excludes non-matching rows from the result group.

select pub_id, count(pub_id) from publishers having pub_id < "1000"

pub_id ------ ----------------
0736 3
0877 3
 (2 rows affected)

10.8 Sort Query Results: the order by Clause

The order by clause allows you to sort query results by up to as many as 400 columns. Each sort is either
ascending (asc) or descending (desc). If neither is specified, asc is the default.

The following query orders results by pub_id:

select pub_id, type, title_id from titles order by pub_id

pub_id type title_id ------ ------------ --------
0736 business BU2075
0736 psychology PS2091
0736 psychology PS2106
0736 psychology PS3333
0736 psychology PS7777
0877 UNDECIDED MC3026
0877 mod_cook MC2222
0877 mod_cook MC3021
0877 psychology PS1372
0877 trad_cook TC3218
0877 trad_cook TC4203
0877 trad_cook TC7777
1389 business BU1032
1389 business BU1111
1389 business BU7832
1389 popular_comp PC1035
1389 popular_comp PC8888
1389 popular_comp PC9999
 (18 rows affected)

Multiple Columns

If you name more than one column in the order by clause, SAP ASE nests the sorts. The following statement
sorts the rows in the stores table first by stor_id in descending order, then by payterms (in ascending

308 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

order, since desc is not specified), and finally by country (also ascending). SAP ASE sorts null values first
within any group.

select stor_id, payterms, country from stores order by stor_id desc, payterms

stor_id payterms country ------- ------------ ------------
8042 Net 30 USA
7896 Net 60 USA
7131 Net 60 USA
7067 Net 30 USA
7066 Net 30 USA
6380 Net 60 USA
5023 Net 60 USA (7 rows affected)

Column Position Numbers

You can use the position number of a column in a select list instead of the column name. You can mix column
names and select list numbers. Both of the following statements produce the same results as the preceding
one.

select pub_id, type, title_id from titles order by 1 desc, 2, 3

select pub_id, type, title_id from titles order by 1 desc, type, 3

Most versions of SQL require that order by items appear in the select list, but Transact-SQL has no such
restriction. You can order the results of the preceding query by title, although that column does not appear
in the select list.

Note
You cannot use order by on text, unitext, or image columns.

Aggregate Functions

Aggregate functions are permitted in an order by clause, but they must follow a syntax that avoids ambiguity
about which order by column is subject to the union expression. However, the name of columns in a union is
derived from the first (leftmost) part of the union. This means that the order by clause uses only column
names specified in the first part of the union.

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 309

For example, the following syntax works, because the column identified by the order by key is clearly
specified:

select id, min(id) from tab union
select id, max(id) from tab ORDER BY 2

However, this example produces an error message:

select id+2 from sysobjects union
select id+1 from sysobjects
order by id+1

Msg 104, Level 15, State1:
Line 3: Order-by items must appear in the select list if the statement contains set
operators.

If you rearrange the statement by trading the union sides, it executes correctly:

select id+1 from sysobjects union
select id+2 from sysobjects order by id+1

Null Values

With order by, null values come before all others.

Mixed-Case Data

The effects of an order by clause on mixed-case data depend on the sort order installed on your SAP ASE.
The basic choices are binary, dictionary order, and case-insensitive. sp_helpsort displays the sort order for
your server. See System Administration Guide: Volume 1 > Configuring Character Sets, Sort Orders, and
Languages.

Limitations

SAP ASE does not allow subqueries or variables in the order by list.

You cannot use order by on text, unitext, or image columns.

310 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

10.8.1 order by and group by

You can use an order by clause to order the results of a group by in a particular way.

Put the order by clause after the group by clause. For example, to find the average price of each type of
book and order the results by average price, the statement is:

select type, avg(price) from titles
group by type order by avg(price)

type ---------- ------------
UNDECIDED NULL
mod_cook 11.49
psychology 13.50
business 13.73
trad_cook 15.96
popular_comp 21.48
 (6 rows affected)

10.8.2 order by and group by Used with select distinct

A select distinct query with order by or group by can return duplicate values if the order by or
group by column is not in the select list.

For example, the following query orders results by pub_id:

select distinct pub_id from titles order by type

pub_id ------
0877
0736
1389
0877
1389
0736
0877
0877
 (8 rows affected)

If a query has an order by or group by clause that includes columns not in the select list, SAP ASE adds
those columns as hidden columns in the columns being processed. The columns listed in the order by or
group by clause are included in the test for distinct rows. To comply with ANSI standards, include the order
by or group by column in the select list. For example:

select distinct pub_id, type from titles

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 311

order by type

pub_id type ------ ------------
0877 UNDECIDED
0736 business
1389 business
0877 mod_cook
1389 popular_comp
0736 psychology
0877 psychology
0877 trad_cook
 (8 rows affected)

10.9 Summarize Groups of Data: the compute Clause

The compute clause is a Transact-SQL extension. Use it with row aggregates to produce reports that show
subtotals of grouped summaries.

Such reports, usually produced by a report generator, are called control-break reports, since summary values
appear in the report under the control of the groupings (“breaks”) you specify in the compute clause.

These summary values appear as additional rows in the query results, unlike the aggregate results of a group
by clause, which appear as new columns.

A compute clause allows you to see detail and summary rows with a single select statement. You can
calculate summary values for subgroups and you can calculate more than one row aggregate for the same
group.

The general syntax for compute is:

compute <row_aggregate>(<column_name>) [, <row_aggregate>(<column_name>)]... [by <column_name> [, <column_name>]...]

The row aggregates you can use with compute are sum, avg, min, max, and count, and count_big. You can
use sum and avg only with numeric columns. Unlike the order by clause, you cannot use the positional
number of a column from the select list instead of the column name.

Note
You cannot use text, unitext, or image columns in a compute clause.

A system test may fail because there are too many aggregates in the compute clause of a query. The number
of aggregates that each compute clause can accommodate is limited to 127, and if a compute clause contains
more than 127 aggregates, the system generates an error message when you try to execute the query.

Each avg aggregate counts as two aggregates when you are counting toward the limit of 127, because an avg
aggregate is actually a combination of a sum aggregate and a count aggregate.

312 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

Following are two queries and their results. The first one uses group by and aggregates. The second uses
compute and row aggregates. Notice the difference in the results.

select type, sum(price), sum(advance) from titles group by type

type ------------ ------- ----------
UNDECIDED NULL NULL
business 54.92 25,125.00
mod_cook 22.98 15,000.00
popular_comp 42.95 15,000.00
psychology 67.52 21,275.00
trad_cook 47.89 19,000.00
 (6 rows affected)

select type, price, advance from titles
order by type compute sum(price), sum(advance) by type

type price advance ------------ ------------------------ --------
UNDECIDED NULL NULL

Compute Result:
------------------------ ------------------------
 NULL NULL

type price advance
------------ -------------------- ----------
business 2.99 10,125.00
business 11.95 5,000.00
business 19.99 5,000.00
business 19.99 5,000.00

Compute Result:
------------------------ ------------------------
 54.92 25,125.00
type price advance
------------ ----------------------- ---------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00

Compute Result:
------------------------ ------------------------
 22.98 15,000.00

type price advance
------------- ------------------- ------------
popular_comp NULL NULL
popular_comp 20.00 8,000.00
popular_comp 22.95 7,000.00

Compute Result:
------------------------ ------------------------
 42.95 15,000.00

type price advance
------------ ------------------------ --------
psychology 7.00 6,000.00
psychology 7.99 4,000.00

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 313

psychology 10.95 2,275.00
psychology 19.99 2,000.00
psychology 21.59 7,000.00

Compute Result:
------------------------ ------------------------
 67.52 21,275.00

type price advance
------------ ----------------------- --------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

Compute Result:
------------------------ ------------------------
 47.89 19,000.00
 (24 rows affected)

Each summary value is treated as a row.

Related Information

Row Aggregates and compute [page 314]

10.9.1 Row Aggregates and compute

Row aggregates can be used with compute statement.

This table describes how aggregates are used with a compute statement:

Row Aggregates Result

sum Total of the values in the expression

avg Average of the values in the expression

max Highest value in the expression

min Lowest value in the expression

count Number of selected rows as an integer

count_big Number of selected rows as a bigint

These row aggregates are the same aggregates that can be used with group by, except there is no row
aggregate function that is the equivalent of count(*). To find the summary information produced by group
by and count(*), use a compute clause without the by keyword.

314 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

10.9.1.1 Rules for compute Clauses

There are several rules to consider when using the compute clause.

● SAP ASE does not allow the distinct keyword with the row aggregates.
● The columns in a compute clause must also be in the select list.
● You cannot use select into in the same statement as a compute clause because statements that

include compute do not generate normal rows.
● You cannot use a compute clause in a select statement within an insert statement, for the same

reason: statements that include compute do not generate normal rows.
● If you use compute with the by keyword, you must also use an order by clause. The columns listed

after by must be identical to, or a subset of, those listed after order by, and must be in the same left-to-
right order, start with the same expression, and cannot skip any expressions.
For example, suppose the order by clause is:

order by <a, b>, <c>

The compute clause can be any or all of these:

compute <row_aggregate> (<column_name>) by <a, b, c >

compute <row_aggregate> (<column_name>) by <a, b >

compute <row_aggregate> (<column_name>) by <a>

The compute clause cannot be any of these:

compute <row_aggregate> (<column_name>) by <b, c >

compute <row_aggregate> (<column_name>) by <a, c>

compute <row_aggregate> (<column_name>) by <c>

You must use a column name or an expression in the order by clause; you cannot sort by a column
heading.

● You can use the compute keyword without by to generate grand totals, grand counts, and so on. order
by is optional if you use the compute keyword without by.

Related Information

Databases and Tables [page 50]
Generate Totals: compute Without by [page 318]

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 315

10.9.2 Specify More Than One Column After compute

In a query, listing more than one column after the by keyword breaks a group into subgroups, and applies the
specified row aggregate to each level of grouping.

For example, this query finds the sum of the prices of psychology books from each publisher:

select type, pub_id, price from titles
where type = "psychology"
order by type, pub_id, price compute sum(price) by type, pub_id

type pub_id price ----------- ------- -------------
psychology 0736 7.00
psychology 0736 7.99
psychology 0736 10.95
psychology 0736 19.99
Compute Result:

 45.93
type pub_id price
----------- ------- -------------
psychology 0877 21.59

Compute Result:

 21.59
 (7 rows affected)

10.9.3 Use More Than One compute Clause

You can use different aggregates in the same statement by including more than one compute clause.

The following query is similar to the preceding one but adds the sum of the prices of psychology books by
publisher:

select type, pub_id, price from titles
where type = "psychology"
order by type, pub_id, price
compute sum(price) by type, pub_id compute sum(price) by type

type pub_id price ----------- ------- --------------
psychology 0736 7.00
psychology 0736 7.99
psychology 0736 10.95
psychology 0736 19.99

Compute Result:

 45.93

type pub_id price

316 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

 ---------- ------- --------------
 psychology 0877 21.59

Compute Result:

 21.59

Compute Result:

 67.52
 (8 rows affected)

10.9.4 Apply an Aggregate to More Than One Column

One compute clause can apply the same aggregate to several columns.

This query finds the sums of prices and advances for each type of cookbook:

select type, price, advance from titles
where type like "%cook"
order by type compute sum(price), sum(advance) by type

type price advance --------- ---------------- ---------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00

Compute Result:
--------------- ---------------
 22.98 15,000.00

type price advance
--------- ---------------- ---------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

Compute Result:
--------------- ---------------
 47.89 19,000.00
 (7 rows affected)

Remember, the columns to which the aggregates apply must also be in the select list.

10.9.5 Use Different Aggregates in the Same compute
Clause

You can use different aggregates in the same compute clause.

select type, pub_id, price from titles

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 317

where type like "%cook"
order by type, pub_id compute sum(price), max(pub_id) by type

type pub_id price ----------- ------- --------------
mod_cook 0877 2.99
mod_cook 0877 19.99

Compute Result:
--------------- ----
 22.98 0877

type pub_id price
----------- ------- --------------
trad_cook 0877 11.95
trad_cook 0877 14.99
trad_cook 0877 20.95

Compute Result:
--------------- ----
 47.89 0877
 (7 rows affected)

10.9.6 Generate Totals: compute Without by

You can use the compute keyword without by to generate grand totals, grand counts, and so on.

This statement finds the grand total of the prices and advances of all types of books that cost more than $20:

select type, price, advance from titles
where price > $20 compute sum(price), sum(advance)

type price advance ------------ ---------------- -------------
popular_comp 22.95 7,000.00
psychology 21.59 7,000.00
trad_cook 20.95 7,000.00

Compute Result:
--------------- ---------
 65.49 21,000.00
 (4 rows affected)

You can use a compute with by and a compute without by in the same query. The following query finds the
sums of prices and advances by type and then computes the grand total of prices and advances for all types of
books.

select type, price, advance from titles
where type like "%cook"
order by type
compute sum(price), sum(advance) by type

318 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

compute sum(price), sum(advance)

type price advance ----------- ----------------- ------------
mod_ cook 2.99 15,000.00
mod_cook 19.99 0.00

Compute Result:
--------------- ---------
 22.98 15,000.00

type price advance
----------- ----------------- ------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

Compute Result:
--------------- ---------
 47.89 19,000.00

Compute Result:
--------------- ---------
 70.87 34,000.00
 (8 rows affected)

10.10 Combine Queries: the union Operator

The union operator combines the results of two or more queries into a single result set.

The Transact-SQL extension to union allows you to:

● Use union in the select clause of an insert statement.
● Specify new column headings in the order by clause of a select statement when union is present in

the select statement.

See the Reference Manual: Commands.

These tables, T1 and T2. T1 shows two columns, “a, char(4),” and “b,”char(4). T2 contains two columns, “a
char(4),” and “b, int.” Each table has three rows: in T1, Row 1 shows “abc” in the “a” column and “1” in the
“b” column. T1 Row 2 shows “def” in the “a” column, and “2” in the “b” column. Row 3 shows “ghi” in the “a”
column, and “3” in the “b int” column. Table T4, Row 1, shows “ghi” in the “a” column and “1” in the “b”
column; Row 2 shows “jkl” in the “a” column and “2” in the “b” column; Row 3 shows “mno” in the “a” column
and “3” in the “b(int)” column.

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 319

The following query creates a union between the two tables:

create table T1 (a char(4), b int) insert T1 values ("abc", 1)
insert T1 values ("def", 2)
insert T1 values ("ghi", 3)
create table T2 (a char(4), b int)
insert T2 values ("ghi", 3)
insert T2 values ("jkl", 4)
insert T2 values ("mno", 5)
select * from T1
union select * from T2

a b ---- ---------
abc 1
def 2
ghi 3
jkl 4
mno 5
 (5 rows affected)

By default, the union operator removes duplicate rows from the result set. Use the all option to include
duplicate rows. Notice also that the columns in the result set have the same names as the columns in T1. You
can use any number of union operators in a Transact-SQL statement. For example:

<x >union <y> union <z>

By default, SAP ASE evaluates a statement containing union operators from left to right. You can use
parentheses to specify a different evaluation order.

For example, the following two expressions are not equivalent:

<x> union all (<y> union <z>) (<x> union all <y>) union <z>

In the first expression, duplicates are eliminated in the union between <y> and <z>. Then, in the union between
that set and <x>, duplicates are not eliminated. In the second expression, duplicates are included in the union
between <x> and <y>, but are then eliminated in the subsequent union with <z>; all does not affect the final
result of this statement.

10.10.1 Guidelines for union Queries

SAP ASE provides recommendations and guidelines when using union statements.

When you use union statements:

● All select lists in the union statement must have the same number of expressions (such as column
names, arithmetic expressions, and aggregate functions). The following statement is invalid because the
first select list is longer than the second:

create table stores_east (stor_id char(4) not null,
stor_name varchar(40) null,

320 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

stor_address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null,
payterms varchar(12) null)
select stor_id, city, state from stores
union
select stor_id, city from stores_east drop table stores_east

● Corresponding columns in all tables, or any subset of columns used in individual queries, must be of the
same datatype, or an implicit data conversion must be possible between the two datatypes, or an explicit
conversion must be supplied. For example, a union between a column of the char datatype and one of
the int datatype is possible, unless an explicit conversion is supplied. However, a union between a
column of the money datatype and one of the int datatype is possible. See union in the Reference
Manual: Commands and, “System and User-Defined Datatypes,” in the Reference Manual: Building Blocks.

● You must place corresponding columns in the individual queries of a union statement in the same order,
because union compares the columns one to one in the order given in the query. For example, suppose
you have the following tables:

The above table shows two tables, T3 and T4. T3 has two columns, “a,” int, and “b,”char(4). T4
contains two columns, “a” char(4), and “b,” int. Each table has three rows: Row 1 shows “1” in the “a”
column, and “abc” in the “b” column. Row 2 shows “2” in the “a” column, and “def” in the “b” column. Row
3 shows “3” in the “a” column, and “ghi” in the “b char” column. Table T4, Row 1, shows “abc” in the “a”
column, “1” in the “b” column; Row 2 shows “def” in the “a” column, “2” in the “b” column; Row 3 shows
“ghi” in the “a” column and “3” in the “b(int)” column.
Enter this query:

select a, b from T3 union select b, a from T4

The query produces:

a b --------- ---
 1 abc
 2 def
 3 ghi
 (3 rows affected)

The following query, however, results in an error message, because the datatypes of corresponding
columns are incompatible:

select a, b from T3 union
select a, b from T4
drop table T3 drop table T4

Transact-SQL Users Guide
Aggregates, Grouping, and Sorting P U B L I C 321

When you combine different (but compatible) datatypes such as float and int in a union statement,
SAP ASE converts them to the datatype with the most precision.

● SAP ASE takes the column names in the table resulting from a union from the first individual query in the
union statement. Therefore, to define a new column heading for the result set, do so in the first query. In
addition, to refer to a column in the result set by a new name, for example, in an order by statement,
refer to it in that way in the first select statement.
The following query is correct:

select Cities = city from stores union
select city from authors order by Cities

Follow these guidelines when you use union statements with other Transact-SQL commands:

● The first query in the union statement may contain an into clause that creates a table to hold the final
result set. For example, the following statement creates a table called results that contains the union of
tables publishers, stores, and salesdetail:

use mastersp_dboption pubs2, "select into", true use pubs2
checkpoint
select pub_id, pub_name, city into results
from publishers
union
select stor_id, stor_name, city from stores
union select stor_id, title_id, ord_num from salesdetail

You can use the into clause only in the first query; if it appears anywhere else, you get an error message.
● You can use order by and compute clauses only at the end of the union statement to define the order of

the final results or to compute summary values. You cannot use them within the individual queries that
make up the union statement. Specifically, you cannot use compute clauses within an
insert...select statement.

● You can use group by and having clauses within individual queries only; you cannot use them to affect
the final result set.

● You can also use the union operator within an insert statement. For example:

create table tour (city varchar(20), state char(2)) insert into tour
 select city, state from stores
 union
 select city, state from authors drop table tour

● You can use the union operator within a create view statement.
● You cannot use the union operator on text and image columns.
● You cannot use the for browse clause in statements involving the union operator.

322 P U B L I C
Transact-SQL Users Guide

Aggregates, Grouping, and Sorting

11 Joins: Retrieve Data from Several Tables

A join operation compares two or more tables (or views) by specifying a column from each, comparing the
values in those columns row by row, and linking the rows that have matching values. It then displays the
results in a new table.

The tables specified in the join can be in the same database or in different databases.

You can state many joins as subqueries, which also involve two or more tables. When you join two or more
tables, the columns being compared must have similar values—that is, values using the same or similar
datatypes.

There are several types of joins, such as equijoins, natural joins, and outer joins. The most common join, the
equijoin, is based on equality. The following join finds the names of authors and publishers located in the same
city:

select au_fname, au_lname, pub_name from authors, publishers where authors.city = publishers.city

au_fname au_lname pub_name -------- -------- --------------------
Cheryl Carson Algodata Infosystems
Abraham Bennet Algodata Infosystems
 (2 rows affected)

Because the query draws on information contained in two separate tables, publishers and authors, you
need a join to retrieve the requested information. This statement joins the publishers and authors tables
using the city column as the link:

where authors.city = publishers.city

When Component Integration Services is enabled, you can perform joins across remote servers. See the
Component Integratin Services Users Guide.

Related Information

Subqueries: Queries Within Other Queries [page 260]

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 323

11.1 Join Syntax

You can embed a join in a select, update, insert, delete, or subquery. Other join restrictions and clauses
may follow the join conditions.

Joins use this syntax:

<start of select, update, insert, delete, or subquery> from {<table_list> | <view_list>} where [not] [<table_name>. | <view_name>.]<column_name> <join_operator> [<table_name>. | <view_name>.]<column_name> [{and | or} [not] [<table_name>.|<view_name>.]<column_name ><join_operator> [<table_nam>e.|<view_name>.]<column_name>]...

<End of select, update, insert, delete, or subquery>

11.2 Joins and the Relational Model

The join operation is the hallmark of the relational model of database management. More than any other
feature, the join distinguishes relational database management systems from other types of database
management systems.

In structured database management systems, often known as network and hierarchical systems, relationships
between data values are predefined. Once a database has been set up, it is difficult to make queries about
unanticipated relationships among the data.

In a relational database management system, relationships among data values are left unstated in the
definition of a database. They become explicit when the data is manipulated—when you query the database,
not when you create it. You can ask any question that comes to mind about the data stored in the database,
regardless of what was intended when the database was set up.

According to the rules of good database design, called normalization rules, each table should describe one
kind of entity—a person, place, event, or thing. That is why, when you want to compare information about two
or more kinds of entities, you need the join operation. Relationships among data stored in different tables are
discovered by joining them.

A corollary of this rule is that the join operation gives you unlimited flexibility in adding new kinds of data to
your database. You can always create a new table that contains data about a different kind of entity. If the new
table has a field with values similar to those in some field of an existing table or tables, it can be linked to those
other tables by joining.

324 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

11.3 How Joins are Structured

A join statement, like a select statement, starts with the keyword select. The columns named after the
select keyword are the columns to be included in the query results, in their desired order.

This example specifies the columns that contained the authors’ names from the authors table, and
publishers’ names from the publishers tables:

select au_fname, au_lname, pub_name from authors, publishers

You do not have to qualify the columns au_fname, au_lname, and pub_name by a table name because there is
no ambiguity about the table to which they belong. But the city column used for the join comparison does
need to be qualified, both the authors and publishers tables include columns with that name:

select au_fname, au_lname, pub_name from authors, publishers where authors.city = publishers.city

Though neither of the city columns is printed in the results, SAP ASE needs the table name to perform the
comparison.

To specify that all the columns of the tables involved in the query be included in the results, use an asterisk (*)
with select. For example, to include all the columns in authors and publishers in the preceding join query,
the statement is:

select * from authors, publishers where authors.city = publishers.city

au_id au_lname au_fname phone address city state postalcode contract pub_id pub_name city state
----------- -------- -------- ------------ ---------------------
238-95-7766 Carson Cheryl 415 548-7723 589 Darwin Ln. Berkeley CA 94705
1 1389 Algodata Infosystem Berkeley CA
409-56-7008 Bennet Abraham 415 658-9932 223 Bateman St Berkeley CA 94705
1 1389 Algodata Infosystems Berkeley CA
 (2 rows affected)

The output shows a total of 2 rows with 13 columns each. Because of the length of the rows, each takes up
multiple horizontal lines. Whenever “*” is used, the columns in the results appear in the order in which they
were stated in the create statement that created the table.

The select list and the results of a join need not include columns from both of the tables being joined. For
example, to find the names of the authors that live in the same city as one of the publishers, your query need
not include any columns from publishers:

select au_lname, au_fname from authors, publishers where authors.city = publishers.city

Just as in any select statement, column names in the select list and table names in the from clause must be
separated by commas.

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 325

11.3.1 The from Clause

Use the from clause to specify the tables and views to use in a join statement. .

This is the clause that indicates to SAP ASE that a join is desired. You can list the tables or views in any order.
The order of tables affects the results that appear only when you use select * to specify the select list.

At most, a query can reference 250 tables and 46 worktables (such as those created by aggregate functions).
The 250-table limit includes:

● Tables (or views on tables) listed in the from clause
● Each instance of multiple references to the same table (self-joins)
● Tables referenced in subqueries
● Tables being created with into
● Base tables referenced by the views listed in the from clause

The following example joins columns from the titles and publishers tables, doubling the price of all books
published in California:

begin tran

update titles set price = price * 2
 from titles, publishers
 where titles.pub_id = publishers.pub_id and publishers.state = "CA"

rollback tran

Table or view names can be qualified by the names of the owner and database, and can be given correlation
names for convenience. For example:

select au_lname, au_fname from pubs2.blue.authors, pubs2.blue.publishers where authors.city = publishers.city

Related Information

Join More Than Two Tables [page 336]
Views: Limit Access to Data [page 395]

326 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

11.3.2 The where Clause

Use the where clause to determine which rows are included in the results of a join statement.

where specifies the connection between the tables and views named in the from clause. Qualify column
names if there is ambiguity about the table or view to which they belong. For example:

where authors.city = publishers.city

This where clause gives the names of the columns to be joined, qualified by table names if necessary, and the
join operator—often equality, sometimes “greater than” or “less than.”

Note
You will get unexpected results if you omit the where clause of a join. Without a where clause, any of the
join queries discussed so far produces 69 rows instead of 2.

The where clause of a join statement can include conditions other than the one that links columns from
different tables. In other words, you can include a join operation and a select operation in the same SQL
statement.

Related Information

How Joins are Processed [page 329]
How Joins are Processed [page 329]

11.3.2.1 Join Operators

Joins that match columns on the basis of equality are called equijoins.

Equijoins use the following comparison operators:

Operator Meaning

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

!= Not equal to

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 327

Operator Meaning

!> Less than or equal to

!< Greater than or equal to

Joins that use the relational operators are collectively called theta joins.

These set of join operators are used for outer joins:

Operator Action

*= Include in the results all the rows from the first table, not just the ones where the joined col
umns match.

=* Include in the results all the rows from the second table, not just the ones where the joined col
umns match.

Related Information

Equijoins and Natural Joins [page 330]

11.3.2.2 Datatypes in Join Columns

The columns being joined must have the same or compatible datatypes. Use the convert function when
comparing columns that are assigned datatypes that cannot be implicitly converted. Columns being joined
need not have the same name, although they often do.

If the datatypes used in the join are compatible, SAP ASE automatically converts them. For example, SAP ASE
converts among any of the numeric type columns:

● bigint
● int
● smallint
● tinyint
● unsigned bigint
● unsigned int
● unsigned smallint
● decimal
● or float

Among any of the character type and date columns, SAP ASE converts:

● char
● varchar

328 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

● unichar
● univarchar
● nchar
● nvarchar
● datetime
● date
● time

Related Information

Transact-SQL Functions [page 475]

11.3.2.3 Joins and Text and Image Columns

You cannot use joins for columns containing text or image values. You can, however, compare the lengths of
text columns from two tables with a where clause.

For example:

where datalength(textab_1.textcol) > datalength(textab_2.textcol)

11.4 How Joins are Processed

Knowing how joins are processed helps to understand them—and to figure out why, when you incorrectly state
a join, you sometimes get unexpected results.

The first step in processing a join is to form the Cartesian product of the tables—all the possible combinations
of the rows from each of the tables. The number of rows in a Cartesian product of two tables is equal to the
number of rows in the first table multiplied by the number of rows in the second table.

The Cartesian product of the authors table and the publishers table is 69 (23 authors multiplied by 3
publishers). You can have a look at a Cartesian product with any query that includes columns from more than
one table in the select list, more than one table in the from clause, and no where clause. For example, if you
omit the where clause from the join used in any of the previous examples, SAP ASE combines each of the 23
authors with each of the 3 publishers, and returns all 69 rows.

select au_lname, au_fname from authors, publishers

This Cartesian product does not contain any particularly useful information. It is actually misleading because it
implies that every author in the database has a relationship with every publisher in the database—which is not
true.

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 329

Including a where clause in the join specifies the columns to be matched and the basis on which to match
them. It may also include other restrictions. Once SAP ASE forms the Cartesian product, it eliminates the rows
that do not satisfy the join by using the conditions in the where clause.

For example, the where clause in the example cited (the Cartesian product of the authors table and the
publishers table) eliminates from the results all rows in which the author’s city is not the same as the
publisher’s city:

where authors.city = publishers.city

11.5 Equijoins and Natural Joins

Joins that are based on equality (=) are called equijoins. Equijoins compare the values in the columns being
joined for equality and then include all the columns in the tables being joined in the results.

This query is an example of an equijoin:

select * from authors, publishers where authors.city = publishers.city

In the results of this statement, the city column appears twice. By definition, the results of an equijoin contain
two identical columns. Because there is usually no point in repeating the same information, one of these
columns can be eliminated by restating the query. The result is called a natural join.

The query that results in the natural join of publishers and authors on the city column is:

select publishers.pub_id, publishers.pub_name, publishers.state, authors.*
from publishers, authors where publishers.city = authors.city

The column publishers.city does not appear in the results.

Another example of a natural join is:

select au_fname, au_lname, pub_name from authors, publishers where authors.city = publishers.city

You can use more than one join operator to join more than two tables, or to join more than two pairs of
columns. These “join expressions” are usually connected with and, although or is also legal.

Following are two examples of joins connected by and. The first lists information about books (type of book,
author, and title), ordered by book type. Books with more than one author have multiple listings, one for each
author.

select type, au_lname, au_fname, title from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id order by type

330 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

The second finds the names of authors and publishers that are located in the same city and state:

select au_fname, au_lname, pub_name from authors, publishers
where authors.city = publishers.city and authors.state = publishers.state

11.6 Joins with Additional Conditions

In a join query, both the where clause and the join condition can include selection criteria.

For example, to retrieve the names and publishers of all the books for which advances of more than $7500
were paid, use:

select title, pub_name, advance from titles, publishers
where titles.pub_id = publishers.pub_id and advance > $7500

title pub_name advance ----------------------------- -------------------- ---------
You Can Combat Computer Stress! New Age Books 10,125.00
The Gourmet Microwave Binnet & Hardley 15,000.00
Secrets of Silicon Valley Algodata Infosystems 8,000.00
Sushi, Anyone? Binnet & Hardley 8,000.00
 (4 rows affected)

The columns being joined (pub_id from titles and publishers) need not appear in the select list and,
therefore, do not show up in the results.

You can include as many selection criteria as you want in a join statement. The order of the selection criteria
and the join condition has no effect on the result.

11.7 Joins Not Based on Equality

The condition for joining the values in two columns does not need to be equality. You can use any of the other
comparison operators: not equal (!=), greater than (>), less than (<), greater than or equal to (>=), and less
than or equal to (<=).

Transact-SQL also provides the operators !> and !<, which are equivalent to <= and >=, respectively.

This example of a greater-than join finds New Age authors who live in states that come after New Age Books’
state, Massachusetts, in alphabetical order.

select pub_name, publishers.state, au_lname, au_fname, authors.state
from publishers, authors
where authors.state > publishers.state

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 331

and pub_name = "New Age Books"

pub_name state au_lname au_fname state ------------- ------ -------------- ----------- -----
New Age Books MA Greene Morningstar TN
New Age Books MA Blotchet-Halls Reginald OR
New Age Books MA del Castillo Innes MI
New Age Books MA Panteley Sylvia MD
New Age Books MA Ringer Anne UT
New Age Books MA Ringer Albert UT
 (6 rows affected)

The following example uses a >= join and a < join to look up the correct royalty from the roysched table,
based on the book’s total sales.

select t.title_id, t.total_sales, r.royalty from titles t, roysched r
where t.title_id = r.title_id
and t.total_sales >= r.lorange and t.total_sales < r.hirange

title_id total_sales royalty -------- ----------- -------
BU1032 4095 10
BU1111 3876 10
BU2075 1872 24
BU7832 4095 10
MC2222 2032 12
MC3021 22246 24
PC1035 8780 16
PC8888 4095 10
PS1372 375 10
PS2091 2045 12
PS2106 111 10
PS3333 4072 10
PS7777 3336 10
TC3218 375 10
TC4203 15096 14
TC7777 4095 10
 (16 rows affected)

11.8 Self-Joins and Correlation Names

Joins that compare values within the same column of one table are called self-joins. To distinguish the two
roles in which the table appears, use aliases, or correlation names.

For example, you can use a self-join to find out which authors in Oakland, California, live in the same postal
code area. Since this query involves a join of the authors table with itself, the authors table appears in two
roles. To distinguish these roles, you can temporarily and arbitrarily give the authors table two different
correlation names—such as au1 and au2—in the from clause. These correlation names qualify the column
names in the rest of the query. The self-join statement looks like this:

select au1.au_fname, au1.au_lname, au2.au_fname, au2.au_lname

332 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

from authors au1, authors au2
where au1.city = "Oakland" and au2.city = "Oakland"
and au1.state = "CA" and au2.state = "CA" and au1.postalcode = au2.postalcode

au_fname au_lname au_fname au_lname --------- ----------- -------- --------
Marjorie Green Marjorie Green
Dick Straight Dick Straight
Dick Straight Dirk Stringer
Dick Straight Livia Karsen
Dirk Stringer Dick Straight
Dirk Stringer Dirk Stringer
Dirk Stringer Livia Karsen
Stearns MacFeather Stearns MacFeather
Livia Karsen Dick Straight
Livia Karsen Dirk Stringer
Livia Karsen Livia Karsen
 (11 rows affected)

List the aliases in the from clause in the same order as you refer to them in the select list, as in this example.
Depending on the query, the results may be ambiguous if you list them in a different order.

To eliminate the rows in the results where the authors match themselves, and are identical except that the
order of the authors is reversed, you can make this addition to the self-join query:

select au1.au_fname, au1.au_lname, au2.au_fname, au2.au_lname
from authors au1, authors au2
where au1.city = "Oakland" and au2.city = "Oakland"
and au1.state = "CA" and au2.state = "CA"
and au1.postalcode = au2.postalcode and au1.au_id < au2.au_id

au_fname au_lname au_fname au_lname --------- ----------- --------- ---------
Dick Straight Dirk Stringer
Dick Straight Livia Karsen
Dirk Stringer Livia Karsen
 (3 rows affected)

It is now clear that Dick Straight, Dirk Stringer, and Livia Karsen all have the same postal code.

11.9 The Not-Equal Join

A not-equal join is useful for restricting the rows returned by a self-join.

In the following example, a not-equal join and a self-join find the categories in which there are two or more
inexpensive (less than $15) books of different prices:

select distinct t1.type, t1.price from titles t1, titles t2
where t1.price < $15
and t2.price < $15
and t1.type = t2.type

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 333

and t1.price != t2.price

type price ---------- -----
business 2.99
business 11.95
psychology 7.00
psychology 7.99
psychology 10.95
trad_cook 11.95
trad_cook 14.99
 (7 rows affected)

The expression “not <column_name> = <column_name>” is equivalent to “<column_name> !=
<column_name>.”

The following example uses a not-equal join combined with a self-join. It finds all the rows in the titleauthor
table where there are two or more rows with the same title_id, but different au_id numbers, that is books
that have multiple authors.

select distinct t1.au_id, t1.title_id from titleauthor t1, titleauthor t2
where t1.title_id = t2.title_id
and t1.au_id != t2.au_id order by t1.title_id

au_id title_id ----------- --------
213-46-8915 BU1032
409-56-7008 BU1032
267-41-2394 BU1111
724-80-9391 BU1111
722-51-5454 MC3021
899-46-2035 MC3021
427-17-2319 PC8888
846-92-7186 PC8888
724-80-9391 PS1372
756-30-7391 PS1372
899-46-2035 PS2091
998-72-3567 PS2091
267-41-2394 TC7777
472-27-2349 TC7777
672-71-3249 TC7777
 (15 rows affected)

For each book in titles, the following example finds all other books of the same type that have a different
price:

select t1.type, t1.title_id, t1.price, t2.title_id, t2.price from titles t1, titles t2
where t1.type = t2.type and t1.price != t2.price

334 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

11.9.1 Not-Equal Joins and Subqueries

Sometimes a not-equal join query is insufficiently restrictive and must be replaced by a subquery.

For example, suppose you want to list the names of authors who live in a city where no publisher is located. For
the sake of clarity, let us also restrict this query to authors whose last names begin with “A”, “B”, or “C”. A not-
equal join query might be:

select distinct au_lname, authors.city from publishers, authors
where au_lname like "[ABC]%" and publishers.city != authors.city

The results are not an answer to the question that was asked:

au_lname city ---------------- ------------
Bennet Berkeley
Carson Berkeley
Blotchet-Halls Corvallis
 (3 rows affected)

The system interprets this query as: “find the names of authors who live in a city where a publisher is not
located.” Only the authors who live in Berkeley and Corvalis qualify – towns that do not have publishers.

In this case, the way that the system handles joins (first finding every eligible combination before evaluating
other conditions) causes this query to return undesirable results. Use a subquery to get the results you want.
A subquery can eliminate the ineligible rows first and then perform the remaining restrictions.

Here is the correct statement:

select distinct au_lname, city from authors
where au_lname like "[ABC]%"
and city not in
(select city from publishers where authors.city = publishers.city)

Now, the results are what you want:

au_lname city ------------- ------------
Blotchet-Halls Corvallis
 (1 row affected)

Related Information

Subqueries: Queries Within Other Queries [page 260]

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 335

11.10 Join More Than Two Tables

You can join more than two tables or join more than two pairs of columns in the same statement.

To find the titles of all the books of a particular type and the names of their authors, use:

select au_lname, au_fname, title from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id and titles.type = "trad_cook"

au_lname au_fname title -------------- ----------- ------------------------
Panteley Sylvia Onions, Leeks, and Garlic: Cooking
 Secrets of the Mediterranean
Blotchet-Halls Reginald Fifty Years in Buckingham Palace
 Kitchens
O’Leary Michael Sushi, Anyone?
Gringlesby Burt Sushi, Anyone?
Yokomoto Akiko Sushi, Anyone?
 (5 rows affected)

One of the tables in the from clause, titleauthor, does not contribute any columns to the results. Nor do
any of the columns that are joined—au_id and title_id—appear in the results. Nonetheless, this join is
possible only by using titleauthor as an intermediate table.

You can also join more than two pairs of columns in the same statement. For example, here is a query that
shows the title_id, its total sales and the range in which they fall, and the resulting royalty:

select titles.title_id, total_sales, lorange, hirange, royalty from titles, roysched
where titles.title_id = roysched.title_id
and total_sales >= lorange and total_sales < hirange

title_id total_sales lorange hirange royalty -------- ----------- ------- ------- -------
 BU1032 4095 0 5000 10
 BU1111 3876 0 4000 10
 BU2075 18722 14001 50000 24
 BU7832 4095 0 5000 10
 MC2222 2032 2001 4000 12
 MC3021 2224 12001 50000 24
 PC1035 8780 4001 10000 16
 PC8888 4095 0 5000 10
 PS1372 375 0 10000 10
 PS2091 2045 1001 5000 12
 PS2106 111 0 2000 10
 PS3333 4072 0 5000 10
 PS7777 3336 0 5000 10
 TC3218 375 0 2000 10
 TC4203 15096 8001 16000 14
 TC7777 4095 0 5000 10
 (16 rows affected)

336 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

When there is more than one join operator in the same statement, either to join more than two tables or to join
more than two pairs of columns, the “join expressions” are almost always connected with and, as in the earlier
examples. However, it is also legal to connect them with or.

11.11 Star Joins

A star join is a commonly used data warehouse query that runs against a star schema database, which
consists of a large table (also known as a fact table) surrounded by dimension tables.

Fact tables typically include two types of columns: one that includes measurements, metrics, or facts about
the business process, and another column that includes foreign keys to dimension tables. Dimension tables
usually include descriptive attributes. For example, a fact table may include information about the number of
hiking books sold by a particular author on a particular day. The corresponding dimension table includes the
address, age, and gender of the author.

See Performance and Tuning Series: Query Processing and Abstract Plans > Joins: Retrieve Data from Several
Tables > Query Plan Optimization with Star Joins.

11.12 Outer Joins

Joins that include all rows, regardless of whether there is a matching row, are called outer joins.

For example, the following query joins the titles and the titleauthor tables on their title_id column:

select * from titles, titleauthor where titles.title_id *= titleauthor.title_id

SAP supports both Transact-SQL and ANSI outer joins. Transact-SQL outer joins use the *= command to
indicate a left outer join and the =* command to indicate a right outer join. Transact-SQL outer joins were
created by SAP as part of the Transact-SQL language.

ANSI outer joins use the keywords left join and right join to indicate a left and right join, respectively.
SAP implemented the ANSI outer join syntax to fully comply with the ANSI standard. This is the previous
example rewritten as an ANSI outer join:

select * from titles left join titleauthor on titles.title_id = titleauthor.title_id

Related Information

Transact-SQL Outer Joins [page 351]
ANSI Inner and Outer Joins [page 339]

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 337

11.12.1 Inner and Outer Tables

The terms outer table and inner table describe the placement of tables in an outer join.

● In a left join, the outer table and inner table are the left and right tables respectively. The outer table and
inner table are also referred to as the row-preserving and null-supplying tables, respectively.

● In a right join, the outer table and inner table are the right and left tables, respectively.

For example, in the queries below, T1 is the outer table and T2 is the inner table:

T1 left join T2 T2 right join T1

Or, using Transact-SQL syntax:

T1 *= T2 T2 =* T1

11.12.2 Outer Join Restrictions

If a table is an inner member of an outer join, it cannot participate in both an outer join clause and a regular join
clause.

The following query fails because the salesdetail table is part of both the outer join and a regular join
clause:

select distinct sales.stor_id, stor_name, title from sales, stores, titles, salesdetail
where qty > 500
and salesdetail.title_id =* titles.title_id
and sales.stor_id = salesdetail.stor_id and sales.stor_id = stores.stor_id

Msg 303, Level 16, State 1: Server ’FUSSY’, Line 1: The table ’salesdetail’ is an inner member of an outer-join clause. This is not
allowed if the table also participates in a regular join clause.

If you want to know the name of the store that sold more than 500 copies of a book, you must use a second
query. If you submit a query with an outer join and a qualification on a column from the inner table of the outer
join, the results may not be what you expect. The qualification in the query does not restrict the number of
rows returned, but rather affects which rows contain the null value. For rows that do not meet the qualification,
a null value appears in the inner table’s columns of those rows.

11.12.3 Views Used with Outer Joins

If you define a view with an outer join, then query the view with a qualification on a column from the inner table
of the outer join, the results may not be what you expect. The query returns all rows from the inner table.

Rows that do not meet the qualification show a null value in the appropriate columns of those rows.

338 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

The following rules determine the types of updates you can make to columns through join views:

● delete statements are not allowed on join views.
● insert statements are not allowed on join views created with check option.
● update statements are allowed on join views with check option. The update fails if any of the

affected columns appear in the where clause, in an expression that includes columns from more than one
table.

● If you insert or update a row through a join view, all affected columns must belong to the same base table.

11.12.4 ANSI Inner and Outer Joins

Use ANSI join syntax to write either inner joins or outer joins, or to join views.

This is the ANSI syntax for joining tables:

<left_table> [inner | left [outer] | right [outer]] join <right_table> on <left_column_name> = <right_column_name>

The result of the join between the left and the right tables is called a joined table. Joined tables are defined in
the from clause. For example:

select titles.title_id, title, ord_num, qty from titles left join salesdetail on titles.title_id = salesdetail.title_id

title_id title ord_num qty ----------------------------- -------------------- -----
BU1032 The Busy Executive AX-532-FED-452-2Z7 200
BU1032 The Busy Executive NF-123-ADS-642-9G3 1000
. . .
TC7777 Sushi, Anyone? ZD-123-DFG-752-9G8 1500
TC7777 Sushi, Anyone? XS-135-DER-432-8J2 1090 (118 rows affected)

ANSI join syntax allows you to write either:

● Inner joins, in which the joined table includes only the rows of the inner and outer tables that meet the
conditions of the on clause. The result set of a query that includes an inner join does not include any null-
supplied rows for the rows of the outer table that do not meet the conditions of the on clause.

● Outer joins, in which the joined table includes all the rows from the outer table, whether or not they meet
the conditions of the on clause. If a row does not meet the conditions of the on clause, values from the
inner table are stored in the joined table as null values. The where clause of an ANSI outer join restricts the
rows that are included in the query result.

SAP ANSI join syntax does not support the using clause.

Related Information

ANSI Inner Joins [page 341]
ANSI outer joins [page 344]

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 339

11.12.4.1 Correlation Name and Column Referencing Rules
for ANSI Joins

SAP ASE provides correlation name and column reference recommendations specifically for ANSI joins.

● If a table or view uses a correlation name reference to a column or view, it must always use the same
correlation name, rather than the table name or view name. That is, you cannot name a table in a query
with a correlation name and then use its table name later. The following example correctly uses the
correlation name t to specify the table where its pub_id column is specified:

select title, t.pub_id, pub_name from titles t left join publishers p on t.pub_id = p.pub_id

However, the following example incorrectly uses the table name instead of the correlation name for the
titles table (t.pub_id) in the on clause of the query, and produces the subsequent error message:

select title, t.pub_id, pub_name from titles t left join publishers p on titles.pub_id = p.pub_id

Msg 107, Level 15, State 1: Server ‘server_name’, Line 1: The column prefix ‘t’ does not match with a table name or alias name used in
the query. Either the table is not specified in the FROM clause or it has a
correlation name which must be used instead.

● The restriction specified in the on clause can reference:
○ Columns that are specified in the joined table’s reference
○ Columns that are specified in joined tables that are contained in the ANSI join (for example, in a nested

join)
○ Correlation names in subqueries for tables specified in outer query blocks

● The condition specified in the on clause cannot reference columns that are introduced in ANSI joins that
contain another ANSI join (typically when the joined table produced by the second join is joined with the
first join).
Here is an example of an illegal column reference that produces an error:

select * from titles left join titleauthor
on titles.title_id=roysched.title_id /*join #1*/
left join roysched
on titleauthor.title_id=roysched.title_id /*join #2*/ where titles.title_id != "PS7777"

The first left join cannot reference the roysched.title_id column because this column is not
introduced until the second join. You can correctly rewrite this query as:

select * from titles
left join (titleauthor
left join roysched
on titleauthor.title_id = roysched.title_id) /*join #1*/
on titles.title_id = roysched.title_id /*join #2*/ where titles.title_id != "PS7777"

340 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

And another example:

select title, price, titleauthor.au_id, titleauthor.title_id, pub_name,
publishers.city from roysched, titles
left join titleauthor
on roysched.title_id=titleauthor.title_id
left join authors on titleauthor.au_id=roysched.au_id, publishers

In this query, neither the roysched table nor the publishers table are part of either left join. Because of
this, neither left join can refer to columns in either the roysched or publishers tables as part of their on
clause condition.

Related Information

Self-Joins and Correlation Names [page 332]

11.12.4.2 ANSI Inner Joins

Joins that produce a result set that includes only the rows of the joining tables that meet the restriction are
called inner joins. Rows that do not meet the join restriction are not included in the joined table.

If you require the joined table to include all the rows from one of the tables, regardless of whether they meet
the restriction, use an outer join.

SAP ASE supports the use of both Transact-SQL inner joins and ANSI inner joins. Queries using Transact-SQL
inner joins separate the tables being joined by commas and list the join comparisons and restrictions in the
where clause. For example:

select au_id, titles.title_id, title, price from titleauthor, titles
where titleauthor.title_id = titles.title_id and price > $15

ANSI-standard inner join syntax is:

select <select_list> from <table1> inner join <table2
 >on <join_condition>

For example, the following use of inner join is equivalent to the Transact-SQL join above:

select au_id, titles.title_id, title, price from titleauthor inner join titles
on titleauthor.title_id = titles.title_id and price > 15

au_id title_id title price ---------- -------- ------------------------ -----
213-46-8915 BU1032 The Busy Executive’s Datab 19.99
409-56-7008 BU1032 The Busy Executive’s Datab 19.99

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 341

. . .
172-32-1176 PS3333 Prolonged Data Deprivation 19.99
807-91-6654 TC3218 Onions, Leeks, and Garlic: 20.95 (11 rows affected)

The two methods of writing joins, ANSI or Transact-SQL, are equivalent. For example, there is no difference
between the result sets produced by the following queries:

select title_id, pub_name from titles, publishers where titles.pub_id = publishers.pub_id

and:

select title_id, pub_name from titles left join publishers on titles.pub_id = publishers.pub_id

An inner join can be part of an update or delete statement. For example, the following query multiplies the
price for all the titles published in California by 1.25:

begin tran

update titles set price = price * 1.25
 from titles inner join publishers
 on titles.pub_id = publishers.pub_id and publishers.state = "CA"

Related Information

ANSI outer joins [page 344]
How Joins are Structured [page 325]

11.12.4.2.1 The Join Table of an Inner Join

An ANSI join specifies which tables or views to join in the query. The table references that are specified in the
ANSI join make up the joined table.

For example, the join table of the following query includes the title, price, advance, and royaltyper
columns:

select title, price, advance, royaltyper from titles inner join titleauthor on titles.title_id = titleauthor.title_id

title price advance royaltyper ----------- ------- ---------- ----------
The Busy... 19.99 5,000.00 40
The Busy... 19.99 5,000.00 60
. . .

342 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

Sushi, A... 14.99 8,000.00 30
Sushi, A... 14.99 8,000.00 40 (25 rows affected)

If a joined table is used as a table reference in an ANSI inner join, it becomes a nested inner join. ANSI nested
inner joins follow the same rules as ANSI outer joins.

A query can reference a maximum of 250 user tables (or 46 worktables) on each side of a union, including:

● Base tables or views listed in the from clause
● Each correlated reference to the same table (self-join)
● Tables referenced in subqueries
● Base tables referenced by the views or nested views
● Tables being created with into

11.12.4.2.2 The on Clause of an ANSI Inner Join

The on clause of an ANSI inner join specifies the conditions used when the tables or views are joined.
Although you can use a join on any column of a table, performance may be better if the columns are indexed.

Often, you must use qualifiers (table or correlation names) to uniquely identify the columns and the tables to
which they belong. For example:

from titles t left join titleauthor ta on t.title_id = ta.title_id

This on clause eliminates rows from both tables where there is no matching title_id.

The on clause often compares the ANSI joins tables, as in the third and fourth line of this query:

select title, price, pub_name from titles inner join publishers
on titles.pub_id = publishers.pub_id and total_sales > 300

The join restriction specified in this on clause removes all rows from the join table that do not have sales
greater than 300. The on clause can include an and qualifier to furthor specify search arguments, as
illustrated in the fourth line of the query.

ANSI inner joins restrict the result set similarly whether the condition is placed in the on clause or the where
clause (unless they are nested in an outer join). That is, these two queries produce the same result sets:

select stor_name, stor_address, ord_num, qty from salesdetail inner join stores
on salesdetail.stor_id = stores.stor_id where qty > 3000

and:

select stor_name, stor_address, ord_num, qty from salesdetail inner join stores
on salesdetail.stor_id = stores.stor_id and qty > 3000

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 343

A query is usually more readable if the restriction is placed in the where clause; this explicitly tells users which
rows of the join table are included in the result set.

Related Information

Self-Joins and Correlation Names [page 332]

11.12.5 ANSI outer joins

Joins that produce a joined table that includes all rows from the outer table, regardless of whether or not the
on clause produces matching rows, are called outer joins.

Inner joins and equijoins produce a result set that includes only the rows from the tables where there are
matching values in the join clause. There are times, however, when you want to include not only the matching
rows, but also the rows from one of the tables where there are no matching rows in the second table. This type
of join is an outer join. In an outer join, rows that do not meet the on clause conditions are included in the
joined table with null-supplied values for the inner table of the outer join. The inner table is also referred to as
the null-supplying member.

SAP recommends that your applications use ANSI outer joins because they unambiguously specify whether
the on or where clause contains the predicate.

Note
Queries that contain ANSI outer joins cannot contain Transact-SQL outer joins, and vice versa. However, a
query with ANSI outer joins can reference a view that contains a Transact-SQL outer join, and vice versa.

ANSI outer join syntax is:

select <select_list> from <table1> {left | right} [outer] join <table2> on <predicate> [<join restriction>]

Left joins retain all the rows of the table reference listed on the left of the join clause; right joins retain all the
rows of the table reference on the right of the join clause. In left joins, the left table reference is referred to as
the outer table, or row-preserving table.

The following example determines the authors who live in the same city as their publishers:

select au_fname, au_lname, pub_name from authors left join publishers on authors.city = publishers.city

au_fname au_lname pub_name --------- ---------- -------------
Johnson White NULL
Marjorie Green NULL
Cheryl Carson Algodata Infosystems
. . .

344 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

Abraham Bennet Algodata Infosystems
. . .
Anne Ringer NULL
Albert Ringer NULL (23 rows affected)

The result set contains all the authors from the authors table. The authors who do not live in the same city as
their publishers produce null values in the pub_name column. Only the authors who live in the same city as
their publishers, Cheryl Carson and Abraham Bennet, produce a non-null value in the pub_name column.

You can rewrite a left outer join as a right outer join by reversing the placement of the tables in the from
clause. Also, if the select statement specifies “select *”, you must write an explicit list of all the column
names, otherwise, the columns in the result set may not be in the same order for the rewritten query.

Here is the previous example rewritten as a right outer join, which produces the same result set as the left
outer join above:

select au_fname, au_lname, pub_name from publishers right join authors on authors.city = publishers.city

Related Information

Transact-SQL Outer Joins [page 351]

11.12.5.1 Placement of the Predicate in the on or where
Clause

The result set of an ANSI outer join depends on whether you place the restriction in the on or the where
clause.

The on clause defines the result set of a joined table and which rows of this joined table have null-supplied
values; the where clause defines which rows of the joined table are included in the result set.

Whether you use an on or a where clause in your join condition depends on what you want your result set to
include. The following examples may help you decide whether to place the predicate in the on or the where
clause.

Predicate Restrictions on an Outer Table

The following query places a restriction on the outer table in the where clause. Because the restriction is
applied to the result of the outer join, it removes all the rows for which the condition is not true:

select title, titles.title_id, price, au_id from titles left join titleauthor
on titles.title_id = titleauthor.title_id

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 345

where titles.price > $20.00

title title_id price au_id ------------------- -------- ---------- -----------------
But Is It User F... PC1035 22.95 238-95-7766
Computer Phobic ... PS1372 21.59 724-80-9391
Computer Phobic ... PS1372 21.59 756-30-7391
Onions, Leeks, a... TC3218 20.95 807-91-6654 (4 rows affected)

Four rows meet the criteria and only these rows are included in the result set.

However, if you move this restriction on the outer table to the on clause, the result set includes all the rows
that meet the on clause condition. Rows from the outer table that do not meet the condition are null-extended:

select title, titles.title_id, price, au_id from titles left join titleauthor
on titles.title_id = titleauthor.title_id and titles.price > $20.00

title title_id price au_id -------------------- --------- ------ ---------------
The Busy Executive’s BU1032 19.99 NULL
Cooking with Compute BU1111 11.95 NULL
You Can Combat Compu BU2075 2.99 NULL
Straight Talk About BU7832 19.99 NULL
Silicon Valley Gastro MC2222 19.99 NULL
The Gourmet Microwave MC3021 2.99 NULL
The Psychology of Com MC3026 NULL NULL
But Is It User Friend PC1035 22.95 238-95-7766
Secrets of Silicon Va PC8888 20.00 NULL
Net Etiquette PC9999 NULL NULL
Computer Phobic and PS1372 21.59 724-80-9391
Computer Phobic and PS1372 21.59 756-30-7391
Is Anger the Enemy? PS2091 10.95 NULL
Life Without Fear PS2106 7.00 NULL
Prolonged Data Depri PS3333 19.99 NULL
Emotional Security: PS7777 7.99 NULL
Onions, Leeks, and Ga TC3218 20.95 807-91-6654
Fifty Years in Buckin TC4203 11.95 NULL
Sushi, Anyone? TC7777 14.99 NULL (19 rows affected)

Moving the restriction to the on clause added 15 null-supplied rows to the result set.

Generally, if your query uses a restriction on an outer table, and you want the result set to remove only the
rows for which the restriction is false, you should probably place the restriction in the where clause to limit the
rows of the result set. Outer table predicates are not used for index keys if they are in the on clause.

Whether you place the restriction on an outer table in the on or where clause ultimately depends on the
information you need the query to return. If you want the result set to include only the rows for which the
restriction is true, place the restriction in the where clause. However, if the result set must include all the rows
of the outer table, regardless of whether they satisfy the restriction, place the restriction in the on clause.

346 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

Restrictions on an Inner Table

The following query includes a restriction on an inner table in the where clause:

select title, titles.title_id, titles.price, au_id from titleauthor left join titles
on titles.title_id = titleauthor.title_id where titles.price > $20.00

title title_id price au_id ------------- -------- ----- -----------
But Is It U... PC1035 22.95 238-95-7766
Computer Ph... PS1372 21.59 724-80-9391
Computer Ph... PS1372 21.59 756-30-7391
Onions, Lee... TC3218 20.95 807-91-6654 (4 rows affected)

Because the restriction of the where clause is applied to the result set after the join is made, all the rows for
which the restriction is not true are removed from the result set. In other words, the where clause is not true
for all null-supplied values and removes them. A join that places its restriction in the where clause is effectively
an inner join.

However, if you move the restriction to the on clause, it is applied during the join and is utilized in the
production of the joined table. In this case, the result set includes all the rows of the inner table for which the
restriction is true, plus all the rows of the outer table, which are null-extended if they do not meet the
restriction criteria:

select title, titles.title_id, price, au_id from titleauthor left join titles
on titles.title_id = titleauthor.title_id and price > $20.00

title title_id price au_id --------- --------- ----------- -----------
NULL NULL NULL 172-32-1176
NULL NULL NULL 213-46-8915
. . .
Onions, TC3218 20.95 807-91-6654
. . .
NUL NULL NULL 998-72-3567
NULL NULL NULL 998-72-3567 (25 rows affected)

This result set includes 21 rows that the previous example did not include.

Generally, if your query requires a restriction on an inner table (for example “and price > $20.00” in query
above), place the condition in the on clause; this preserves the rows of the outer table. If you include a
restriction for an inner table in the where clause, the result set might not include the rows of the outer table.

Like the criteria for the placement of a restriction on an outer table, whether you place the restriction for an
inner table in the on or where clause ultimately depends on the result set you want. If you are interested only
in the rows for which the restriction is true, place the restriction in the where clause. However, if you require
the result set to include all the rows of the outer table, regardless of whether they satisfy the restriction, place
the restriction in the on clause.

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 347

Restrictions Included in Both an Inner and Outer Tables

The restriction in the where clause of the following query includes both the inner and outer tables:

select title, titles.title_id, price, price*qty, qty from salesdetail left join titles
on titles.title_id = salesdetail.title_id where price*qty > $30000.00

title title_id price qty ----------------- -------- ----- --------- -----
Silicon Valley Ga MC2222 19.99 40,619.68 2032
But Is It User Fr PC1035 22.95 45,900.00 2000
But Is It User Fr PC1035 22.95 45,900.00 2000
But Is It User Fr PC1035 22.95 49,067.10 2138
Secrets of Silico PC8888 20.00 40,000.00 2000
Prolonged Data De PS3333 19.99 53,713.13 2687
Fifty Years in Bu TC4203 11.95 32,265.00 2700
Fifty Years in Bu TC4203 11.95 41,825.00 3500 (8 rows affected)

Placing the restriction in the where clause eliminates:

● The rows for which the restriction “price*qty>$30000.0” is false
● The rows for which the restriction “price*qty>$30000.0” is unknown because price is null

To keep the unmatched rows of the outer table, move the restriction into the on clause:

select title, titles.title_id, price, price*qty, qty from salesdetail left join titles
on titles.title_id = salesdetail.title_id and price*qty > $30000.00

title title_id price qty ----------------- -------- ----- --------- -----
NULL NULL NULL NULL 75
NULL NULL NULL NULL 75
. . .
Secrets of Silico PC8888 20.00 40,000.00 2000
. . .
NULL NULL NULL NULL 300
NULL NULL NULL NULL 400 (116 rows affected)

This query retains all 116 rows of the salesdetail table in the result set, and null-extends the rows that do
not meet the restriction.

Where you place the restriction that includes both the inner and outer table depends on the result set you
want. If you are interested in only the rows for which the restriction is true, place the restriction in the where
clause. However, to include all the rows of the outer table, regardless of whether they satisfy the restriction,
place the restriction in the on clause.

348 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

11.12.5.2 Nested ANSI Outer Joins

Nested outer joins use the result set of one outer join as the table reference for another.

For example:

select t.title_id, title, ord_num, sd.stor_id, stor_name from (salesdetail sd
left join titles t
on sd.title_id = t.title_id) /*join #1*/
left join stores on sd.stor_id = stores.stor_id /*join #2*/

title_id title ord_num stor_id stor_name -------- ------------ ------- ------- ------------------------
TC3218 Onions, L... 234518 7896 Fricative Bookshop
TC7777 Sushi, An... 234518 7896 Fricative Bookshop
. . .
TC4203 Fifty Yea... 234518 6380 Eric the Read Books
MC3021 The Gourmet... 234518 6380 Eric the Read Books (116 rows affected)

In this example, the joined table between the salesdetail and titles tables is logically produced first and
is then joined with the columns of the stores table where salesdetail.stor_id equals stores.stor_id.
Semantically, each level of nesting in a join creates a joined table and is then used for the next join.

In the query above, because the first outer join becomes an operator of the second outer join, this query is a
left-nested outer join.

This example shows a right-nested outer join:

select stor_name, qty, date, sd.ord_num from salesdetail sd left join (stores /*join #1 */
left join sales on stores.stor_id = sales.stor_id) /*join #2 */
on stores.stor_id = sd.stor_id where date > "1/1/1990"

stor_name qty date ord_num ------------ ---- ------------------ --------------------
News & Brews 200 Jun 13 1990 12:00AM NB-3.142
News & Brews 250 Jun 13 1990 12:00AM NB-3.142
News & Brews 345 Jun 13 1990 12:00AM NB-3.142
. . .
Thoreau Read 1005 Mar 21 1991 12:00AM ZZ-999-ZZZ-999-0A0
Thoreau Read 2500 Mar 21 1991 12:00AM AB-123-DEF-425-1Z3 Thoreau Read 4000 Mar 21 1991 12:00AM AB-123-DEF-425-1Z3

In this example, the second join (between the stores and the sales tables) is logically produced first, and is
joined with the salesdetail table. Because the second outer join is used as the table reference for the first
outer join, this query is a right-nested outer join.

If the on clause for the first outer join (“from salesdetail. . .”) fails, it supplies null values to both the stores
and sales tables in the second outer join.

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 349

Parentheses in Nested Outer Joins

Nested outer joins produce the same result set with or without parenthesis. Large queries with many outer
joins can be much more readable for users if the joins are structured using parentheses.

The on Clause in Nested Outer Joins

The placement of the on clause in a nested outer join determines which join is logically processed first.
Reading from left to right, the first on clause is the first join to be defined.

In this example, the position of the on clause in the first join (in parentheses) indicates that it is the table
reference for the second join, so it is defined first, producing the table reference to be joined with the authors
table:

select title, price, au_fname, au_lname from (titles left join titleauthor
on titles.title_id = titleauthor.title_id) /*join #1*/
left join authors
on titleauthor.au_id = authors.au_id /*join #2*/ and titles.price > $15.00

title price au_fname au_lname --------------- --------- ------------ -------------
The Busy Exe... 19.99 Marjorie Green
The Busy Exe... 19.99 Abrahame Bennet
. . .
Sushi, Anyon... 14.99 Burt Gringlesby
Sushi, Anyon... 14.99 Akiko Yokomoto (26 rows affected)

However, if the on clauses are in different locations, the joins are evaluated in a different sequence, but still
produce the same result set (this example is for explanatory purposes only; if joined tables are logically
produced in a different order, it is unlikely that they will produce the same result set):

select title, price, au_fname, au_lname from titles left join
(titleauthor left join authors
on titleauthor.au_id = authors.au_id) /*join #2*/
on titles.title_id = titleauthor.title_id /*join #1*/ and au_lname like"Yokomoto"

title price au_fname au_lname ---------------------- ------- ----------- -----------
The Busy Executive’s 19.99 Marjorie Green
The Busy Executive’s 19.99 Abraham Bennet
. . .
Sushi, Anyone? 14.99 Burt Gringlesby
Sushi, Anyone? 14.99 Akiko Yokomoto (26 rows affected)

The position of the on clause of the first join (the last line of the query) indicates that the second left join is a
table reference of the first join, so it is performed first. That is, the result of the second left join is joined with
the titles table.

350 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

11.12.6 Transact-SQL Outer Joins

Transact-SQL includes syntax for both left and right outer joins. The left outer join, *=, selects from the first
table all rows that meet the statement’s restrictions. The second table generates values if there is a match on
the join condition. Otherwise, the second table generates null values.

For example, this left outer join lists all authors and finds the publishers (if any) in their city:

select au_fname, au_lname, pub_name from authors, publishers where authors.city *= publishers.city

The right outer join, =*, selects all rows from the second table that meet the statement’s restrictions. The first
table generates values if there is a match on the join condition. Otherwise, the first table generates null values.

Note
You cannot include a Transact-SQL outer join in a having clause.

A table is either an inner or an outer member of an outer join. If the join operator is *=, the second table is the
inner table; if the join operator is =*, the first table is the inner table. You can compare a column from the inner
table to a constant as well as using it in the outer join. For example, to find out which title has sold more than
4000 copies:

select qty, title from salesdetail, titles where qty > 4000 and titles.title_id *= salesdetail.title_id

However, the inner table in an outer join cannot also participate in a regular join clause.

An earlier example used a join to find the names of authors who live in the same city as a publisher returned
two names: Abraham Bennet and Cheryl Carson. To include all the authors in the results, regardless of
whether a publisher is located in the same city, use an outer join. Here is what the query and the results of the
outer join look like:

select au_fname, au_lname, pub_name from authors, publishers where authors.city *= publishers.city

au_fname au_lname pub_name --------- -------------- ---------------
Johnson White NULL
Marjorie Green NULL
Cheryl Carson Algodata Infosystems
Michael O’Leary NULL
Dick Straight NULL
Meander Smith NULL
Abraham Bennet Algodata Infosystems
Ann Dull NULL
Burt Gringlesby NULL
Chastity Locksley NULL
Morningstar Greene NULL
Reginald Blotche-Halls NULL
Akiko Yokomoto NULL
Innes del Castillo NULL
Michel DeFrance NULL
Dirk Stringer NULL
Stearns MacFeather NULL

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 351

Livia Karsen NULL
Sylvia Panteley NULL
Sheryl Hunter NULL
Heather McBadden NULL
Anne Ringer NULL
Albert Ringer NULL
 (23 rows affected)

The comparison operator *= distinguishes the outer join from an ordinary join. This left outer join tells SAP
ASE to include all the rows in the authors table in the results, whether or not there is a match on the city
column in the publishers table. The results show no matching data for most of the authors listed, so these
rows contain NULL in the pub_name column.

The right outer join is specified with the comparison operator =*, which indicates that all the rows in the
second table are to be included in the results, regardless of whether there is matching data in the first table.

Substituting this operator in the outer join query shown earlier gives this result:

select au_fname, au_lname, pub_name from authors, publishers where authors.city =* publishers.city

au_fname au_lname pub_name --------- --------- ---------------
NULL NULL New Age Books
NULL NULL Binnet & Hardley
Cheryl Carson Algodata Infosystems
Abraham Bennet Algodata Infosystems
 (4 rows affected)

You can further restrict an outer join by comparing it to a constant. This means that you can narrow it to
precisely the values you want to see and use the outer join to list the rows that do not include the specified
values. Look at the equijoin first and compare it to the outer join. For example, to find out which titles had a
sale of more than 500 copies from any store, use this query:

select distinct salesdetail.stor_id, title from titles, salesdetail
where qty > 500 and salesdetail.title_id = titles.title_id

stor_id
title
 ------- --
5023 Sushi, Anyone?
5023 Is Anger the Enemy?
5023 The Gourmet Microwave
5023 But Is It User Friendly?
5023 Secrets of Silicon Valley
5023 Straight Talk About Computers
5023 You Can Combat Computer Stress!
5023 Silicon Valley Gastronomic Treats
5023 Emotional Security: A New Algorithm
5023 The Busy Executive’s Database Guide
5023 Fifty Years in Buckingham Palace Kitchens
5023 Prolonged Data Deprivation: Four Case Studies
5023 Cooking with Computers: Surreptitious Balance Sheets
7067 Fifty Years in Buckingham Palace Kitchens

352 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

(14 rows affected)

You can also use an outer join query to show the titles that did not have a sale of more than 500 copies in any
store:

select distinct salesdetail.stor_id, title from titles, salesdetail
where qty > 500 and salesdetail.title_id =* titles.title_id

stor_id title
 ------- ---
NULL Net Etiquette
NULL Life Without Fear
5023 Sushi, Anyone?
5023 Is Anger the Enemy?
5023 The Gourmet Microwave
5023 But Is It User Friendly?
5023 Secrets of Silicon Valley
5023 Straight Talk About Computers
NULL The Psychology of Computer Cooking
5023 You Can Combat Computer Stress!
5023 Silicon Valley Gastronomic Treats
5023 Emotional Security: A New Algorithm
5023 The Busy Executive’s Database Guide
5023 Fifty Years in Buckingham Palace Kitchens
7067 Fifty Years in Buckingham Palace Kitchens
5023 Prolonged Data Deprivation: Four Case Studies
5023 Cooking with Computers: Surreptitious Balance Sheets
NULL Computer Phobic and Non-Phobic Individuals:
 Behavior Variations
NULL Onions, Leeks, and Garlic: Cooking Secrets of the
 Mediterranean
 (19 rows affected)

You can restrict an inner table with a simple clause. The following example lists the authors who live in the
same city as a publisher, but excludes the author Cheryl Carson, who would normally be listed as an author
living in a publisher’s city:

select au_fname, au_lname, pub_name from authors, publishers
where authors.city =* publishers.city and authors.au_lname != "Carson"

au_fname au_lname pub_name --------- --------- ---------------
NULL NULL New Age Books
NULL NULL Binnet & Hardley
Abraham Bennet Algodata Infosystems
 (3 rows affected)

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 353

11.12.6.1 Outer Joins and Aggregate Extended Columns

An outer join and an aggregate extended column, if you use them together, and if the aggregate extended
column is a column from the inner table of the outer join, cause the result set of a query to equal the result set
of the outer join.

An outer join connects columns in two tables by using the SAP outer join operator, =* or *=. These symbols
are Transact-SQL extension syntax. They are not ANSI SQL symbols, and “outer join” is not a keyword in
Transact-SQL. This section refers only to SAP ASE syntax.

The column specified on the side of the asterisk is the outer column from the outer table, for the purposes of
the outer join.

An aggregate extended column, although it uses aggregate functions (max, min), is not included in the group
by clause of a query.

For example, to create an outer join for which the result contains a null-supplied row, enter:

select publishers.pub_id, titles.price from publishers, titles
where publishers.pub_id *= titles.pub_id
and titles.price > 20.00
pub_id price
------ ----------------- ------
0736 NULL
0877 20.95
0877 21.59
1389 22.95 (4 rows affected)

Similarly, to create an outer join and aggregate column for which the result contains a null-supplied row, enter:

select publishers.pub_id, max(titles.price) from publishers, titles
where publishers.pub_id *= titles.pub_id
and titles.price > 20.00
group by publishers.pub_id
pub_id
--------------- --------
0736 NULL
0877 21.59
1389 22.95 (3 rows affected)

To create an outer join and aggregate column with an aggregate extended column, for which the result
contains a null-supplied row, enter:

select publishers.pub_id, titles.title_id, max(titles.price)
from publishers, titles
where publishers.pub_id *= titles.pub_id
and titles.price > 20.00
group by publishers.pub_id
--------------- --------
.... (54 rows affected)

354 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

11.13 Relocated Joins

Joins between local and remote tables can be relocated to a remote server. The remote system executes the
join using a dynamically created proxy table referring back to the local table, avoiding a significant amount of
network traffic.

This is an example of how to use relocated join:.

A join between local table ls1 and remote table rl1 results in this query being sent to the remote server:

select a,b,c from localserver.testdb.dbo.ls1 t1, rl1 t2 where t1.a = t2.a

The statement sent to the remote server contains a fully qualified reference back to the local table on the local
system. The remote server either dynamically creates a temporary proxy table definition for this table, or uses
an existing proxy table with a matching mapping. The remote server then executes the join and returns the
result set back to the local server.

See the Performance and Tuning Series: Query Processing and Abstract Plans.

11.13.1 Configuring Relocated Joins

You must specifically enable relocated joins for each remote server involved. The remote server must be able
to connect back to the local server using Component Integration Services (CIS).

Procedure

1. Use sp_serveroption to enable relocated joins to be sent to that remote server:

sp_serveroption servername, "relocated joins",true

2. On the remote server, verify that:

○ The remote server has an interface entry for the local server.
○ There is a sysservers entry (added via sp_addserver).
○ External logins have been configured.

3. If you are using dynamically created proxy tables, they are created in tempdb when a relocated join is
received. Enable ddl in tran to ensure that tempdb allows proxy tables:

sp_dboption tempdb,"ddl in tran",true

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 355

11.14 How Null Values Affect Joins

Null values in tables or views being joined never match each other. Since bit columns do not permit null
values, a value of 0 appears in an outer join when there is no match for a bit column in the inner table.

The result of a join of null with any other value is null. Because null values represent unknown or inapplicable
values, Transact-SQL has no basis to match one unknown value to another.

You can detect the presence of null values in a column from one of the tables being joined only by using an
outer join. Each table has a null in the column that will participate in the join. A left outer join displays the null
value in the first table.

Table t1 has two columns, “a” and “b.” Table t2 has two columns, “c” and “d,” and so on. Here is the left outer
join:

select * from t1, t2 where a *= c

a b c d ---------- ------ ----------- ------
1 one NULL NULL
NULL three NULL NULL
4 join4 4 four
 (3 rows affected)

The results make it difficult to distinguish a null in the data from a null that represents a failure to join. When
null values are present in data being joined, it is usually preferable to omit them from the results by using a
regular join.

11.15 Determine Which Table Columns to Join

Use sp_helpjoins to obtain a list of the columns in two tables or views that are likely join candidates.

The syntax is:

sp_helpjoins <table1>,< table2>

For example, to find the likely join columns between titleauthor and titles, use:

sp_helpjoins titleauthor, titles

first_pair

356 P U B L I C
Transact-SQL Users Guide

Joins: Retrieve Data from Several Tables

 ----------------------------- -------------------- title_id title_id

The column pairs that sp_helpjoins shows come from two sources. First, sp_helpjoins checks the
syskeys table in the current database to see if any foreign keys have been defined on the two tables with
sp_foreignkey, and then checks to see if any common keys have been defined on the two tables with
sp_commonkey. If it does not find any common keys there, the procedure applies less restrictive criteria to
identify any keys that may be reasonably joined. It checks for keys with the same user datatypes, and if that
fails, for columns with the same name and datatype.

See the Reference Manual: Procedures.

Transact-SQL Users Guide
Joins: Retrieve Data from Several Tables P U B L I C 357

12 Managing Data

After you create a database, tables, and indexes, you can put data into the tables and work with it—adding,
changing, transferring, and deleting as necessary.

The commands you use to add, change, or delete data are called data modification statements. These
commands include:

● insert – adds new rows to a table.
● update – changes existing rows in a table.
● writetext – adds or changes text, unitext, and image data without writing lengthy changes in the

system’s transaction log.
● delete – removes specific rows from a table.
● truncate table – removes all rows from a table.

See the Reference Manual: Commands.

You can also add data to a table by transferring it from a file using the bulk-copy utility program, bcp. See the
Utility Guide.

You can use insert, update, or delete to modify data in one table per statement. Transact-SQL
enhancements to these commands let you base modifications on data in other tables, and even other
databases.

The data modification commands also work on views, with some restrictions.

Database owners and the owners of database objects can use the grant and revoke commands to specify
the users who are allows to execute data modification commands.Permissions or privileges can be granted to
individual users, groups, or the public for any combination of the data modification commands. Permissions
are discussed in, Managing User Permissions, in the System Administration Guide: Volume 1.

Related Information

Views: Limit Access to Data [page 395]

12.1 Referential Integrity

Keeping data modifications consistent throughout all tables in a database is called referential integrity.

insert, update, delete, writetext, and truncate table allow you to change data without changing
related data in other tables, however, disparities may develop.

One way to manage data consistency is to define referential integrity constraints for the table. Another way is
to create special procedures called triggers that take effect when you give insert, update, and delete

358 P U B L I C
Transact-SQL Users Guide

Managing Data

commands for particular tables or columns (the truncate table command is not caught by triggers or
referential integrity constraints).

For example, if you change the au_id entry for Sylvia Panteley in the authors table, you must also change it
in the titleauthor table and in any other table in the database that has a column containing that value. If you
do not, you cannot find information such as the names of Ms. Panteley’s books, because you cannot make
joins on her au_id column.

To delete data from referential integrity tables, change the referenced tables first and then the referencing
table.

Related Information

Triggers: Enforce Referential Integrity [page 591]
Databases and Tables [page 50]

12.2 Transactions

A transaction is data modification that is performed on a database. A copy of the old and new state of each row
affected by each data modification statement is written to the transaction log.

This means that if you begin a transaction by issuing the begin transaction command, realize you have
made a mistake, and roll the transaction back, the database is restored to its previous condition.

Note
You cannot roll back changes made on a remote SAP ASE by means of a remote procedure call (RPC).

However, if select/into bulkcopy database option is set to false, the default mode of writetext does
not log the transactions. This prevents the transaction log from filling with the extremely long blocks of data
that text, unitext, and image fields may contain. To log changes made with writetext, use the with log
option.

Related Information

Transactions: Maintain Data Consistency and Recovery [page 640]

Transact-SQL Users Guide
Managing Data P U B L I C 359

12.3 Sample Databases

SAP ASE includes the pubs2 and pubs3 sample databases, which are used for most examples in the
documentation.

SAP suggests that you start with a clean copy of the pubs2 or pubs3 database and return it to that state when
you are finished. See a system administrator for help in getting a clean copy of either of these databases.

You can prevent any changes you make from becoming permanent by enclosing all the statements you enter
inside a transaction, and then aborting the transaction when you are finished. For example, start the
transaction by typing:

begin tran modify_pubs2

This transaction is named modify_pubs2. You can cancel the transaction at any time and return the database
to the condition it was in before you began the transaction by typing:

rollback tran modify_pubs2

12.4 Add New Data

Use the insert command to add rows to a database.

To add rows using insert:

● Use the values keyword to specify values for some or all of the columns in a new row. A simplified version
of the syntax for the insert command using the values keyword is:

insert <table_name> values (<constant1>, <constant2>, ...)

● You can use a select statement in an insert statement to pull values from one or more tables (up to a
limit of 250 tables, including the table into which you are inserting). A simplified version of the syntax for
the insert command using a select statement is:

insert <table_name> select <column_list> from <table_list> where <search_conditions>

Note
You cannot use a compute clause in a select statement that is inside an insert statement, because
statements that include compute do not generate normal rows.

When you add text, unitext, or image values with insert, all data is written to the transaction log. You
can use the writetext command to add these values without logging the long chunks of data that may
comprise text, unitext, or image values.

360 P U B L I C
Transact-SQL Users Guide

Managing Data

Related Information

Insert Data into Specific Columns [page 361]
Change text, unitext, and image data [page 378]

12.4.1 Add New Rows with Values

Use the insert statement to add rows and values for columns in the row.

This insert statement adds a new row to the publishers table, giving a value for every column in the row.

insert into publishers values ("1622", "Jardin, Inc.", "Camden", "NJ")

The data values are typed in the same order as the column names in the original create table statement,
that is, first the ID number, then the name, then the city, and, finally, the state. The values data is surrounded
by parentheses, and all character data is enclosed in single or double quotes.

Use a separate insert statement for each row you add.

12.4.2 Insert Data into Specific Columns

You can add data to some columns in a row by specifying only those columns and their data. All other columns
that are not included in the column list must be defined to allow null values. The skipped columns can accept
defaults. If you skip a column that has a default bound to it, the default is used.

You may want to use this form of the insert command to insert all of the values in a row except the text,
unitext, or image values, and then use writetext to insert the long data values so that these values are not
stored in the transaction log. You can also use this form of the command to skip over timestamp data.

Adding data in only two columns, for example, pub_id and pub_name, requires a command like this:

insert into publishers (pub_id, pub_name) values ("1756", "The Health Center")

The order in which you list the column names must match the order in which you list the values. The following
example produces the same results as the previous one:

insert publishers (pub_name, pub_id) values("The Health Center", "1756")

Either of the insert statements places “1756” in the identification number column and “The Health Center” in
the publisher name column. Since the pub_id column in publishers has a unique index, you cannot execute
both of these insert statements; the second attempt to insert a pub_id value of “1756” produces an error
message.

Transact-SQL Users Guide
Managing Data P U B L I C 361

The following select statement shows the row that was added to publishers:

select * from publishers where pub_name = "The Health Center"

pub_id pub_name city state ------- ----------------- ------ ------- 1756 The Health Center NULL NULL

SAP ASE enters null values in the city and state columns because no value was given for these columns in
the insert statement, and the publisher table allows null values in these columns.

12.4.2.1 Restrict Column Data: Rules

You can create a rule and bind it to a column or user-defined datatype. Rules govern the kind of data that can
or cannot be added.

For example, a rule called pub_idrule, which specifies acceptable publisher identification numbers, is bound
to the pub_id column of the publishers table. The acceptable IDs are “1389,” “0736,” “0877,” “1622,”
“1756,” or any four-digit number beginning with “99.” If you enter any other number, you see an error
message.

When you get this kind of error message, you may want to use sp_helptext to look at the definition of the
rule:

sp_helptext pub_idrule

--------- 1

(1 row affected)

text

create rule pub_idrule
as @pub_id in ("1389", "0736", "0877", "1622", "1756")
or @pub_id like "99[0-9][0-9]"
 (1 row affected)

For more general information on a specific rule, use sp_help, or, to find out if any of the columns has a rule,
use sp_help with a table name as a parameter .

Related Information

Defining Defaults and Rules for Data [page 415]

362 P U B L I C
Transact-SQL Users Guide

Managing Data

12.4.2.2 The NULL Character String

Only columns for which NULL has been specified in the create table statement and into which you have
explicitly entered NULL, or into which no data has been entered can contain null values.

Do not enter the character string “NULL” (with quotes) as data for a character column. Use “N/A” or “none” or
a similar value instead.

To explicitly insert NULL into a column, use:

values({<expression> | null} [, {<expression> | null}]...)

The following example shows two equivalent insert statements. In the first statement, the user explicitly
inserts a NULL into column t1. In the second, SAP ASE provides a NULL value for t1 because the user has not
specified an explicit column value:

create table test (t1 char(10) null, t2 char(10) not null)
insert test
values (null, "stuff")
insert test (t2) values ("stuff")

NULL Is Not an Empty String

The empty string (“ ”or ‘ ’) is always stored as a single space in variables and column data. This concatenation
statement is equivalent to “abc def”, not “abcdef”:

"abc" + "" + "def"

An empty string is never evaluated as NULL.

12.4.2.3 Insert NULLs into Columns That Do Not Allow Them

To insert data with select from a table that has null values in some fields into a table that does not allow null
values, you must provide a substitute value for any NULL entries in the original table.

For example, to insert data into an advances table that does not allow null values, this example substitutes
“0” for the NULL fields:

insert advances select pub_id, isnull(advance, 0) from titles

Without the isnull function, this command inserts all the rows with non-null values into advances and
produces error messages for all the rows where the advance column in titles contains NULL.

If you cannot make this kind of substitution for your data, you cannot insert data containing null values into
columns with a NOT NULL specification.

Transact-SQL Users Guide
Managing Data P U B L I C 363

12.4.2.4 Add Rows Without Values in All Columns

You can specify values for only some of the columns in a row. Certain rules will apply when adding rows
without values for all columns.

● If a default value exists for the column or user-defined datatype of the column, it is entered.
● If NULL was specified for the column when the table was created and no default value exists for the

column or datatype, NULL is entered. See insert in the Reference Manual: Commands.
● If the column has the IDENTITY property, a unique, sequential value is entered.
● If NULL was not specified for the column when the table was created and no default exists, SAP ASE

rejects the row and displays an error message.

Default Exists for Column
or Datatype

Column Defined NOT
NULL

Column Defined to Allow
NULL

Column is IDENTITY

Yes The default The default Next sequential value

No Error message NULL Next sequential value

Use sp_help to display a report on a specified table or default, or on any other object listed in the system
table sysobjects. To see the definition of a default, use sp_helptext.

Related Information

Defining Defaults and Rules for Data [page 415]

12.4.2.5 Change a Column’s Value to NULL

To set a column value to NULL, use the update statement.

set <column_name> = {<expression> | null} [, <column_name> = {<expression> | null}]...

For example, to find all rows in which the title_id is TC3218 and replace the advance with NULL:

update titles set advance = null where title_id = "TC3218"

364 P U B L I C
Transact-SQL Users Guide

Managing Data

12.4.2.6 SAP ASE-generated values for IDENTITY columns

When you insert a row into a table with an IDENTITY column, SAP ASE automatically generates the column
value. Do not include the name of the IDENTITY column in the column list or its value in the values list.

This insert statement adds a new row to the sales_daily table. The column list does not include the
IDENTITY column, row_id:

insert sales_daily (stor_id) values ("7896")

Note
You can omit the column name stor_id. The server can identify an IDENTITY column and insert the next
identity value, without the user entering the column name. For example, this table has three columns, but
the insert statement gives values for two columns, and no column names:

create table idtext (a int, b numeric identity, c char(1)) ------------------- (1 row affected)

insert idtext values(98,"z") ------------------- (1 row affected

insert idtest values (99, "v")) --------------------

(1 row affected)

select * from idtest ---------------------
98 1 z 99 2 v

(2 rows affected)

The following statement shows the row that was added to sales_daily. SAP ASE automatically generates
the next sequential value, 2, for row_id:

select * from sales_daily where stor_id = "7896"

sale_id stor_id ------- -------
 1 7896
 (1 row affected)

Transact-SQL Users Guide
Managing Data P U B L I C 365

12.4.2.7 Explicitly Insert Data into an IDENTITY Column

At times, you may want to insert a specific value into an IDENTITY column. For example, you may want the first
row inserted into the table to have an IDENTITY value of 101, rather than 1. Or you may need to reinsert a row
that was deleted by mistake.

The table owner can explicitly insert a value into an IDENTITY column. The database owner and system
administrator can explicitly insert a value into an IDENTITY column if they have been granted explicit
permission by the table owner, or if they are acting as the table owner.

Before inserting the data, set the identity_insert option on for the table. You can set identity_insert
on for only one table at a time in a database within a session.

This example specifies a “seed” value of 101 for the IDENTITY column:

set identity_insert sales_daily on insert sales_daily (syb_identity, stor_id) values (101, "1349")

The insert statement lists each column, including the IDENTITY column, for which a value is specified. When
the identity_insert option is set to on, each insert statement for the table must specify an explicit
column list. The values list must specify an IDENTITY column value, since IDENTITY columns do not allow null
values.

After you set identity_insert off, you can insert IDENTITY column values automatically, without specifying
the IDENTITY column. Subsequent insertions use IDENTITY values based on the value explicitly specified after
you set identity_insert on. For example, if you specify 101 for the IDENTITY column, subsequent
insertions are 102, 103, and so on.

Note
SAP ASE does not enforce the uniqueness of the inserted value. You can specify any positive integer within
the range allowed by the column’s declared precision. To ensure that only unique column values are
accepted, create a unique index on the IDENTITY column before inserting any rows.

12.4.2.8 Retrieve IDENTITY Column Values with @@identity

Use the <@@identity> global variable to retrieve the last value inserted into an IDENTITY column.

The value of <@@identity> changes each time an insert or select into attempts to insert a row into a
table. <@@identity> does not revert to its previous value if the insert or select into statement fails, or if
the transaction that contains it is rolled back. If the statement affects a table without an IDENTITY column,
<@@identity> is set to 0.

If the statement inserts multiple rows, <@@identity> reflects the last value inserted into the IDENTITY
column.

366 P U B L I C
Transact-SQL Users Guide

Managing Data

The value for <@@identity> within a stored procedure or trigger does not affect the value outside the stored
procedure or trigger. For example:

select @@identity

--------------------------------------- 101

create procedure reset_id as set identity_insert sales_daily on
 insert into sales_daily (syb_identity, stor_id)
 values (102, "1349")
 select @@identity
select @@identity execute reset_id

--------------------------------------- 102

select @@identity

--------------------------------------- 101

12.4.2.9 Reserve a Block of IDENTITY Column Values

The identity grab size configuration parameter allows each SAP ASE process to reserve a block of
IDENTITY column values for inserts into tables that have an IDENTITY column.

This configuration parameter reduces the number of times an SAP ASE engine must hold an internal
synchronization structure when inserting implicit identity values. For example, to set the number of reserved
values to 20:

sp_configure "identity grab size", 20

When a user performs an insert into a table containing an IDENTITY column, SAP ASE reserves a block of 20
IDENTITY column values for that user. Therefore, during the current session, the next 20 rows the user inserts
into the table have sequential IDENTITY column values. If a second user inserts rows into the same table while
the first user is performing inserts, SAP ASE reserves the next block of 20 IDENTITY column values for the
second user.

For example, suppose the following table containing an IDENTITY column has been created, and the
identity grab size is set to 10:

create table my_titles (title_id numeric(5,0) identity, title varchar(30) not null)

User 1 inserts these rows into the my_titles table:

insert my_titles (title) values ("The Trauma of the Inner Child")insert my_titles (title)

Transact-SQL Users Guide
Managing Data P U B L I C 367

values ("A Farewell to Angst")
insert my_titles (title) values ("Life Without Anger")

SAP ASE allows user 1 a block of 10 sequential IDENTITY values, for example, title_id numbers 1–10.

While user 1 is inserting rows to my_titles, user 2 begins inserting rows into my_titles. SAP ASE grants
user 2 the next available block of reserved IDENTITY values, that is, values 11–20.

If user 1 enters only three titles and then logs off SAP ASE, the remaining seven reserved IDENTITY values are
lost. The result is a gap in the table’s IDENTITY values. To avoid large gaps in the IDENTITY column, do not set
the identity grab size too high.

12.4.2.10 Maximum Value of the IDENTITY Column

The maximum value that you can insert into an IDENTITY column is 10 precision - 1. If you do not specify a
precision for the IDENTITY column, SAP ASE uses the default precision for numeric columns (18 digits).

Once an IDENTITY column reaches its maximum value, insert statements return an error that aborts the
current transaction. When this happens, use one of the methods discussed below to remedy the problem.

12.4.2.10.1 Modify the Maximum Value of the IDENTITY
Column

Alter the maximum value of any IDENTITY column with a modify operation in the alter table command.

alter table my_titles modify title_id, numeric (10,0)

This operation performs a data copy on a table and rebuilds all the table indexes.

12.4.2.10.2 Creating a New Table with a Larger Precision

You can create a new table that is identical to the old one, except with a larger precision value for the IDENTITY
column. If the table contains IDENTITY columns that are used for referential integrity, retain the current
numbers for the IDENTITY column values.

Procedure

1. Use create table entering a larger precision value for the IDENTITY column.

2. Use insert into to copy the data from the old table into to the new one.

368 P U B L I C
Transact-SQL Users Guide

Managing Data

12.4.2.10.3 Renumbering the Table IDENTITY Columns with
bcp

If the table does not contain IDENTITY columns used for referential integrity, and if there are gaps in the
numbering sequence, you can renumber the IDENTITY column to eliminate gaps, which allows more room for
insertions.

Procedure

1. From the operating system command line, use bcp to copy out the data:

bcp pubs2..mytitles out my_titles_file -N -c

where -N instructs bcp not to copy the IDENTITY column values from the table to the host file, and -c
instructs bcp to use character mode.

2. In SAP ASE, create a new table that is identical to the old table.
3. From the operating system command line, use bcp to copy the data into the new table:

bcp pubs2..mynewtitles in my_titles_file -N -c

where -N instructs bcp to have SAP ASE assign the IDENTITY column values when loading data from the
host file, and -c instructs bcp to use character mode.

4. In SAP ASE, drop the old table, and use sp_rename to change the new table name to the old table name.

Results

If the IDENTITY column is a primary key for joins, you may need to update foreign keys in other tables.

By default, when you bulk-copy data into a table with an IDENTITY column, bcp assigns each row a temporary
IDENTITY column value of 0. As it inserts each row into the table, the server assigns it a unique, sequential
IDENTITY column value, beginning with the next available value. To enter an explicit IDENTITY column value
for each row, specify the -E flag. See the Utility Guide.

12.4.3 Add New Rows with select

To add values to a table from one or more other tables, use a select clause in the insert statement. The
select clause can insert values into some or all of the columns in a row.

Inserting values for only some columns may be convenient when you want to take some values from an
existing table. You can then use update to add the values for the other columns.

Transact-SQL Users Guide
Managing Data P U B L I C 369

Before inserting values for some, but not all, columns in a table, make sure that a default exists, or that NULL
has been specified for the columns for which you are not inserting values. Otherwise, SAP ASE returns an error
message.

When you insert rows from one table into another, the two tables must have compatible structures—that is,
the matching columns must be either the same datatypes or datatypes between which SAP ASE automatically
converts.

Note
You cannot insert data from a table that allows null values into a table that does not, if any of the data being
inserted is null.

If the columns are in the same order in their create table statements, you need not specify column names
in either table. Suppose you have a table named newauthors that contains some rows of author information
in the same format as in authors. To add to authors all the rows in newauthors:

insert authors select * from newauthors

To insert rows into a table based on data in another table, the columns in the two tables need not be listed in
the same sequence in their respective create table statements. You can use either the insert or the
select statement to order the columns so that they match.

For example, suppose the create table statement for the authors table contained the columns au_id,
au_fname, au_lname, and address, in that order, and newauthors contained au_id, address, au_lname,
and au_fname. The column sequence must match in the insert statement. You could do this by using:

insert authors (au_id, address, au_lname, au_fname) select * from newauthors

or:

insert authors select au_id, au_fname, au_lname, address from newauthors

If the column sequence in the two tables fails to match, SAP ASE either cannot complete the insert
operation, or completes it incorrectly, putting data in the wrong column. For example, you might get address
data in the au_lname column.

12.4.3.1 Use Computed Columns

You can use computed columns in a select statement inside an insert statement.

For example, imagine that a table named tmp contains some new rows for the titles table, which contains
out-of-date data—the price figures need to be doubled. A statement to increase the prices and insert the tmp
rows into titles looks like:

insert titles

370 P U B L I C
Transact-SQL Users Guide

Managing Data

select title_id, title, type, pub_id, price*2,
 advance, total_sales, notes, pubdate, contract from tmp

You cannot use the select * syntax when you perform computations on a column; each column must be
named individually in the select list.

12.4.3.2 Insert Data into Some Columns

You can use the select statement to add data to some, but not all, columns in a row. Use the insert clause
to specify the columns to which you want to add data.

For example, some authors in the authors table do not have titles and, therefore, do not have entries in the
titleauthor table. To pull their au_id numbers out of the authors table and insert them into the
titleauthor table as placeholders, try this statement:

insert titleauthor (au_id) select au_id
 from authors
 where au_id not in (select au_id from titleauthor)

This statement is illegal, because a value is required for the title_id column. Null values are not permitted
and no default is specified. You can enter the dummy value “xx1111” for titles_id by using a constant, as
follows:

insert titleauthor (au_id, title_id) select au_id, "xx1111"
 from authors
 where au_id not in (select au_id from titleauthor)

The titleauthor table now contains four new rows with entries for the au_id column, dummy entries for
the title_id column, and null values for the other two columns.

12.4.3.3 Insert Data from the Same Table

You can insert data into a table based on other data in the same table. Essentially, this means copying all or
part of a row.

For example, you can insert a new row in the publishers table that is based on the values in an existing row
in the same table. Make sure you follow the rule on the pub_id column:

insert publishers select "9999", "test", city, state
 from publishers

Transact-SQL Users Guide
Managing Data P U B L I C 371

 where pub_name = "New Age Books"

 (1 row affected)

select * from publishers

 pub_id pub_name city state ------- --------------------- ------- ------
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA
9999 test Boston MA
 (4 rows affected)

The example inserts the two constants (“9999” and “test”) and the values from the city and state columns
in the row that satisfied the query.

12.5 Create Nonmaterialized, Non-Null Columns

Nonmaterialized columns exist virtually, but are not physically stored in the row. Use nonmaterialized columns
the same as any other column, selecting, updating, and referring to them in SQL queries, or using them as
index keys.

SAP ASE treats nonmaterialized columns the same way it treats null columns: if a column is not physically
present in the row, SAP ASE supplies a default. The default for a nullable column is null, but the default for a
nonmaterialized column is a user-defined non-NULL value.

Converting a nonmaterialized column to a physically present column is called “instantiating” the column.

12.5.1 Add Nonmaterialized Columns

Use alter table . . . not materialized to create nonmaterialized columns.

For example:

alter table <table_name> add <column_name> <datatype> default <constant_expression> not null [not materialized]

See the Reference Manual: Commands.

Note
You cannot use the not materialized with the null parameter.

For example, to add the nonmaterialized column alt_title to the titles table, with a default of aaaaa, enter:

alter table titles

372 P U B L I C
Transact-SQL Users Guide

Managing Data

 add alt_title varchar(24) default 'aaaaa' not null not materialized

SAP ASE creates a default for column <column_name> using the specified value (if one does not already
exist), and inserts an entry in syscolumns for the new column, associating that default with the column.

SAP ASE does not alter the table’s physical data.

You can combine alter table clauses that specify nonmaterialized columns with clauses creating other
nonmaterialized columns or creating nullable columns. You cannot combine alter table to create
nonmaterialized columns with clauses that perform a full data copy (such as alter table to drop a column
or to add a non-nullable column).

When used in an alter table statement, <constant_expression> must be a constant (for example, 6),
and cannot be an expression. <constant_expression> cannot be an expression such as “6+4”, a function
(such as getdate), or the keyword “user” for a column specified in an alter table command.

Nonmaterialized columns require a default, and the default cannot be NULL. You can include the default by:

● Explicitly specifying it in the command (for example, int default 0), or
● Implicitly supplying it with a user-defined datatype that has a bound default

Note
If you supply an invalid default value that cannot be converted to that column’s correct datatype, alter
table raises an error

Use the column default cache size to configure the memory pool for column defaults.

12.5.2 Tables That Already Have Nonmaterialized Columns

SAP ASE immediately instantiates all nonmaterialized columns if you specify a command that includes clauses
that require a full data copy to the table. This includes commands such as reorg rebuild and alter table
to add a non-nullable column.

12.5.3 Nonmaterialized Column Storage

Once nonmaterialized columns are instantiated, SAP ASE stores them in the same way as any other row in the
table.

When SAP ASE instantiates a fixed-length, nonmaterialized column, the row occupies more space than an
equivalent fixed-length column that is materialized, and instantiated nonmaterialized columns require more
space than equivalent fixed-length columns. For dataonly-locked (DOL) tables, the column overhead is 2
bytes. For allpages- locked tables, the column overhead is 1 or more bytes, depending on the column’s length
and its physical placement in the row.

Columns are nonmaterialized only in rows that were present in the table when you altered the table to include
nonmaterialized columns. As you update rows, SAP ASE instantiates any columns that are nonmaterialized.

Transact-SQL Users Guide
Managing Data P U B L I C 373

Nonmaterialized columns can be followed by null columns or other nonmaterialized columns, but cannot be
followed by materialized data. When you instantiate a column within a row, SAP ASE instantiates
nonmaterialized columns that appear before that row. Nonmaterialized columns are also instantiated in new
rows added to the table.

When you instantiate a nonmaterialized column, the row becomes larger. When this happens in DOL tables,
SAP ASE forwards the row if the containing page does not have enough reserved space to accommodate the
expanded row (this is equivalent to replacing a null column with a non-NULL value).

12.5.4 Alter Nonmaterialized Columns

Use alter table replace to changed the defaults of nonmaterialized columns. However, this
command does not change the defaults for columns using the previous default. Instead, alter table
replace changes the defaults for columns that you add or update.

12.5.5 Limitations for Nonmaterialized Columns

alter table … modify does not support converting existing materialized columns to nonmaterialized
columns. Running alter table ... modify against a column instantiates all nonmaterialized columns in
the table.

You cannot:

● Use bit, text, image, unitext, and Java datatypes in nonmaterialized columns.
● Use nonmaterialized columns as IDENTITY columns.
● Include the constraint, primary key, unique, or references clauses when you use alter table to

add nonmaterialized columns.
● Encrypt nonmaterialized columns.
● Downgrade an SAP ASE server using data rows with nonmaterialized, non-NULL columns to versions

earlier than 15.7. You must first run reorg rebuild on tables containing these columns to convert them
to regular, non-nullable columns, before downgrading your SAP ASE server.

12.6 Change Existing Data

Use the update command to change single rows, groups of rows, or all rows in a table. As in all data
modification statements, you can change the data in only one table at a time.

update specifies the row or rows you want changed and the new data. The new data can be a constant or an
expression that you specify, or data pulled from other tables.

If an update statement violates an integrity constraint, the update does not take place and an error message
is generated. The update is canceled, for example, if it affects the table’s IDENTITY column, or if one of the
values being added is the wrong datatype, or if it violates a rule that has been defined for one of the columns or
datatypes involved.

374 P U B L I C
Transact-SQL Users Guide

Managing Data

SAP ASE does not prevent you from issuing an update command that updates a single row more than once.
However, because of the way that update is processed, updates from a single statement do not accumulate.
That is, if an update statement modifies the same row twice, the second update is not based on the new
values from the first update but on the original values. The results are unpredictable, since they depend on the
order of processing.

Note
The update command is logged. If you are changing large blocks of text, unitext, or image data, try
using the writetext command, which is not logged. Also, you are limited to approximately 125K per
update statement.

See the Reference Manual: Commands.

Related Information

Views: Limit Access to Data [page 395]
Change text, unitext, and image data [page 378]

12.6.1 Use the set Clause with Update

The set clause specifies columns and changed values. The where clause determines which rows are to be
updated. If you do not include the where clause, the specified columns of all the rows are updated with the
values provided in the set clause.

Note
Before trying the examples in this section, make sure you know how to reinstall the pubs2 database. See
the Installation Guide and Configuration Guide for your platform for instructions.

For example, if all the publishing houses in the publishers table move their head offices to Atlanta, Georgia,
update the table using:

update publishers set city = "Atlanta", state = "GA"

In the same way, you can change the names of all the publishers to NULL with:

update publishers set pub_name = null

You can use computed column values in an update. To double all the prices in the titles table, use:

update titles set price = price * 2

Since there is no where clause, the change in prices is applied to every row in the table.

Transact-SQL Users Guide
Managing Data P U B L I C 375

12.6.1.1 Assign Variables in the set Clause

You can assign variables in the set clause of an update statement, in the same way you can assign them in a
select statement. Using variables with update reduces lock contention and CPU consumption that can
occur when extra select statements are used with update.

This example uses a declared variable to update the titles table:

declare @price money select @price = 0
update titles
 set total_sales = total_sales + 1,
 @price = price
 where title_id = "BU1032"
select @price, total_sales
 from titles where title_id = "BU1032"

 total_sales ------------------------ -----------
 19.99 4096
 (1 row affected)

Related Information

Local Variables [page 465]

12.6.2 Use the where Clause with update

The where clause specifies which rows are to be updated.

For example, if the author Heather McBadden changes her name to Heather MacBadden:

update authors set au_lname = "MacBadden"
where au_lname = "McBadden" and au_fname = "Heather"

12.6.3 Use the from Clause with update

Use the from clause to add data from one or more tables into the table you are updating.

In this example, an author by the name of Dirk Stringer writes a book called The Psychology of Computer
Cooking. The data was created by inserting new rows into the titleauthor table for authors without titles,

376 P U B L I C
Transact-SQL Users Guide

Managing Data

filling in the au_id column, and using dummy or null values for the other columns. You can modify his row in
the titleauthor table by adding a title identification number for him:

update titleauthor set title_id = titles.title_id
from titleauthor, titles, authors
 where titles.title =
 "The Psychology of Computer Cooking"
 and authors.au_id = titleauthor.au_id and au_lname = "Stringer"

An update without the au_id join changes all the title_ids in the titleauthor table so that they are the
same as The Psychology of Computer Cooking ’s identification number. If two tables are identical in structure,
except one has NULL fields and some null values, and the other has NOT NULL fields, you cannot insert the
data from the NULL table into the NOT NULL table with a select. In other words, a field that does not allow
NULL cannot be updated by selecting from a field that does, if any of the data is NULL.

As an alternative to the from clause in the update statement, you can use a subquery, which is ANSI-
compliant.

12.6.4 Perform updates with joins

You can use update to join columns when the columns being joined have the same or compatible datatypes.

This is an example that joins columns from the titles and publishers tables, doubling the price of all books
published in California.

update titles set price = price * 2
 from titles, publishers
 where titles.pub_id = publishers.pub_id and publishers.state = "CA"

12.6.5 Update IDENTITY Columns

You can use the syb_identity keyword, qualified by the table name, where necessary, to update an
IDENTITY column.

For example, this update statement finds the row in which the IDENTITY column equals 1 and changes the
name of the store to “Barney’s”:

update stores_cal set stor_name = "Barney’s" where syb_identity = 1

Transact-SQL Users Guide
Managing Data P U B L I C 377

12.7 Change text, unitext, and image data

Use writetext to change text, unitext, or image values when you do not want to store long text values
in the database transaction log.

Generally, do not use the update command, because update commands are always logged. In its default
mode, writetext commands are not logged.

Note
To use writetext in its default, non-logged state, a system administrator must use sp_dboption to set
select into/bulkcopy/pllsort on. This permits the insertion of non-logged data. After using
writetext, you must dump the database. You cannot use dump transaction after making unlogged
changes to the database.

The writetext command overwrites any data in the column it affects. The column must already contain a
valid text pointer.

Use the textvalid() function to check for a valid pointer:

select textvalid("blurbs.copy", textptr(copy)) from blurbs

There are two ways to create a text pointer:

● insert actual data into the text, unitext, or image column
● update the column with data or a NULL

An “initialized” text column uses 2K of storage, even to store a couple of words. SAP ASE saves space by not
initializing text columns when explicit or implicit null values are placed in text columns with insert. The
following code fragment inserts a value with a null text pointer, checks for the existence of a text pointer, and
then updates the blurbs table. Explanatory comments are embedded in the text:

/* Insert a value with a text pointer. This could ** be done in a separate batch session. */
insert blurbs (au_id) values ("267-41-2394")
/* Check for a valid pointer in an existing row.
** Use textvalid in a conditional clause; if no
** valid text pointer exists, update ’copy’ to null
** to initialize the pointer. */
if (select textvalid("blurbs.copy", textptr(copy))
 from blurbs
 where au_id = "267-41-2394") = 0
begin
 update blurbs
 set copy = NULL
 where au_id = "267-41-2394"
end
/*
** use writetext to insert the text into the
** column. The next statements put the text
** into the local variable @val, then writetext
** places the new text string into the row
** pointed to by @val. */
declare @val varbinary(16)
select @val = textptr(copy)
 from blurbs

378 P U B L I C
Transact-SQL Users Guide

Managing Data

 where au_id = "267-41-2394"
writetext blurbs.copy @val "This book is a must for true data junkies."

Related Information

Batches and Control-of-Flow Language [page 439]

12.8 Truncate Trailing Zeros

The disable varbinary truncation configuration parameter controls whether trailing zeros are included
at the end of varbinary and binary null data.

By default, disable varbinary truncation is off for the server.

When SAP ASE is set to truncate trailing zeros, tables you subsequently create store the varbinary data
after truncating the trailing zeros. For example, if you create the test1 table with disable varbinary
truncation set to 0:

create table test1(col1 varbinary(5))

Then insert some varbinary data with trailing zeros:

insert into test1 values(0x12345600)

SAP ASE truncates the zeros:

select * from test1

col1 ------------ 0x123456

However, if you drop and re-create table test1 and set disable varbinary truncation to 1 (on) and
perform the same steps, SAP ASE does not truncate the zeros:

select * from test1

col1 ------------ 0x12345600

SAP ASE considers data with or without trailing zeros as equal for comparisons (that is, 0x1234 is the same as
0x123400).

Because SAP ASE stores data according to how disable varbinary truncation is currently set, tables
may have a mix of data with or without trailing zeros, although the datatype does not change:

Transact-SQL Users Guide
Managing Data P U B L I C 379

● If you perform a select into to copy data from one table to another, SAP ASE copies the data as it is
stored (that is, if disable varbinary truncation is turned off, the trailing zeros are truncated). For
example, using the tables from the examples above, if you disable varbinary truncation, then select data
from table test1 into table test2:

sp_configure "disable varbinary truncation", 1 select * into test2 from test1

Then reinsert the same data again:

insert into test2 select * from test1

Table test2 does not truncate the trailing zeros because you ran select into with disable
varbinary truncation set to 1, and the target table does not inherit the property from the source
table. The data in the target table is truncated or preserved, depending on how the configuration
parameters were setn when you ran select into:

select * from test2

col1 ------------
0x12345600 0x12345600

● Bulk copy (bcp) inserts data according to how disable varbinary truncation is set on the column
when created.

● You cannot use alter table to change the truncation behavior for a specific column. However, columns
you add with alter table either truncate or preserve trailing zeros according to the value of disable
varbinary truncation.
For example, if you create table test3 and column c1 with truncate trailing zeros disabled:

sp_configure "disable varbinary truncation", 1 create table test3(c1 varbinary(5)) insert into test3 values(0x123400)

c1 retains the trailing zeros:

select * from test3 c1
---------- 0x123400

However, if you enable truncated trailing zeros and use alter table to add a new column, c2:

sp_configure "disable varbinary truncation", 0 alter table test3 add c2 varbinary(5) null insert into test3 values(0x123400, 0x123400)

c2 truncates the trailing zeros:

select * from test3 c1 c2
---------- ----------
0x123400 NULL 0x123400 0x1234

Trailing zeros are preserved in:

380 P U B L I C
Transact-SQL Users Guide

Managing Data

● Worktables (after disable varbinary truncation is set to 1). The first example below includes a
worktable in which the trailing zeros are retained, but in the second example, the worktable stores only the
first 6 digits:

select 0x12345600 union select 0x123456 -------------
0x12345600
select 0x123456 union select 0x12345600
------------- 0x123456

● Concatenations. For example:

select 0x12345600 + col1, col1 from test1

 col1 -------------------- ------------
0x123456001234560000 0x1234560000
0x1234560001234560 0x01234560
0x1234560012345600 0x12345600 0x123456000123456700 0x0123456700

● Functions. For example:

select bintostr(0x12340000)

------------ 1234000

● order by and group by queries. For example:

select col1 from (select 0x123456 col1 union all select 0x12345600 col1) temp1 order by col1

col1 ----------
0x123456 0x12345600

Note
If a query includes worktables, you must enable the disable varbinary truncation configuration
parameter before running the query to ensure SAP ASE performs no truncation.

● Subqueries – trailing zeros are preserved unless the query involves a worktable, in which case the
truncation depends on the value of disable varbinary truncation.

● Dumps and loads – if the table data you dump includes trailing zeros, the trailing zeros are preserved
when you load that data, regardless of the value of disable varbinary truncation in the target
database.

● Unions (see example for worktables, above).
● convert. For example:

select convert(binary(5), 0x0000001000) ------------ 0x0000001000

Transact-SQL Users Guide
Managing Data P U B L I C 381

12.9 Transfer Data Incrementally

The transfer command allows you to transfer data incrementally, and, if required, to a different product.

Note
SAP ASE enables the data transfer feature when you purchase, install, and register the in-memory database
license, or when you install the RAP product.

Incremental data transfer:

● Lets you export data, including only the data that has changed since a prior transmittal, from SAP ASE
tables that are marked for incremental transfer.

● Allows table data to be read without obtaining the usual locks, without guaranteeing any row retrieval
order, and without interfering with other ongoing reads or updates.

● Lets you write selected rows to an output file (which can be a named pipe) formatted for a defined
receiver: SAP® IQ®, SAP ASE,bcp file, or character-coded output. All selected rows are transmitted without
encryption, and, by default, any encrypted columns within the row are decrypted before transmittal. The
file to which you are writing must be visible to the machine on which SAP ASE is running (the file can be an
NFS file that SAP ASE can open as a local file).

● Maintains a history of transmittals for eligible tables, and lets you remove transmittal history when it is no
longer wanted.

● Exports data from tables not declared eligible for incremental transfer, subject to certain restrictions.
● Transfers entire rows from indicated tables. You cannot currently select certain columns, select a partition

within a table, or transfer results from SQL queries.

12.9.1 Mark Tables for Incremental Transfer

You must mark tables as eligible to participate in incremental transfer.

Any table may be so designated, except system tables and worktables. You can designate eligibility either
when you create a table, or at a later time by using alter table. You can also use alter table to remove a
table’s eligibility.

In eligible tables:

● A row is transferred if it has changed since the most recent previous transfer, and if any transactions that
changed an existing row—or inserted a new row—were committed before the transfer began.
This requires extra storage for every row, which is implemented by a hidden 8-byte column within the row.

● Additional information is kept for each table transfer. This information includes identifying information for
the set and number of rows transmitted, the starting and ending times of the transfer, data formatting for
the transfer, and the full path to the destination file.

Removing a table’s eligibility removes any per-row changes added to support incremental transfer, and
deletes any saved transfer history for that table.

382 P U B L I C
Transact-SQL Users Guide

Managing Data

12.9.2 Transfer Tables from a Destination File

Use the transfer table command to load data into SAP ASE from a table contained in an external file.

The table you load does not require a unique primary index, unless you are loading data that has changed from
data already in the table (you can load new data without any restrictions). However, loading data becomes an
issue when a row duplicates data already in the table, and you do not want the data duplicated. To prevent this,
a unique primary index allows SAP ASE to find and remove the old row the new row replaces.

The table you load must have a unique index as its primary key (either a clustered index for allpages-locked
tables, or a placement index for data-only-locked tables). A unique index allows transfer to detect attempts
to insert a duplicate key, and converts the internal insert command to an update command. Without that
index, SAP ASE cannot detect duplicate primary keys. Inserting an updated row causes:

● Some or all of the transfer operation to fail if the table has any other unique index and the row being
inserted duplicates a key within that index

● The insert to succeed, but the table erroneously contains two or more rows with this primary key

This example transfers the pubs2.titles table from the external titles.tmp file located in /SAP/data into
SAP ASE:

transfer table titles from '/SAP/data/titles.tmp' for ase

You cannot use all the parameters for the transfer table...from that you use with transfer
table. . .to. Parameters that are inappropriate for loading data from a file produce errors and the transfer
command stops. Earlier versions of SAP ASE include parameters for the from parameter that are reserved for
future use, but transfer ignores these parameters if you include them with your syntax. The parameters for
the from parameter are:

● column_order=<option> (does not apply to a load using for ase; reserved for future use)
● column_separator=<string> (does not apply to a load using for ase; reserved for future use)
● encryption={true | false} (does not apply to a load using for ase; reserved for future use)
● progress=<nnn>
● row_separator=<string> (does not apply to a load using for ase; reserved for future use)

12.9.3 Convert SAP ASE Datatypes to SAP IQ

When transferring datatypes to SAP IQ, SAP ASE makes the necessary transformations to convert the data to
the IQ format.

 SAP ASE SAP IQ

Datatype Size (in bytes) Datatype Size (in bytes)

bigint unsigned bigint 8 bigint unsigned
bigint

8

int unsigned int 4 int unsigned int 4

Transact-SQL Users Guide
Managing Data P U B L I C 383

 SAP ASE SAP IQ

smallint 2 smallint 2

unsigned smallint 2 int 2

tinyint 1 tinyint 1

numeric(P,S) decimal(P,S) 2 – 17 numeric(P,S)
decimal(P,S)

2 – 26

double precision 8 double 8

real 4 real 4

float(P) 4, 8 float(P) 4, 8

money 8 money IQ stores this as
numeric(19,4)

16

smallmoney 4 smallmoney IQ stores
this as numeric(10,4)

8

bigdatetime datetime 8 datetime 8

smalldatetime 4 smalldatetime 8

date 4 date 4

time 4 time 8

bigtime 8 time 8

char(N) 1 – 16296 char(N) 1 – 16296

char(N) (null) 1 – 16296 char(N) (null) 1 – 16296

varchar(N) (null) 1 – 16296 varchar(N) (null) 1 – 16296

unichar(N) 1– 8148 binary(N*2) 1 – 16296

unichar(N)
nullunivarchar(N) (null)

1– 8148 varbinary(N*2)
(null)

1 – 16296

binary(N) 1 – 16296 binary(N) 1 – 16296

varbinary(N) 1 – 16296 varbinary(N) 1 – 16296

binary(N) nullvarbinary(N)
(null)

1 – 16296 varbinary(N)
(null)

1 – 16296

384 P U B L I C
Transact-SQL Users Guide

Managing Data

 SAP ASE SAP IQ

bit 1 bit 1

timestamp 8 varbinary(8) null 8

Consider the following when converting SAP ASE datatypes to datatypes for IQ:

● Define precision and scale the same on IQ and SAP ASE.
● The storage size for float is 4 or 8 bytes, depending on precision. If you do not supply a value for

precision, SAP ASE stores float as double precision, but IQ stores it as real. SAP ASE does not
convert floating-point data to other formats for transfer to IQ. If you must use approximate numeric types,
specify them as double or real, rather than as float.

● The maximum length in SAP ASE for a column with datatypes char, unichar, or binary depends on your
installation’s page size. The maximum size specified in the table is the largest possible column in a 16K
page.

● SAP ASE typically requires two bytes per character to store Unicode characters. Because IQ does not
include the Unicode datatype, SAP ASE transmits unichar(N) to IQ as binary(N X 2). However, SAP
ASE does not transform Unicode characters: SAP ASE pads Unicode strings with NULL(0x00) to transfer
them to IQ.

● IQ does not have a native Unicode datatype. SAP ASE transfers Unicode strings to IQ as binary data, that
is, two bytes long for each Unicode character. For example, unichar(40) in SAP ASE converts to
binary(80) in IQ. IQ cannot display the Unicode data as strings after the transfer.

12.9.4 Store Transfer Information

Transfer information is stored in spt_TableTransfer or monTableTransfer.

● spt_TableTransfer – results from table transfers are stored in, and retrieved from,
spt_TableTransfer

● monTableTransfer – contains historical transfer information for tables, for transfers currently in
progress, and for those that are completed

spt_TableTransfer

The results of successful transfers retrieved from the table specified in the transfer table command are
used as the defaults for subsequent transfers. For example, if you issue this command (including row and
column separators):

transfer table mytable for csv

The next time you transfer table mytable, the transfer command, by default uses for csv and the same
row and column separators.

Each database has its own version of spt_TableTransfer. The table stores history only for table transfers
for tables in its same database that are marked for incremental transfer.

Transact-SQL Users Guide
Managing Data P U B L I C 385

The max transfer history configuration parameter controls how many transfer history entries SAP ASE
retains in the spt_TableTransfer table in each database. See, Setting Configuration Parameters, in the
System Administration Guide, Volume 1.

Database owners use sp_setup_table_transfer to create the spt_TableTransfer table.
sp_setup_table_transfer takes no parameters, and works in the current database.

spt_TableTransfer stores historical information about both successful and failed transfers. It does not
store information for in-progress transfers.

spt_TableTransfer is a user table, rather than a system table. It is not created when you create SAP ASE,
but SAP ASE automatically creates it in any database that has tables that are eligible for transfer, if you do not
use sp_setup_transfer_table to manually create it (creating it manually may allow you to avoid
unexpected errors that can occur when SAP ASE creates the table automatically).

sp_help reports incremental transfer as a table attribute.

The columns in spt_TableTransfer are:

Column Datatype Description

end_code unsigned smallint not
null

The transfer’s ending status.

0 – success.

error code – failure.

id int not null The object ID of the transferred table.

ts_floor bigint not null The beginning transaction timestamp.

ts_ceiling bigint not null The transaction timestamp after which rows are uncom
mitted, and therefore not transferred.

time_begin datetime not null ● The date and time the transfer began, or
● The time SAP ASE began to set up the command if

the transfer fails before implementation. Other
wise, this is the time at which the command sent
the first data to the output file.

time_end datetime not null ● The date and time the transfer ended, or

● If the transfer command fails, this is the time of
failure. Otherwise, this is the time at which the com
mand finishes sending data and closes the file

row_count bigint not null The number of rows transferred.

byte_count bigint not null The number of bytes written.

sequence_id int not null A number that tracks this transfer, unique to each trans
fer of a table.

386 P U B L I C
Transact-SQL Users Guide

Managing Data

Column Datatype Description

col_order tinyint not null A number representing the column order of the output:

● 1 – id
● 2 – offset
● 3 – name
● 4 – name_utf8

output_to tinyint not null A number representing the output format:

● ○ 1 – ase
○ 2 – bcp
○ 3 – csv
○ 4 – iq

tracking_id int null An optional customer-supplied tracking ID. If you do not
use with tracking_id = nnn, this column is null.

pathname varchar (512) null The output file name.

row_sep varchar (64) null The row separator string used for for csv.

col_sep varchar(64) null The column separator used for for csv.

monTableTransfer

monTableTransfer table provides:

● Historical transfer information for tables for which SAP ASE currently holds transfer information in
memory. This is true for any table accessed since the most recent SAP ASE restart, unless you have not
configured SAP ASE memory large enough to hold all current table information that:

● Information about transfers currently in progress and for completed transfers for tables that SAP ASE
holds in memory. This includes information for tables that:
○ Are marked for incremental transfer
○ Have been involved in at least one transfer since you restarted SAP ASE.
○ Have descriptions you have not used for other tables. monTableTransfer does not search through

every database looking for every table that was ever transferred; it searches only an active set of
tables that have recent transfers.

See monTableTransfer in the Reference Manual: Tables.

12.9.5 Exceptions and Errors

Some restrictions apply when transferring data incrementally.

Error messages are generated if you attempt to:

Transact-SQL Users Guide
Managing Data P U B L I C 387

● You cannot use the data transfer utility to transfer data using the bcp format over pipes or using pipes on
the Windows platform.

● Transfer a table that does not exist
● Transfer an object that is not a table
● Transfer a table that you do not own and have not been granted permission to transfer, without having

sa_role privileges
● Decrypt columns during transfer from a table containing encrypted columns, without having specific

permission to decrypt those columns
● Transfer for iq, when the table contains text or image columns
● Transfer for ase, but specify a column order other than offset
● Transfer for bcp, but specify a column order other than id
● Issue an alter table...set transfer table on command that names a system catalog

Other reasons for transfer failure include:

● The requested file cannot close.
● You cannot transfer tables with off-row columns (text, unitext, image, and Java columns stored off-

row).
● Failure to open the file. Make sure the directory exists and SAP ASE has write permission in the directory.
● SAP ASE cannot obtain sufficient memory for saved data for each table in a transfer. If this happens,

increase the amount of memory available to SAP ASE.

12.9.6 Sample Incremental Transfer

Learn how to transfer data to an external file, change the data in the table, and then use the transfer
command again to repopulate the table from this external file.

This example transfers data out of, and back into, the same table. However, in a typical user scenario, data
would be transferred out of one table and then into a different one.

1. Create the spt_TableTransfer table, which stores transfer history:

sp_setup_table_transfer

2. Configure max transfer history. The default is 10, which means that SAP ASE retains 10 successful
and 10 unsuccessful transfers for each table marked for incremental transfer. This example changes the
value of max transfer history from 10 to 5:

sp_configure 'max transfer history', 5

Parameter Name Default Memory Used Config Value Run Value Unit Type Instance Name
--- max transfer history 10 0 5 5 bytes dynamic NULL

3. Create the transfer_example table, which has the transfer attribute enabled and uses datarow
locking:

create table transfer_example (f1 int,
f2 varchar(30),

388 P U B L I C
Transact-SQL Users Guide

Managing Data

f3 bigdatetime,
primary key (f1)
) lock datarows with transfer table on

4. Populate the transfer_example table with sample data:

set nocount on declare @i int, @vc varchar(1024), @bdt bigdatetime
select @i = 1
while @i <= 10
begin
 select @vc = replicate(char(64 + @i), 3 * @i)
 select @bdt = current_bigdatetime()
 insert into transfer_example values (@i, @vc, @bdt)
 select @i = @i + 1
end set nocount off

The script produces this data:

select * from transfer_example order by f1

f1 f2 f3 --------- ------------------------------ ----------------------------
 1 AAA Jul 17 2009 4:40:14.465789PM
 2 BBBBBB Jul 17 2009 4:40:14.488003PM
 3 CCCCCCCCC Jul 17 2009 4:40:14.511749PM
 4 DDDDDDDDDDDD Jul 17 2009 4:40:14.536653PM
 5 EEEEEEEEEEEEEEE Jul 17 2009 4:40:14.559480PM
 6 FFFFFFFFFFFFFFFFFF Jul 17 2009 4:40:14.583400PM
 7 GGGGGGGGGGGGGGGGGGGGG Jul 17 2009 4:40:14.607196PM
 8 HHHHHHHHHHHHHHHHHHHHHHHH Jul 17 2009 4:40:14.632152PM
 9 IIIIIIIIIIIIIIIIIIIIIIIIIII Jul 17 2009 4:40:14.655184PM 10 JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ Jul 17 2009 4:40:14.678938PM

5. Transfer the transfer_example data to an external file using the for ase format:

transfer table transfer_example to 'transfer_example-data.ase' for ase

The data transfer creates this history record in spt_TableTransfer:

select id, sequence_id, end_code, ts_floor, ts_ceiling, row_count from spt_TableTransfer where id = object_id('transfer_example')

id sequence_id end_code ts_floor ts_ceiling row_count --------- ----------- --------- -------- ---------- --------- 592002109 1 0 0 5309 10

6. Disable the transfer attribute from transfer_example to demonstrate that the receiving table does
not need the transfer attribute enabled to receive incremental data (the database must have select
into enabled before you can run alter table):

alter table transfer_example set transfer table off

Transact-SQL Users Guide
Managing Data P U B L I C 389

After the alter table command runs, spt_TableTransfer is empty:

select id, sequence_id, end_code, ts_floor, ts_ceiling, row_count from spt_TableTransfer where id = object_id('transfer_example')

id sequence_id end_code ts_floor ts_ceiling row_count --------- ----------- --------- -------- ---------- --------- (0 rows affected

7. Update transfer_example to set its character data to no data and to specify a date and time in its
bigdatetime column so you can verify the table does not contain the original data:

update transfer_example set f2 = 'no data', f3 = 'Jan 1, 1900 12:00:00.000001AM'

After the update, transfer_example contains this data.

select * from transfer_example order by f1

f1 f2 f3 ----------- -------------------------------- ---------------------------
1 no data Jan 1 1900 12:00:00.000001AM
2 no data Jan 1 1900 12:00:00.000001AM
3 no data Jan 1 1900 12:00:00.000001AM
4 no data Jan 1 1900 12:00:00.000001AM
5 no data Jan 1 1900 12:00:00.000001AM
6 no data Jan 1 1900 12:00:00.000001AM
7 no data Jan 1 1900 12:00:00.000001AM
8 no data Jan 1 1900 12:00:00.000001AM
9 no data Jan 1 1900 12:00:00.000001AM
10 no data Jan 1 1900 12:00:00.000001AM (10 rows affected)

8. Transfer the example data from the external file into transfer_example. Even though
transfer_example is no longer marked for incremental transfer, you can transfer data in to the table.
Because it has a unique primary index, the incoming rows replace the existing data and do not create
duplicate key errors:

transfer table transfer_example from 'transfer_example-data.ase' for ase

9. Select all data from transfer_example to verify that the incoming data replaced the changed data. The
transfer replaced the contents of transfer_example.f2 and transfer_example.f3 tables with the
data originally created for them, which were stored in the transfer_example-data.ase output file.

select * from transfer_example order by f1

f1 f2 f3 ------- ------------------------------ ----------------------------
 1 AAA Jul 17 2009 4:40:14.465789PM
 2 BBBBBB Jul 17 2009 4:40:14.488003PM
 3 CCCCCCCCC Jul 17 2009 4:40:14.511749PM
 4 DDDDDDDDDDDD Jul 17 2009 4:40:14.536653PM
 5 EEEEEEEEEEEEEEE Jul 17 2009 4:40:14.559480PM
 6 FFFFFFFFFFFFFFFFFF Jul 17 2009 4:40:14.583400PM

390 P U B L I C
Transact-SQL Users Guide

Managing Data

 7 GGGGGGGGGGGGGGGGGGGGG Jul 17 2009 4:40:14.607196PM
 8 HHHHHHHHHHHHHHHHHHHHHHHH Jul 17 2009 4:40:14.632152PM
 9 IIIIIIIIIIIIIIIIIIIIIIIIIII Jul 17 2009 4:40:14.655184PM 10 JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ Jul 17 2009 4:40:14.678938PM

10. Reenable transfer for transfer_example so subsequent transfers use, by default, the previous
parameters:

alter table transfer_example set transfer table on

12.9.6.1 Replacing Data with New Rows

When using incremental transfer, if you change the key values for some rows, the next transfer into the
table considers the changed key data rows to be new data, but replaces the data for rows in which keys have
not changed.

1. transfer_example uses the f1 column as the primary-key column. SAP ASE uses this column to
determine whether an incoming row contains new data, or whether it replaces an existing row.
For example, if you replace rows with keys 3, 5, and 7 by adding 10 to their respective values:

update transfer_example set f1 = f1 + 10 where f1 in (3,5,7)

transfer_example now includes rows with keys 13, 15, and 17, which transfer considers to be new
rows. When you transfer the same data into transfer_example, transfer inserts rows with keys 3, 5,
and 7, and retains rows with keys 13, 15, and 17.

transfer table transfer_example from 'transfer_example-data.ase' for ase

2. Verify that the data for row 3 is the same as 13, row 5 is the same as row 15, and row 7 is the same as row
17 for f2 and f3:

select * from transfer_example order by f1

f1 f2 f3 ------- ------------------------------ ----------------------------
1 AAA Jul 17 2009 4:40:14.465789PM
2 BBBBBB Jul 17 2009 4:40:14.488003PM
3 CCCCCCCCC Jul 17 2009 4:40:14.511749PM
4 DDDDDDDDDDDD Jul 17 2009 4:40:14.536653PM
5 EEEEEEEEEEEEEEE Jul 17 2009 4:40:14.559480PM
6 FFFFFFFFFFFFFFFFFF Jul 17 2009 4:40:14.583400PM
7 GGGGGGGGGGGGGGGGGGGGG Jul 17 2009 4:40:14.607196PM
8 HHHHHHHHHHHHHHHHHHHHHHHH Jul 17 2009 4:40:14.632152PM
9 IIIIIIIIIIIIIIIIIIIIIIIIIII Jul 17 2009 4:40:14.655184PM
10 JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ Jul 17 2009 4:40:14.678938PM
13 CCCCCCCCC Jul 17 2009 4:40:14.511749PM
15 EEEEEEEEEEEEEEE Jul 17 2009 4:40:14.559480PM
17 GGGGGGGGGGGGGGGGGGGGG Jul 17 2009 4:40:14.607196PM (13 rows affected)

Transact-SQL Users Guide
Managing Data P U B L I C 391

3. Transfer transfer_example out again: all 13 rows are transferred. SAP ASE views the rows you
transferred in with keys 3, 5, and 7 as new since they replaced existing rows (this example uses a tracking
ID value of 101):

transfer table transfer_example to 'transfer_example-data-01.ase'
for ase with tracking_id = 101

4. Modify rows to show that incremental transfer transfers only rows that have been modified since the
previous transfer (this update affects 3 rows).

update transfer_example set f3 = current_bigdatetime() where f1 > 10

5. Transfer the table out again to verify that only the 3 changed rows are transferred. You need not specify
for ase: SAP ASE uses this parameter, which was set in the previous transfer, as the default.

transfer table transfer_example to 'transfer_example-data-02.ase' with tracking_id = 102

6. View the transfer information using the tracking_id from step 3:

select id, sequence_id, end_code, ts_floor, ts_ceiling, row_count from spt_TableTransfer
where id = object_id('transfer_example') and tracking_id = 101

id sequence_id end_code ts_floor ts_ceiling row_count --------- ----------- --------- -------- ---------- --------- 592002109 3 0 5309 5716 13

12.10 Delete Data

delete works for both single-row and multiple-row operations.

The where clause specifies which rows are to be removed. When no where clause is given in the delete
statement, all rows in the table are removed. See the Reference Manual: Commands.

12.10.1 Use the from Clause with delete

The from clause in the second position of a delete statement allows you to select data from one or more
tables and delete corresponding data from the first-named table.

The rows you select in the from clause specify the conditions for the delete command.

Suppose that a complex corporate deal results in the acquisition of all the Oakland authors and their books by
another publisher. You must immediately remove all these books from the titles table, but you do not know
their titles or identification numbers. The only information you have is the author’s names and addresses.

392 P U B L I C
Transact-SQL Users Guide

Managing Data

You can delete the rows in titles by finding the author identification numbers for the rows that have Oakland
as the town in the authors table and using these numbers to find the title identification numbers of the books
in the titleauthor table. In other words, a three-way join is required to find the rows to delete in the titles
table.

The three tables are all included in the from clause of the delete statement. However, only the rows in the
titles table that fulfill the conditions of the where clause are deleted. To remove relevant rows in tables
other than titles, use separate delete statements.

This is the correct statement:

delete titles from authors, titles, titleauthor
where titles.title_id = titleauthor.title_id
and authors.au_id = titleauthor.au_id and city = "Oakland"

The deltitle trigger in the pubs2 database prevents you from actually performing this deletion, because it
does not allow you to delete any titles that have sales recorded in the sales table.

Note
The optional from clause immediately after the delete keyword is included for compatibility with other
versions of SQL.

12.10.2 Delete from IDENTITY Columns

You can use the syb_identity keyword in a delete statement on tables containing an IDENTITY column.

For example, to remove the row for which row_id equals 1, use:

delete sales_monthly where syb_identity = 1

After you delete IDENTITY column rows, you may want to eliminate gaps in the table’s IDENTITY column
numbering sequence.

Related Information

Renumbering the Table IDENTITY Columns with bcp [page 369]

Transact-SQL Users Guide
Managing Data P U B L I C 393

12.11 Delete All Rows from a Table

Use truncate table to delete all rows in a table. truncate table is almost always faster than a delete
statement with no conditions, because the delete logs each change, while truncate table logs only the
deallocation of entire data pages.

truncate table immediately frees all the space occupied by the table’s data and indexes. The freed space
can then be used by any object. The distribution pages for all indexes are also deallocated. Run update
statistics after adding new rows to the table.

As with delete, a table emptied with truncate table remains in the database, along with its indexes and
other associated objects, unless you enter a drop table command.

You cannot use truncate table if another table has rows that reference it through a referential integrity
constraint. Delete the rows from the foreign table, or truncate the foreign table and then truncate the primary
table.

Related Information

General Rules for Creating Referential Integrity Constraints [page 112]

12.11.1 truncate table Syntax

The trucate table command removes all rows from a table.

The syntax for truncate table is:

truncate table [[<database>.]<owner>.]<table_name> [partition <partition_name]>

For example, to remove all the data in sales, type:

truncate table sales

Permission to use truncate table, like drop table, defaults to the table owner and cannot be transferred.

A truncate table command is not caught by a delete trigger.

Related Information

Partition Tables and Indexes [page 138]
Triggers: Enforce Referential Integrity [page 591]

394 P U B L I C
Transact-SQL Users Guide

Managing Data

13 Views: Limit Access to Data

You can use views to focus, simplify, and customize each user’s perception of the tables in a particular
database. Views also provide a security mechanism by allowing users access only to the data they require.

A view is a named select statement that is stored in a database as an object. A view allows you to display a
subset of rows or columns in one or more tables. Use a view by invoking its name in Transact-SQL statements.

A view is an alternative way of looking at the data in one or more tables. For example, suppose you are working
on a project that is specific to the state of Utah. You can create a view that lists only the authors who live in
Utah:

create view authors_ut as select * from authors where state = "UT"

To display the authors_ut view, enter:

select * from authors_ut

When the authors who live in Utah are added to or removed from the authors table, the authors_ut view
reflects the updated authors table.

A view is derived from one or more real tables for which the data is physically stored in the database. The
tables from which a view is derived are called its base tables or underlying tables. A view can also be derived
from another view.

The definition of a view, in terms of the base tables from which it is derived, is stored in the database. No
separate copies of data are associated with this stored definition. The data that you view is stored in the
underlying tables.

A view looks exactly like any other database table. You can display it and operate on it almost exactly as you
can any other table. There are no restrictions on querying through views and fewer than usual on modifying
them.

When you modify the data in a view, you are actually changing the data in the underlying base tables.
Conversely, changes to data in the underlying base tables are automatically reflected in the views that are
derived from them.

13.1 Advantages of Views

You can use views to focus, simplify, and customize each user’s perception of the database; views also provide
an easy-to-use security measure.

Views can also be helpful when changes have been made to the structure of a database, but users prefer to
work with the structure of the database they are accustomed to.

You can use views to:

Transact-SQL Users Guide
Views: Limit Access to Data P U B L I C 395

● Focus on the data that interests each user, and on the tasks for which that user is responsible. Data that is
not of interest to a user can be omitted from the view.

● Define frequently used joins, projections, and selections as views so that users need not specify all the
conditions and qualifications each time an operation is performed on that data.

● Display different data for different users, even when they are using the same data at the same time. This is
particularly usefull when users of many different interests and skill levels share the same database.

13.2 Security

Through a view, users can query and modify only the data they can see. The rest of the database is invisable
and inaccessible.

Use the grant and revoke commands to restrict each user’s access to the database to specified database
objects—including views. If a view and all the tables and other views from which it is derived are owned by the
same user, that user can grant permission to others to use the view while denying permission to use its
underlying tables and views. This is a simple but effective security mechanism. See, Managing User
Permissions, in the Security Administration Guide.

By defining different views and selectively granting permissions on them, users can be restricted to different
subsets of data. For example, you can restrict access to:

● A subset of the rows of a base table, that is, a value-dependent subset. For example, you might define a
view that contains only the rows for business and psychology books, to keep information about other
types of books hidden from some users.

● A subset of the columns of a base table, that is, a value-independent subset. For example, you might
define a view that contains all the rows of the titles table, except the royalty and advance columns.

● A row-and-column subset of a base table.
● The rows that qualify for a join of more than one base table. For example, you might define a view that joins

the titles, authors, and titleauthor to display the names of the authors and the books they have
written. However, this view hides personal data about authors and financial information about the books.

● A statistical summary of data in a base table. For example, through the view category_price a user can
access only the average price of each type of book.

● A subset of another view or a combination of views and base tables. For example, through the view
hiprice_computer, a user can access the title and price of computer books that meet the qualifications
in the view definition of hiprice.

To create a view, a user must be granted create view permission by the database owner, and must have
appropriate permissions on any tables or views referenced in the view definition.

If a view references objects in different databases, users of the view must be valid users or guests in each of
the databases.

If you own an object on which other users have created views, you must be aware of who can see what data
through what views. For example: the database owner has granted Harold create view permission, and
Maude has granted Harold permission to select from a table she owns. Given these permissions, Harold can
create a view that selects all columns and rows from the table owned by Maude. If Maude revokes permission
for Harold to select from her table, he can still look at her data through the view he has created.

396 P U B L I C
Transact-SQL Users Guide

Views: Limit Access to Data

13.3 Logical Data Independence

Views can shield users from changes in the structure of the real tables if such changes become necessary.

For example, if you restructure the database by using select into to split the titles table into these two
new base tables and then dropping the titles table:

titletext (title_id, title, type, notes)

titlenumbers (title_id, pub_id, price, advance, royalty, total_sales, pub_date)

You can regenerate the original titles table by joining on the title_id columns of the two new tables. You
can create a view that is a join of the two new tables. You can even name it titles.

Any query or stored procedure that refers to the base table titles now refers to the view titles. select
operations work exactly as before. Users who retrieve only from the new view need not even know that the
restructuring has occurred.

Unfortunately, views provide only partial logical independence. Some data modification statements on the new
titles are not allowed because of certain restrictions.

13.4 Create Views

You can build views on other views and procedures that reference views. You can define primary, foreign, and
common keys on views. However, you cannot associate rules, defaults, or triggers with views or build indexes
on them. You cannot create temporary views, or views on temporary tables.

View names must be unique for each user among the already existing tables and views. If you have set
quoted_identifier on, you can use a delimited identifier for the view.

This example is a view derived from the titles table. Suppose you are interested only in books priced higher
than $15 and for which an advance of more than $5000 was paid. This straightforward select statement
finds the rows that qualify:

select * from titles
where price > $15 and advance > $5000

Now, suppose you have a lot of retrieval and update operations to perform on this data. You can combine the
conditions shown in the previous query with any command that you issue or you can create a view that
displays only the records of interest:

create view hiprice as select *
from titles
where price > $15 and advance > $5000

Transact-SQL Users Guide
Views: Limit Access to Data P U B L I C 397

When SAP ASE receives this command, it stores the select statement, which is the definition of the view
hiprice, in the system table syscomments. Entries are also made in sysobjects and in syscolumns for
each column included in the view.

Now, when you display or operate on hiprice, SAP ASE combines your statement with the stored definition
of hiprice. For example, you can change all the prices in hiprice just as you can change any other table:

update hiprice set price = price * 2

SAP ASE finds the view definition in the system tables and converts the update command into the statement:

update titles set price = price * 2
where price > $15 and advance > $5000

In other words, SAP ASE knows from the view definition that the data to be updated is in titles. It also
increases the prices only in the rows that meet the conditions on the price and advance columns given in the
view definition and those in the update statement.

Having issued the update to hiprice, you can see its effect either in the view or in the titles table.
Conversely, if you had created the view and then issued the second update statement, which operates
directly on the base table, the changed prices would also be visible through the view.

Updating a view’s underlying table in such a way that different rows qualify for the view affects the view. For
example, suppose you increase the price of the book You Can Combat Computer Stress to $25.95. Since this
book now meets the qualifying conditions in the view definition statement, it is considered part of the view.

However, if you alter the structure of a view’s underlying table by adding columns, the new columns do not
appear in a view that is defined with a select * clause unless you drop and redefine the view. This is because
the asterisk in the original view definition considers only the original columns.

Related Information

Naming Convention Identifiers [page 29]

13.4.1 create view Syntax

You need not specify any column names in the create clause of a view definition statement. SAP ASE gives
the columns of the view the same names and datatypes as the columns referred to in the select list of the
select statement.

The select list can be designated by the asterisk (*), as in the example, or it can be a full or partial list of the
column names in the base tables.

See the Reference Manual: Commands.

To build views without duplicate rows, use the distinct keyword of the select statement to ensure that
each row in the view is unique. However, you cannot update distinct views.

398 P U B L I C
Transact-SQL Users Guide

Views: Limit Access to Data

Here is a view definition statement that makes the name of a column in the view different from its name in the
underlying table:

create view pub_view1 (Publisher, City, State) as select pub_name, city, state from publishers

Here is an alternate method of creating the same view but renaming the columns in the select statement:

create view pub_view2 as select Publisher = pub_name,
City = city, State = state from publishers

The examples of view definition statements in the next section illustrate the rest of the rules for including
column names in the create clause.

Note
You cannot use local variables in view definitions.

13.4.2 select Statement Usage with create view

The select statement in the create view statement defines the view. You must have permission to select
from any objects referenced in the select statement of a view you are creating.

You can create a view using more than one table and other views by using a select statement of any
complexity.

On the select statements in a view definition, you cannot:

● Include order by or compute clauses.
● Include the into keyword.
● Reference a temporary table.

After you create a view, the source text describing the view is stored in the text column of the syscomments
system table.

Note
Do not remove this information from syscomments. Instead, encrypt the text in syscomments with
sp_hidetext. See the Reference Manual: Procedures.

Related Information

Compiled Objects [page 22]

Transact-SQL Users Guide
Views: Limit Access to Data P U B L I C 399

13.4.2.1 View Definition with Projection

You can create a view with all the rows of the titles table, but with only a subset of its columns.

create view titles_view as select title, type, price, pubdate from titles

No column names are included in the create view clause. The view titles_view inherits the column names
given in the select list.

13.4.2.2 View Definition with a Computed Column

You can use a view definition statement that creates a view with a computed column generated from the
columns price, royalty, and total_sales.

create view accounts (title, advance, amt_due) as select titles.title_id, advance,
(price * royalty /100) * total_sales
from titles, roysched
where price > $15
and advance > $5000
and titles.title_id = roysched.title_id and total_sales between lorange and hirange

There is no name that can be inherited by the column computed by multiplying together price, royalty, and
total_sales, so you must include the list of columns in the create clause. The computed column is named
amt_due. It must be listed in the same position in the create clause as the expression from which it is
computed is listed in the select clause.

13.4.2.3 View Definition with an Aggregate or Built-In
Function

You can use a definition that includes an aggregate or built-in function must include column names in the
create clause.

For example:

create view categories1 (category, average_price) as select type, avg(price)
from titles group by type

If you create a view for security reasons, be careful when using aggregate functions and the group by clause.
The Transact-SQL extension that does not restrict the columns you can include in the select with group by
may also cause the view to return more information than required. For example:

create view categories2 (category, average_price) as select type, avg(price)

400 P U B L I C
Transact-SQL Users Guide

Views: Limit Access to Data

from titles where type = "business"

You may have wanted the view to restrict its results to “business” categories, but the results have information
about other categories.

Related Information

Organize Query Results into Groups: the group by Clause [page 293]

13.4.2.4 View Definition with a Join

You can create a view that is derived from more than one base table.

Here is an example of a view derived from both the authors and the publishers tables. The view contains
the names and cities of the authors that live in the same city as a publisher, along with each publisher’s name
and city:

create view cities (authorname, acity, publishername, pcity) as select au_lname, authors.city, pub_name, publishers.city
from authors, publishers where authors.city = publishers.city

13.4.2.5 Views Used with Outer Joins

If you define a view with an outer join, and then query the view with a qualification on a column from the inner
table of the outer join, the query behaves as though the qualification were part of the where clause of the view,
not part of the on clause of the outer join in the view.

Thus, the qualification operates only on rows after the outer join is complete. For example, the qualification
operates on NULL extended rows if the outer join condition is met, and eliminates rows accordingly.

The following rules determine what types of updates you can make to columns through join views:

● delete statements are not allowed on join views.
● insert statements are not allowed on join views created with check option.
● update statements are allowed on join views with check option. The update fails if any of the

affected columns appears in the where clause, in an expression that includes columns from more than
one table.

● If you insert or update a row through a join view, all affected columns must belong to the same base table.

Transact-SQL Users Guide
Views: Limit Access to Data P U B L I C 401

13.4.2.6 Views Derived From Other Views

You can define a view in terms of another view.

For example:

create view hiprice_computer as select title, price
from hiprice where type = "popular_comp"

13.4.2.7 Distinct Views

You can ensure that the rows contained in a view are unique.

For example:

create view author_codes as select distinct au_id from titleauthor

A row is a duplicate if all of its column values match the same column values contained in another row. Two
null values are considered to be identical.

SAP ASE applies the distinct requirement to a view definition when it accesses the view for the first time,
before it performs any projecting or selecting. Views look and act like any database table. If you select a
projection of the distinct view (that is, you select only some of the view’s columns, but all of its rows), you can
get results that appear to be duplicates. However, each row in the view itself is still unique. For example,
suppose that you create a distinct view, myview, with three columns, a, b, and c, that contains these values:

a b c

1 1 2

1 2 3

1 1 0

When you enter this query:

select a, b from myview

the results look like this:

a b --- ---
1 1
1 2
1 1
 (3 rows affected)

The first and third rows appear to be duplicates. However, the underlying view’s rows are still unique.

402 P U B L I C
Transact-SQL Users Guide

Views: Limit Access to Data

13.4.2.8 Views That Include IDENTITY Columns

You can define a view that includes an IDENTITY column by listing the column name, or the syb_identity
keyword, in the view’s select statement.

For example:

create view sales_view as select syb_identity, stor_id from sales_daily

However, you cannot add a new IDENTITY column to a view by using the <identity_column_name> =
identity(<precision>) syntax.

You can use the syb_identity keyword to select the IDENTITY column from the view, unless the view:

● Selects the IDENTITY column more than once
● Computes a new column from the IDENTITY column
● Includes an aggregate function
● Joins columns from multiple tables
● Includes the IDENTITY column as part of an expression

If any of these conditions is true, SAP ASE does not recognize the column as an IDENTITY column with respect
to the view. When you execute sp_help on the view, the column displays an “Identity” value of 0.

In the following example, the row_id column is not recognized as an IDENTITY column with respect to the
store_discounts view because store_discounts joins columns from two tables:

create view store_discounts as
select stor_name, discount
from stores, new_discounts where stores.stor_id = new_discounts.stor_id

When you define the view, the underlying column retains the IDENTITY property. When you update a row
through the view, you cannot specify a new value for the IDENTITY column. When you insert a row through the
view, SAP ASE generates a new, sequential value for the IDENTITY column. Only the table owner, database
owner, or system administrator can explicitly insert a value into the IDENTITY column after setting
identity_insert on for the column’s base table.

13.4.3 Validate a View’s Selection Criteria

When you create a view using the with check option clause, each insert and update through the view is
validated against the view’s selection criteria. All rows inserted or updated through the view must remain
visible through the view, or the statement fails.

Normally, SAP ASE does not check insert and update statements on views to determine whether the
affected rows are within the scope of the view. A statement can insert a row into the underlying base table, but
not into the view, or change an existing row so that it no longer meets the view’s selection criteria.

Transact-SQL Users Guide
Views: Limit Access to Data P U B L I C 403

Here is an example of a view, stores_ca, created using with check option. This view includes information
about stores located in California, but excludes information about stores located in any other state. The view is
created by selecting all rows from the stores table for which state has a value of “CA”:

create view stores_ca as select * from stores
where state = "CA" with check option

When you try to insert a row through stores_ca, SAP ASE verifies that the new row falls within the scope of
the view. The following insert statement fails because the new row would have a state value of “NY” rather
than “CA”:

insert stores_ca values ("7100", "Castle Books", "351 West 24 St.", "New York", "NY", "USA",
"10011", "Net 30")

When you try to update a row through stores_cal, SAP ASE verifies that the update will not cause the row to
disappear from the view. The following update statement fails because it attempts to change the value of
state from “CA” to “MA.” If this update was allowed, the row would no longer be visible through the view.

update stores_ca set state = "MA" where stor_id = "7066"

13.4.3.1 Views Derived from Other Views

When a view is created using with check option, all views derived from the base view must satisfy its
check option. Each row inserted through the derived view must be visible through the base view. Each row
updated through the derived view must remain visible through the base view.

Consider the view stores_cal30, which is derived from stores_cal. The new view includes information
about stores in California with payment terms of “Net 30”:

create view stores_cal30 as select * from stores_ca where payterms = "Net 30"

Because stores_cal was created using with check option, all rows inserted or updated through
stores_cal30 must be visible through stores_cal. Any row with a state value other than “CA” is rejected.

stores_cal30 does not have a with check option clause of its own. This means that you can insert or
update a row with a payterms value other than “Net 30” through stores_cal30. The following update
statement would be successful, even though the row would no longer be visible through stores_cal30:

update stores_cal30 set payterms = "Net 60" where stor_id = "7067"

404 P U B L I C
Transact-SQL Users Guide

Views: Limit Access to Data

13.5 Retrieve Data Through Views

When you retrieve data through a view, SAP ASE verifies that all the database objects referenced anywhere in
the statement exist and that they are valid in the context of the statement. If the checks are successful, SAP
ASE combines the statement with the stored definition of the view and translates it into a query on the view’s
underlying tables.

This process is called view resolution.

Consider the following view definition statement and a query against it:

create view hiprice as select *
from titles
where price > $15
and advance > $5000
select title, type
from hiprice where type = "popular_comp"

Internally, SAP ASE combines the query of hiprice with its definition, converting the query to:

select title, type from titles
where price > $15
and advance > $5000 and type = "popular_comp"

In general, you can query any view in any way just as if it were a real table. You can use joins, group by
clauses, subqueries, and other query techniques on views, in any combination. However, if the view is defined
with an outer join or aggregate function, you may get unexpected results when you query the view.

Note
You can use select on text and image columns in views. However, you cannot use readtext and
writetext in views.

Related Information

Views Derived From Other Views [page 402]

Transact-SQL Users Guide
Views: Limit Access to Data P U B L I C 405

13.5.1 View Resolution

When you define a view, SAP ASE verifies that all the tables or views listed in the from clause exist. Similar
checks are performed when you query through the view.

Between the time a view is defined and the time it is used in a statement, things can change. For example, one
or more of the tables or views listed in the from clause of the view definition may have been dropped. Or one or
more of the columns listed in the select clause of the view definition may have been renamed.

To fully resolve a view, SAP ASE verifies that:

● All the tables, views, and columns from which the view was derived still exist.
● The datatype of each column on which a view column depends has not been changed to an incompatible

type.
● If the statement is an update, insert, or delete, it does not violate the restrictions on modifying views.

If any of these checks fails, SAP ASE issues an error message.

Related Information

Modify Data Through Views [page 408]

13.5.2 Redefine Views

You can redefine a view without redefining other views that depend on it, unless the redefinition makes it
impossible for SAP ASE to translate the dependent view.

For example, the authors table and three possible views are shown below. Each succeeding view is defined
using the view that preceded it: view2 is created from view1, and view3 is created from view2. In this way,
view2 depends on view1 and view3 depends on both the preceding views.

Each view name is followed by the select statement used to create it.

view1:

create view view1 as select au_lname, phone
from authors where postalcode like "94%"

view2:

create view view2 as select au_lname, phone
from view1 where au_lname like "[M-Z]%"

view3:

create view view3

406 P U B L I C
Transact-SQL Users Guide

Views: Limit Access to Data

 as select au_lname, phone
from view2 where au_lname = "MacFeather"

The authors table on which these views are based consists of these columns: au_id, au_lname, au_fname,
phone, address, city, state, and postalcode.

You can drop view2 and replace it with another view, also named view2, that contains slightly different
selection criteria, such as:

create view view2 as select au_lname, phone
from view3 where au_lname like "[M-P]"

view3, which depends on view2, is still valid and does not need to be redefined. When you use a query that
references either view2 or view3, view resolution takes place as usual.

If you redefine view2 so that view3 cannot be derived from it, view3 becomes invalid. For example, if another
new version of view2 contains a single column, au_lname, rather than the two columns that view3 expects,
view3 can no longer be used because it cannot derive the phone column from the object on which it depends.

However, view3 still exists and you can use it again by dropping view2 and re-creating view2 with both the
au_lname and the phone columns.

In summary, you can change the definition of an intermediate view without affecting dependent views as long
as the select list of the dependent views remains valid. If this rule is violated, a query that references the
invalid view produces an error message.

13.5.3 Rename Views

You can rename a view using sp_rename.

sp_rename <objname> , <newname>

For example, to rename titleview to bookview, enter:

sp_rename titleview, bookview

Follow these conventions when renaming views:

● Make sure the new name follows the rules used for identifiers.
● You can change the name of only views that you own. The database owner can change the name of any

user’s view.
● Make sure the view is in the current database.

Related Information

Naming Convention Identifiers [page 29]

Transact-SQL Users Guide
Views: Limit Access to Data P U B L I C 407

13.5.4 Alter or Drop Underlying Objects

You can change the name of a view’s underlying objects. For example, if a view references a table that is
named new_sales, and you rename that table to old_sales, the view works on the renamed table.

However, if you have dropped a table referenced by a view, and someone tries to use the view, SAP ASE
produces an error message. If a new table or view is created to replace the one that was dropped, the view
again becomes usable.

If you define a view with a select * clause, and then alter the structure of its underlying tables by adding
columns, the new columns do not appear. This is because the asterisk shorthand is interpreted and expanded
when the view is first created. To see the new columns, drop the view and re-create it.

13.6 Modify Data Through Views

Although SAP ASE places no restrictions on retrieving data through views, and although Transact-SQL places
fewer restrictions on modifying data through views than other versions of SQL, certain rules still apply to
various data modification operations.

These rules are:

● update, insert, or delete operations that refer to a computed column or a built-in function in a view are
not allowed.

● update, insert, or delete operations that refer to a view that includes aggregates or row aggregates
are not allowed.

● insert, delete, and update operations that refer to a distinct view are not allowed.
● insert statements are not allowed unless all NOT NULL columns in the underlying tables or views are

included in the view through which you are inserting new rows. SAP ASE has no way to supply values for
NOT NULL columns in the underlying objects.

● If a view has a with check option clause, all rows inserted or updated through the view (or through any
derived views) must satisfy the view’s selection criteria.

● delete statements are not allowed on multitable views.
● insert statements are not allowed on multitable views created with the with check option clause.
● update statements are allowed on multitable views where with check option is used. The update fails

if any of the affected columns appears in the where clause, in an expression that includes columns from
more than one table.

● insert and update statements are not allowed on multitable distinct views.
● update statements cannot specify a value for an IDENTITY column. The table owner, database owner, or a

system administrator can insert an explicit value into an IDENTITY column after setting
identity_insert on for the column’s base table.

● If you insert or update a row through a multitable view, all affected columns must belong to the same base
table.

● writetext is not allowed on the text and image columns in a view.

When you attempt an update, insert, or delete for a view, SAP ASE checks to make sure that none of the
above restrictions is violated and that no data integrity rules are violated.

408 P U B L I C
Transact-SQL Users Guide

Views: Limit Access to Data

13.6.1 Restrictions on Updating Views

Restrictions on updating views apply to these areas: computed columns in a view definition, group by or
compute in a view definition, null values in underlying objects, view created using with check option,
multitable views, and views with IDENTITY columns.

Computed Columns in a View Definition

This restriction applies to columns of views that are derived from computed columns or built-in functions. For
example, the amt_due column in the view accounts is a computed column.

For example, the amt_due column in the view accounts is a computed column.

create view accounts (title_id, advance, amt_due) as select titles.title_id, advance,
(price * royalty/100) * total_sales
from titles, roysched
where price > $15
 and advance > $5000
and titles.title_id = roysched.title_id and total_sales between lorange and hirange

The rows visible through accounts are:

select * from accounts

title_id advance amt_due -------- -------- ---------
PC1035 7,000.00 32,240.16
PC8888 8,000.00 8,190.00
PS1372 7,000.00 809.63
TC3218 7,000.00 785.63
 (4 rows affected)

updates and inserts to the amt_due column are not allowed because there is no way to deduce the
underlying values for price, royalty, or year-to-date sales from any value you might enter in the amt_due
column. delete operations do not make sense because there is no underlying value to delete.

group by or compute in a View Definition

This restriction applies to all columns in views that contain aggregate values—that is, views that have a
definition that includes a group by or compute clause. Here is a view defined with a group by clause and the
rows seen through it:

Here is a view defined with a group by clause and the rows seen through it:

create view categories (category, average_price) as select type, avg(price)
from titles

Transact-SQL Users Guide
Views: Limit Access to Data P U B L I C 409

group by type select * from categories

category average_price ------------- -------------
UNDECIDED NULL
business 13.73
mod_cook 11.49
popular_comp 21.48
psychology 13.50
trad_cook 15.96
 (6 rows affected)

You cannot insert rows into the view categories, because the group to which an inserted row would belong
cannot be determined. Updates on the average_price column are not allowed, because there is no way to
determine how the underlying prices should be changed.

NULL Values in Underlying Objects

This restriction applies to insert statements when some NOT NULL columns are contained in the tables or
views from which the view is derived.

For example, suppose null values are not allowed in a column of a table that underlies a view. Normally, when
you insert new rows through a view, any columns in underlying tables that are not included in the view are
given null values. If null values are not allowed in one or more of these columns, no inserts can be allowed
through the view.

For example, in this view:

create view business_titles as select title_id, price, total_sales
from titles where type = "business"

Null values are not allowed in the title column of the underlying table titles, so no insert statements can
be allowed through business_view. Although the title column does not even exist in the view, its
prohibition of null values makes any inserts into the view illegal.

Similarly, if the title_id column has a unique index, updates or inserts that would duplicate any values in the
underlying table are rejected, even if the entry does not duplicate any value in the view.

Views Created Using with check option

This restriction determines what types of modifications you can make through views with check options. If a
view has a with check option clause, each row inserted or updated through the view must be visible within
the view. This is true whether you insert or update the view directly or indirectly, through another derived view.

410 P U B L I C
Transact-SQL Users Guide

Views: Limit Access to Data

Multitable Views

This restriction that determines what types of modifications you can make through views that join columns
from multiple tables. SAP ASE prohibits delete statements on multitable views, but allows update and
insert statements that would not be allowed in other systems.

You can insert or update a multitable view if:

● The view has no with check option clause.
● All columns being inserted or updated belong to the same base table.

For example, consider the following view, which includes columns from both titles and publishers and
has no with check option clause:

create view multitable_view as select title, type, titles.pub_id, state
from titles, publishers where titles.pub_id = publishers.pub_id

A single insert or update statement can specify values either for the columns from titles or for the column
from publishers:

update multitable_view set type = "user_friendly" where type = "popular_comp"

However, this statement fails because it affects columns from both titles and publishers:

update multitable_view set type = "cooking_trad",
state = "WA" where type = "trad_cook"

Views with IDENTITY Columns

This restriction determines what types of modifications you can make to views that include IDENTITY
columns. By definition, IDENTITY columns cannot be updated. Updates through a view cannot specify an
IDENTITY column value.

Inserts to IDENTITY columns are restricted to:

● The table owner
● The database owner or the system administrator, if the table owner has granted them permission
● The database owner or the system administrator, if they are impersonating the table owner by using the

setuser command.

To enable such inserts through a view, use set identity_insert on for the column’s base table. You
cannot use set identity_insert on for the view through which you are inserting.

Transact-SQL Users Guide
Views: Limit Access to Data P U B L I C 411

13.7 Drop Views

To delete a view from the database, use drop view.

You can drop more than one view at a time, for example:

drop view [<owner>.]<view_name> [, [<owner>.]<view_name>]...

Only its owner (or the database owner) can drop a view.

When you issue drop view, information about the view is deleted from sysprocedures, sysobjects,
syscolumns, syscomments, sysprotects, and sysdepends. All privileges on that view are also deleted.

If a view depends on a table or on another view that has been dropped, SAP ASE returns an error message if
anyone tries to use the view. If a new table or view is created to replace the one that has been dropped, and if it
has the same name as the dropped table or view, the view again becomes usable, as long as the columns
referenced in the view definition exist.

13.8 Use Views as Security Mechanisms

Data in an underlying table that is not included in the view is hidden from users who are authorized to access
the view but not the underlying table.

Permission to access the subset of data in a view must be explicitly granted or revoked, regardless of the
permissions in force on the view’s underlying tables.

For example, you may not want some users to access the columns that have to do with money and sales in the
titles table. You can create a view of the titles table that omits those columns, and then give all users
permission on the view, and give only the Sales Department permission on the table. For example:

revoke all on titles to public grant all on bookview to public grant all on titles to sales

See, Managing User Permissions, in the Security Administration Guide.

412 P U B L I C
Transact-SQL Users Guide

Views: Limit Access to Data

13.9 Get Information About Views

System procedures, catalog stored procedures, and SAP ASE built-in functions provide information from the
system tables about views.

Use sp_help and sp_helptext to Display View Information

The sp_help command reports on a view. To display the text of the create view statement, use
sp_helptext.

Use sp_help to report on a view:

sp_help hiprice ----------------

In the evaluated configuration, the system security officer must reset the allow select on
syscomments.text column configuration parameter. (See evaluated configuration in the Glossary for more
information.) When this happens, you must be the creator of the view or a system administrator to view the
text of a view through sp_helptext.

To display the text of the create view statement, execute sp_helptext:

sp_helptext hiprice # Lines of Text

3 (1 row affected)
text

------------ --SAP ASE has expanded all '*' elements in the following statement
create view hiprice as select titles.title_id, titles.title, titles.type,
titles.pub_id, titles.price,
titles.advance, titles.total_sales, titles.notes, titles.pubdate,
titles.contract from titles where price > $15 and advance > $5000(3 rows
affected) (return status = 0)

If the source text of a view was encrypted using sp_hidetext, SAP ASE displays a message advising you that
the text is hidden. See the Reference Manual: Procedures.

Transact-SQL Users Guide
Views: Limit Access to Data P U B L I C 413

Use sp_depends to List Dependent Objects

sp_depends lists all the objects that the view or table references in the current database, and all the objects
that reference that view or table.

sp_depends titles

Things inside the current database that reference the object. object type
------------- ---------------------------
dbo.history_proc stored procedure
dbo.title_proc stored procedure
dbo.titleid_proc stored procedure
dbo.deltitle trigger
dbo.totalsales_trig trigger
dbo.accounts view
dbo.bookview view
dbo.categories view
dbo.hiprice view
dbo.multitable_view view
dbo.titleview view
 (return status = 0)

List All Views in a Database

sp_tables lists all views in a database.

The syntax is:

sp_tables @table_type = "’VIEW’"

Find an Object Name and ID

The system functions object_id and object_name identify the ID and name of a view.

For example:

select object_id("titleview")

---------- 480004741

Object names and IDs are stored in the sysobjects table.

414 P U B L I C
Transact-SQL Users Guide

Views: Limit Access to Data

14 Defining Defaults and Rules for Data

A default is a value that SAP ASE inserts into a column if a user does not explicitly enter one. In database
management, a rule specifies what you are or are not allowed to enter in a particular column, or in any column
that uses a given user-defined datatype.

You can use defaults and rules to help maintain the integrity of data across the database.

You can define a value for a table column or user-defined datatype that is automatically inserted if a user does
not explicitly enter a value.

For example, you can create a default that has the value “???” or the value “fill in later.” You can also define
rules for that table column or datatype to restrict the types of values users can enter for it.

In a relational database management system, every data element must contain some value, even if that value
is null. Some columns do not accept the null value. For those columns, some other value must be entered,
either a value explicitly entered by the user or a default entered by SAP ASE.

Rules enforce the integrity of data in ways not covered by a column’s datatype. A rule can be connected to a
specific column, to several specific columns or to a specified, user-defined datatype.

Every time a user enters a value, SAP ASE checks it against the most recent rule that has been bound to the
specified column. Data entered prior to the creation and binding of a rule is not checked.

You can create sharable inline default objects for default clauses and automatically use the same default
object for multiple tables and columns.

As an alternative to using defaults and rules, you can use the default clause and the check integrity
constraint of the create table statement to accomplish some of the same tasks. However, these items are
specific to each table and cannot be bound to columns of other tables or to user-defined datatypes.

14.1 Create Defaults

Define a default using create default, then bind the default to the appropriate table column or user-defined
datatype using sp_bindefault.

You can test the bound default by inserting data.

You can drop defaults using drop default and remove their association using sp_unbinddefault.

When you create and bind defaults:

● Make sure the column is large enough for the default. For example, a char (2) column will not hold a 17-
byte string like “Nobody knows yet.”

● Be careful when you put a default on a user-defined datatype and a different default on an individual
column of that type. If you bind the datatype default first and then the column default, the column default
replaces the user-defined datatype default for the named column only. The user-defined datatype default
is bound to all the other columns having that datatype.

Transact-SQL Users Guide
Defining Defaults and Rules for Data P U B L I C 415

However, once you bind another default to a column that has a default because of its type, that column
ceases to be influenced by defaults bound to its datatype.

● Watch for conflicts between defaults and rules. Be sure the default value is allowed by the rule; otherwise,
the default may be eliminated by the rule.
For example, if a rule allows entries between 1 and 100, and the default is set to 0, the rule rejects the
default entry. Either change the default or change the rule.
The syntax is:

create default [<owner>.]<default_name> as <constant_expression>

Default names must follow the rules for identifiers.
Within a database, default names must be unique for each user. For example, you cannot create two
defaults called phonedflt. However, as “guest,” you can create a phonedflt even if dbo.phonedflt
already exists because the owner name makes each one distinct.
Another example: suppose you want to create a default value of “Oakland” that can be used with the city
column of friends_etc and possibly with other columns or user datatypes. To create the default, enter:

create default citydflt as "Oakland"

As you continue to follow this example, you can use any city name that works for the people you are going
to enter in your personal table.
Enclose character and date constants in quotes; money, integer, and floating point constants do not
require them. Binary data must be preceded by “0x”, and money data should be preceded by a dollar sign
($), or whatever monetary sign is the logical default currency for the area where you are working. The
default value must be compatible with the datatype of the column, for example, you cannot use “none” as
a default for a numeric column, but 0 is appropriate.
Usually, you enter default values when you create a table. However, during a session in which you want to
enter many rows having the same values in one or more columns, you may want to, before you begin,
create a default tailored to that session.

Note
You cannot issue create table with a declarative default and then insert data into the table in the
same batch or procedure. Either separate the create and insert statements into two different batches
or procedures, or use execute to perform the actions separately.

14.1.1 Bind Defaults

Use sp_bindefault to bind a default to a column or user-defined datatype.

For example, suppose you create the following default:

create default advancedflt as "UNKNOWN"

Now, bind the default to the appropriate column or user-defined datatype.

sp_bindefault advancedflt, "titles.advance"

416 P U B L I C
Transact-SQL Users Guide

Defining Defaults and Rules for Data

The default takes effect only if the user does not make an entry in the advance column of the titles table.
Not making an entry is different from entering a null value. A default can connect to a particular column, to a
number of columns, or to all columns in the database that have a given user-defined datatype.

Note
To use the default, you must issue an insert or update command with a column list that does not include
the column that has the default.

These restrictions apply:

● A default applies only to new rows. It does not retroactively change existing rows. Defaults take effect only
when no entry is made. If you supply any value for the column, including NULL, the default has no effect.

● You cannot bind a default to a system datatype.
● You cannot bind a default to a timestamp column, because SAP ASE automatically generates values for

timestamp columns.
● You cannot bind defaults to system tables.
● Although you can bind a default to an IDENTITY column or to a user-defined datatype with the IDENTITY

property, SAP ASE ignores such defaults. When you insert a row into a table without specifying a value for
the IDENTITY column, SAP ASE assigns a value that is 1 greater than the last value assigned.

● If a default already exists on a column, you must remove it before you can bind a new default. Use
sp_unbindefault to remove defaults created with sp_bindefault. Use alter table to remove
defaults created with create table.

To bind citydflt to the city column in friends_etc, type:

sp_bindefault citydflt, "friends_etc.city"

The table and column name must be enclosed in quotes, because of the embedded punctuation (the period).

If you create a special datatype for all city columns in every table in your database, and bind citydflt to that
datatype, “Oakland” appears only where city names are appropriate. For example, if the user datatype is called
citytype, here is how to bind citydflt to it:

sp_bindefault citydflt, citytype

To prevent existing columns or a specific user datatype from inheriting the new default, use the futureonly
parameter when binding a default to a user datatype. However, do not use futureonly when binding a
default to a column. Here is how you create and bind the new default “Berkeley” to the datatype citytype for
use by new table columns only:

create default newcitydflt as "Berkeley" sp_bindefault newcitydflt, citytype, futureonly

“Oakland” continues to appear as the default for any existing table columns using citytype.

If most of the people in your table live in the same postal code area, you can create a default to save data entry
time. Here is one, along with its binding, that is appropriate for a section of Oakland:

create default zipdflt as "94609" sp_bindefault zipdflt, "friends_etc.postalcode"

Transact-SQL Users Guide
Defining Defaults and Rules for Data P U B L I C 417

Here is the complete syntax for sp_bindefault:

sp_bindefault <defname, objname> [, futureonly]

<defname> is the name of the default created with create default. <objname> is the name of the table
and column, or of the user-defined datatype, to which the default is to be bound. If the parameter is not of the
form <table>.<column>, it is assumed to be a user-defined datatype.

All columns of a specified user-defined datatype become associated with the specified default unless you use
the optional futureonly parameter, which prevents existing columns of that user datatype from inheriting
the default.

Note
Defaults cannot be bound to columns and used during the same batch. sp_bindefault cannot be in the
same batch as insert statements that invoke the default.

After you create a default, the source text describing the default is stored in the text column of the
syscomments system table. Do not remove this information; doing so may cause problems for future versions
of SAP ASE. Instead, use use sp_hidetext to encrypt the text in syscomments. See the Reference Manual:
Procedures.

Related Information

Compiled Objects [page 22]

14.1.2 Unbind Defaults

Unbinding a default means disconnecting it from a particular column or user-defined datatype. An unbound
default remains in the database and is available for future use. Use sp_unbindefault to remove the binding
between a default and a column or datatype.

Here is how to unbind the current default from the city column of the friends_etc table:

execute sp_unbindefault "friends_etc.city"

To unbind a default from the user-defined datatype citytype, use:

sp_unbindefault citytype

The complete syntax of sp_unbindefault is:

sp_unbindefault <objname> [, futureonly]

If the <objname> parameter you give is not of the form <table>.<column>, SAP ASE assumes it is a user-
defined datatype. When you unbind a default from a user-defined datatype, the default is unbound from all

418 P U B L I C
Transact-SQL Users Guide

Defining Defaults and Rules for Data

columns of that type unless you give the optional futureonly parameter, which prevents existing columns
of that datatype from losing their binding with the default.

14.1.3 How Defaults Affect NULL Values

If you specify NOT NULL when you create a column and do not create a default for it, SAP ASE produces an
error message whenever a user inserts a row without making an entry in that column.

When you drop a default for a NULL column, SAP ASE inserts NULL in that position each time you add rows
without entering any value for that column. When you drop a default for a NOT NULL column, you get an error
message when rows are added, without a value entered for that column.

This table illustrates the relationship between the existence of a default and the definition of a column as NULL
or NOT NULL.

Column Definition User Entry Result

Null and default defined No value

NULL value

Default used

NULL used

Null defined, no default defined No value

NULL value

NULL used

NULL used

Not null, default defined No value

NULL value

Default used

Error

Not null, no default defined No value

NULL value

Error

Error

14.2 Drop Defaults

To remove a default from the database, use the drop default command.

Unbind the default from all columns and user datatypes before you drop it. If you try to drop a default that is
still bound, SAP ASE displays an error message and the drop default command fails.

Here is how to remove citydflt. First, you unbind it:

sp_unbindefault citydft

Then you can drop citydft:

drop default citydflt

Transact-SQL Users Guide
Defining Defaults and Rules for Data P U B L I C 419

The complete syntax of drop default is:

drop default [<owner>.]<default_name> [, [<owner>.]<default_name>] ...

A default can be dropped only by its owner. See the Reference Manual: Procedures and the Reference Manual:
Commands.

Related Information

Unbind Defaults [page 418]

14.3 Create Rules

Create the rule using create rule, then bind the rule to a column or user-defined datatype using
sp_bindrule.

You can test the bound rule by inserting data. Many errors in creating and binding rules can be caught only by
testing with an insert or update command.

You can unbind a rule from the column or datatype either by using sp_unbindrule or by binding a new rule
to the column or datatype.

The syntax is:

create rule [<owner>.]<rule_name> as <condition_expression>

Rule names must follow the rules for identifiers. You can create a rule only in the current database.

Within a database, rule names must be unique for each user. For example, a user cannot create two rules
called socsecrule. However, two different users can create a rule named socsecrule, because the owner
names make each one distinct.

Here is how the rule permitting five different pub_id numbers and one dummy value (99 followed by any two
digits) was created:

create rule pub_idrule as @pub_id in ("1389", "0736", "0877", "1622", "1756") or @pub_id like "99[0-9][0-9]"

The as clause contains the name of the rule’s argument, prefixed with “@”, and the definition of the rule itself.
The argument refers to the column value that is affected by the update or insert statement.

The argument is @pub_id, a convenient name, since this rule is to be bound to the pub_id column. You can
use any name for the argument, but the first character must be “@.” Using the name of the column or datatype
to which the rule will be bound may help you remember what it is for.

The rule definition can contain any expression that is valid in a where clause, and can include arithmetic
operators, comparison operators, like, in, between, and so on. However, the rule definition cannot directly

420 P U B L I C
Transact-SQL Users Guide

Defining Defaults and Rules for Data

reference any column or other database object. It can include built-in functions that do not reference database
objects.

The following example creates a rule that forces the values you enter to comply with a particular “picture.” In
this case, each value entered in the column must begin with “415” and be followed by 7 more characters:

create rule phonerule as @phone like "415_ _ _ _ _ _ _"

To make sure that the ages you enter for your friends are between 1 and 120, but never 17, try this:

create rule agerule as @age between 1 and 120 and @age ! = 17

14.3.1 Bind Rules

After you have created a rule, use sp_bindrule to link the rule to a column or user-defined datatype.

Here is the complete syntax for sp_bindrule:

sp_bindrule <rulename>, <objname> [, futureonly]

The <rulename> is the name of the rule created with create rule. The <objname >is the name of the table
and column, or of the user-defined datatype to which the rule is to be bound. If the parameter is not of the form
<table.column>, it is assumed to be a user datatype.

Use the optional futureonly parameter only when binding a rule to a user-defined datatype. All columns of a
specified user-defined datatype become associated with the specified rule unless you specify futureonly,
which prevents existing columns of that user datatype from inheriting the rule. If the rule associated with a
given user-defined datatype has previously been changed, SAP ASE maintains the changed rule for existing
columns of that user-defined datatype.

After you define a rule, the source text describing the rule is stored in the text column of the syscomments
system table. Do not remove this information; doing so may cause problems for future versions of SAP ASE.
Instead, encrypt the text in syscomments by using sp_hidetext. See the Reference Manual: Procedures.

These restrictions apply:

● You cannot bind a rule to a text, unitext, image, or timestamp datatype column.
● You cannot use rules on system tables.

Related Information

Compiled Objects [page 22]

Transact-SQL Users Guide
Defining Defaults and Rules for Data P U B L I C 421

14.3.1.1 Rules Bound to Columns

Bind a rule to a column using sp_bindrule with the rule name and the quoted table name and column name.

For example, to bind pub_idrule to publishers.pub_id, use:

sp_bindrule pub_idrule, "publishers.pub_id"

This rule ensures that all postal codes entered have 946 as the first 3 digits:

create rule postalcoderule946 as @postalcode like "946[0-9][0-9]"

Bind it to the postalcode column in friends_etc like this:

sp_bindrule postalcoderule946, "friends_etc.postalcode"

Rules cannot be bound to columns and used during the same batch. sp_bindrule cannot be in the same
batch as insert statements that invoke the rule.

14.3.1.2 Rules Bound to User-Defined Datatypes

You cannot bind a rule to a system datatype, but you can bind one to a user-defined datatype. To bind
phonerule to a user-defined datatype called p#, enter:

sp_bindrule phonerule, "p#"

14.3.1.3 Precedence of Rules

Rules that are bound to columns always take precedence over rules that are bound to user datatypes.

Binding a rule to a column replaces a rule bound to the user datatype of that column, but binding a rule to a
datatype does not replace a rule bound to a column of that user datatype.

A rule bound to a user-defined datatype is activated only when you attempt to insert a value into, or update, a
database column of the user-defined datatype. Because rules do not test variables, do not assign a value to a
user-defined datatype variable that would be rejected by a rule bound to a column of the same datatype.

This table indicates the precedence when binding rules to columns and user datatypes where rules already
exist:

New Rule Bound To Old Rule Bound To

User datatype Column

User datatype Replaces old rule No change

422 P U B L I C
Transact-SQL Users Guide

Defining Defaults and Rules for Data

New Rule Bound To Old Rule Bound To

Column Replaces old rule Replaces old rule

When you are entering data that requires special temporary constraints on some columns, you can create a
new rule to help check the data. For example, suppose that you are adding data to the debt column of the
friends_etc table. You know that all the debts you want to record today are between $5 and $200. To avoid
accidentally typing an amount outside those limits, create a rule like this one:

create rule debtrule as @debt = $0.00 or @debt between $5.00 and $200.00

The @debt rule definition allows for an entry of $0.00 to maintain the default previously defined for this
column.

Bind debtrule to the debt column like this:

sp_bindrule debtrule, "friends_etc.debt"

14.3.2 Rules and NULL Values

You cannot define a column to allow nulls, and then override this definition with a rule that prohibits null values.

For example, if a column definition specifies NULL and the rule specifies the following, an implicit or explicit
NULL does not violate the rule:

@val in (1,2,3)

The column definition overrides the rule, even a rule that specifies:

@val is not null

14.3.3 Unbind Rules

Unbinding a rule disconnects it from a particular column or user-defined datatype. An unbound rule’s
definition remains in the database and is available for future use.

There are two ways to unbind a rule:

● Use sp_unbindrule to remove the binding between a rule and a column or user-defined datatype.
● Use sp_bindrule to bind a new rule to that column or datatype. The old one is automatically unbound.

Here is how to disassociate debtrule (or any other currently bound rule) from friends_etc.debt:

sp_unbindrule "friends_etc.debt"

Transact-SQL Users Guide
Defining Defaults and Rules for Data P U B L I C 423

The rule is still in the database, but it has no connection to friends_etc.debt.

To unbind a rule from the user-defined datatype p#,

sp_unbindrule "p#"

The complete syntax of sp_unbindrule is:

sp_unbindrule <objname> [, futureonly]

If the <objname> parameter you use is not of the form “<table.column>,” SAP ASE assumes it is a user-
defined datatype. When you unbind a rule from a user-defined datatype, the rule is unbound from all columns
of that type unless:

● You use the optional futureonly parameter, which prevents existing columns of that datatype from
losing their binding with the rule, or

● The rule on a column of that user-defined datatype has been changed so that its current value is different
from the rule being unbound.

14.4 Drop Rules

To remove a rule from the database entirely, use the drop rule command.

Unbind the rule from all columns and user datatypes before you drop it. If you try to drop a rule that is still
bound, SAP ASE displays an error message, and drop rule fails. However, you need not unbind and then
drop a rule to bind a new one. Simply bind a new one in its place.

To remove phonerule after unbinding it:

drop rule phonerule

The complete syntax for drop rule is:

drop rule [<owner>.]<rule_name> [, [<owner>.]<rule_name>] ...

After you drop a rule, new data entered into the columns that previously were governed by it goes in without
these constraints. Existing data is not affected in any way.

A rule can be dropped only by its owner.

424 P U B L I C
Transact-SQL Users Guide

Defining Defaults and Rules for Data

14.5 Retrieve Information About Defaults and Rules

Use sp_help with a table name to show the rules and defaults that are bound to columns.

This example displays information about the authors table in the pubs2 database, including the rules and
defaults:

sp_help authors

sp_help also reports on a rule bound to a user-defined datatype. To check whether a rule is bound to the
user-defined datatype p#, use:

sp_help "p#"

sp_helptext reports the definition (the create statement) of a rule or default.

If the source text of a default or rule was encrypted using sp_hidetext, SAP ASE displays a message
advising you that the text is hidden. See the Reference Manual: Procedures.

If the system security officer has reset the allow select on syscomments.text column parameter with
sp_configure (as required to run SAP ASE in the evaluated configuration), you must be the creator of the
default or rule or a system administrator to view the text of a default or rule through sp_helptext. See,
Introduction to Security, in the Security Administration Guide.

14.6 Share Inline Defaults

When you create a new inline default, SAP ASE looks for an existing shareable inline default that have the same
value in the database belonging to the same user. If one exists, SAP ASE binds this object to the column
instead of creating a new default.

However, if SAP ASE does not find an existing shareable inline default, it creates a new default.

SAP ASE shares inline defaults between tables only within the same database.

Enable shared inline defaults by setting enable functionality group to a value greater than 0. See,
Setting Configuration Parameters, in the System Administration Guide, Volume 1.

14.6.1 Create an Inline Shared Default

SAP ASE automatically creates and uses sharable inline defaults when the default clause is used in create
table or alter table commands.

For example, if you create this table:

create table my_titles (title_id char(6),
title varchar(80),

Transact-SQL Users Guide
Defining Defaults and Rules for Data P U B L I C 425

moddate datetime default '12/12/2012')

Then create a second table with the same default:

create table my_authors2 (auth_id char(6),
title varchar(80), moddate datetime default '12/12/2012')

sysobjects reports a single default shared between the two:

select id, name from sysobjects where type = 'D'

 id name ----------- --------------------------- 1791386948 my_titles_moddat_1791386948

Use sp_helpconstraint to view the definition for a shareable inline default object:

sp_helpconstraint my_titles

name defintion created ------------------------------- ------------------- ---------------
my_titles_moddate_1791386948 DEFAULT '12/12/2012' Dec 6 2010 10:55AM
sp_helpconstraint my_authors2
name defintion created
------------------------------- ------------------- ---------------- my_titles_moddate_1791386948 DEFAULT '12/12/2012' Dec 6 2010 10:55AM

my_titles and my_authors2 show the same internal default name, my_titles_moddate_1791386948,
which indicates there is a single default object shared between these columns. sp_help also shows the
defaults associated with columns.

14.6.2 Unbind a Shared Inline Default

You cannot explicitly unbind a sharable inline default from a column. SAP ASE automatically unbinds or drops
it from the column during drop table or alter table commands.

When you drop or alter a table, SAP ASE checks whether any inline defaults are shared with other columns. If
they are, SAP ASE unbinds the columns from the inline default object without dropping the shared defaults.

If an inline default object is no longer used by any column, SAP ASE drops it.

14.6.3 Limitations for Shared Inline Defaults

Certain limitations apply to shared inline defaults.

● You cannot use shared inline defaults in global or user tempdb.
● Inline defaults that use a variable cannot be shared.
● You cannot use shared inline defaults between users.

426 P U B L I C
Transact-SQL Users Guide

Defining Defaults and Rules for Data

● Inline defaults that use expressions cannot be shared.
● <constant_value> must be a constant literal.
● Inline defaults that are defined in syscomments as requiring more than one row (that is, more than 255

bytes) cannot be shared.
● Shareable inline defaults that exist on an SAP ASE server you are downgrading are treated as if they were

created with the create default command from the previous release. These defaults are fully
functional with the sp_binddefault, sp_unbindefault and drop default commands using the
internal default names.

Transact-SQL Users Guide
Defining Defaults and Rules for Data P U B L I C 427

15 Precomputed Result Sets

A precomputed result set is a view for which the result is computed, stored, and available for future use. Once
configured for precomputed result sets, SAP ASE precomputes queries and attempts to use the precomputed
result during subsequent iterations. Precomputed result sets are also called materialized views.

Conceptually, a precomputed result set is both a view (because it includes query definition stored in the
system tables) and a table (because it includes persistent data). You can perform many of the same
operations that you perform on tables on precomputed result sets, including creating indexes and running
update statistics.

Once SAP ASE is configured to use precomputed result sets, the optimizer attempts to automatically rewrite
each query using a precomputed result set. However, the final plan the optimizer selects is primarily cost
based.

When the optimizer rewrites a query using a precomputed result set, it decides which precomputed result set
is the best candidate. If the optimizer chooses to replace all, or part, of a query with a precomputed result set,
it also adds any necessary compensation to the rewritten query (that is, any predicates needed to ensure the
rewritten query is equivalent to the original user query). For example, if the user query includes a join of:

 c1=c2 and c2=c3 and c3=c4

but the precomputed result set includes a join for:

c1=c2 and c3=c4

the rewritten query using the precomputed result set must have a compensation predicate similar to c1=c3 to
form an equivalent query.

Like an index, a precomputed result set has a maintenance cost for concurrent insert, update, and delete
statements. Generally, precomputed result-set maintenance overhead consists of more than maintaining the
indexes when the definition involves multiple table joins. Consequently, precomputed result sets are
unsuitable for OLTP with heavy concurrent insert, update, and delete statements and simple index-based
select statements.

Note
SAP ASE allows you to run updates statistics on precomputed result sets.

15.1 Benefits of Precomputed Result Sets

Whether your site benefits from precomputed result sets depends on how they are designed.

Although you may want to precompute as many queries as possible (particularly more joins) and make them
available for multiple queries, precomputed result sets take extra disk space and have a higher maintenance
cost. You can create extra indexes to help query performance, but these also incur an extra maintenance cost.

428 P U B L I C
Transact-SQL Users Guide

Precomputed Result Sets

Precomputed result sets are best for frequently executed, expensive queries, such as those involving intensive
aggregation and join operations. When you submit a query, the optimizer attempts to rewrite the query to use
existing precomputed result sets instead of the base tables.

Generally, capture your application’s workload and design your precomputed result sets based on this
workload. A good place to start is to create a combined join graph for all queries—along with their frequency of
use—to indicate good candidates for using the same precomputed result set for multiple queries.

Test your precomputed result sets before putting them into production. If the queries are read-only or read-
most, measure their performance gain against the extra disk space they use and the amount of time it takes
them to populate the data; if it is a mixture of read-only or read-most, measure the impact of the precomputed
result sets against the throughput.

15.2 Configuring SAP ASE for Precomputed Result Sets

Before you create or alter precomputed result sets, verify that a number of session set parameters are set
correctly

Context

Including:

● set ansinull – on
● set arithabort – on
● set arithignore – off
● set string_rtruncation – on

Procedure

1. Use create precomputed result set to create precomputed result sets.

2. To use precomputed result sets for your queries, issue the set materialized_view_optimization
command for the session.

Transact-SQL Users Guide
Precomputed Result Sets P U B L I C 429

15.3 Creating Precomputed Result Sets

To use precomputed result sets for your queries, issue the set materialized_view_optimization
command for the session.

Procedure

The syntax is:

 create {precomputed result set | materialized view} prs_name [(alternative_column_name
 [[constraint constraint_name]
 unique (column_name,...)]
 [{immediate | manual} refresh]
 [{populate | nopopulate}]
 [enable | disable]
 [{enable | disable} use in optimization]
 [lock { datarows | datapages | allpages}]
 [on segment_name]
 [partition_clause] as query_expression

You may specify the following in precomputed result sets:
○ Partitions
○ Segments
○ Indexes (functional indexes not allowed)
○ Unique keys (you must include the unique key constraint when you create precomputed result sets for

immediate refresh)

If you drop the base table, the precomputed result set is changed to disabled.See Reference Manual:
Commands.

15.4 Identifying Precomputed Result Sets

sp_help includes information about precomputed result sets in the Object_type and object_status
columns.

Procedure

For example:

 sp_help mv1 Name Owner Object_type Object_status Create_date
------ ----- ------------- ------------- ------------

430 P U B L I C
Transact-SQL Users Guide

Precomputed Result Sets

mv1 dbo precomputed result set immediate, enabled, enabled for QRW
Apr 10 2012 8:57AM
...

sysobjects indicates an object is a precomputed result set with a value of RS in the type column, and
sp_showoptstats and sp_depends display additional information about precomputed result sets.

15.5 Refreshing Precomputed Result Sets
Precomputed result sets do not necessarily remain synchronized with the base tables from which they are
constructed, and must also be refreshed, either automatically or manually.

Configure the refresh policy when you create the precomputed result set, or later with the alter
precomputed result set command:

● Immediate refresh – the precomputed result set is updated during the same transaction that updates the
base tables. This is the default option. However, creating a precomputed result set for immediate
refresh requires the user to own all the tables in the definition query. You can grant and revoke access
permissions for precomputed result sets created with the immediate refresh parameter for the
select, update statistics, and delete statistics commands.

● Manual refresh – the precomputed result set is updated with an explicit refresh command. Because
manual refreshes are not maintained, SAP ASE considers the data they contain to be stale (even
immediately after you issue refresh), and selects these precomputed result sets for query rewrites only
if the query is acceptable with stale data. The refresh command is executed under isolation level 1 or
above.

The syntax to manually refresh a precomputed result set is:

refresh {precomputed result set | materialized view} [owner_name.]prs_name

If the schema of any of the base tables from which the precomputed result set is derived has changed, or if it
was dropped and re-created (that is, the object ID has changed), the refresh command fails and returns an
error indicating the precomputed result set must be dropped and re-created.

Only the owner of the precomputed result set can use the refresh command. If a user has permission to
update the base table, he or she can also maintain the precomputed result set.

In most situations, the optimizer should use precomputed result sets with immediate refresh instead of
manual refresh for query rewriting (unless you set materialized_view_optimization to stale).

Manually refreshing the precomputed result set is best when you control when insert, update, and delete
statements occur. After they occur, perform a planned manual refresh of the precomputed result sets, then
use the precomputed result sets to help your read-only applications. However, be aware of the time and extra
disk space required to perform a manual refresh and plan accordingly.

Note
After creating a precomputed result set, its owner may not have select permission on the base tables. If
this occurs, manually refreshing the precomputed result set maintenance may fail, and it is not updated
with the new changes from the base table. You cannot execute the refresh command as part of a batch.

Transact-SQL Users Guide
Precomputed Result Sets P U B L I C 431

This example illustrates how to refresh a precomputed result set

1. Create table t1:

create table t1 (c1 int,
c2 int, c3 char(5))

And populate it with this data:

c1 c2 c3 ----------- ----------- -----
1 3 Aagg 2 8 Xyz

2. Create table t2:

create table t2 (a1 int,
a2 int, a3 char(5))

And populate it with this data:

a1 a2 a3 ----------- ----------- -----
1 5 Ghr
2 1 Gser 3 6 agfh

3. Create the prs_1 precomputed result set:

create precomputed result set prs_1 unique (t1.c1, t2.a2)
as select t1.c1, t2.a2 from t1, t2 where t1.c1=t2.a1

prs_1 is created and populated with these initial rows:

c1 a2 ----------- -----------
1 5 2 1

4. If you insert the values 3, 7, and “fhi” into t1, prs_1 is immediately updated with the values 3 and 6:

c1 a2 ----------- -----------
1 5
2 1 3 6

5. If you delete rows from t2 where a1 = 2, prs_1 is immediately updated with this change:

c1 a2 ----------- -----------
1 5 3 6

If SAP ASE rolls back the transaction updating the base table, it also rolls back the immediate update on the
base table’s precomputed result set as part of the same transaction.

432 P U B L I C
Transact-SQL Users Guide

Precomputed Result Sets

15.6 Altering Precomputed Result Sets

Use the alter command to change the precomputed result set’s policies or properties.

Context

The syntax is:

alter {precomputed result set | materialized view} <prs_name> {immediate | manual} refresh
| enable | disable | {enable | disable} use in optimization

Procedure

This example alters the author_prs precomputed result set from manual to immediate:

alter precomputed result set author_prs immediate refresh

Next Steps

alter automatically refreshes the precomputed result set when you change from a manual to an immediate
refresh, or from disable to enable. Altering a precomputed result set for disable use in
optimization prevents the precomputed result set from participating in future query rewriting. However,
any plans already cached using the precomputed result set are not recompiled.

Similar to other DDL commands, you cannot issue alter precomputed result set as part of a
multistatement transaction (unless you set the ddl in tran option to true for the database). You must
be the owner of the precomputed result set to issue alter precomputed result set

If the base table or view on which the precomputed result set is based is dropped or altered, the precomputed
result set is automatically altered to disable. SAP ASE sets the precomputed result sets to disable when you
run bcp in or select into existing against any base table from which the precomputed result set is
generated.

When you alter a precomputed result set to disable (with the alter precomputed result set command
or with the alter table command on the base table), any plans already cached that use the precomputed
result set are recompiled when the plan is next executed.

Transact-SQL Users Guide
Precomputed Result Sets P U B L I C 433

15.7 Dropping or Truncating Precomputed Result Sets

Dropping a precomputed result set deletes its data, removes any system table entries, and deletes the
precomputed result set.

Context

The syntax is:

drop {precomputed result set | materialized view} prs_name

You must be the owner of the precomputed result set to issue drop precomputed result set. See Reference
Manual: Commands.

Procedure

This example drops authors_prs:

 drop precomputed result set authors_prs

Next Steps

Use the truncate command to truncate data in a precomputed result set. truncate retains the definition of
the precomputed result set in the system table, ensuring that the precomputed result set can be later
repopulated using the refresh command.

Truncating a precomputed result set moves it to a disabled state. SAP ASE moves the precomputed result set
back to the enabled state when you issue refresh prs.

The syntax is:

truncate {precomputed result set | materialized view} prs_name

This example truncates the author_prs:

truncate precomputed result set authors_prs

SAP ASE implements the refresh command first as a truncate command and then recomputes the
precomputed result set. In the unlikely event that the truncate command succeeds but the recompute fails,
the precomputed result set is left disabled and you may reissue the refresh command.

434 P U B L I C
Transact-SQL Users Guide

Precomputed Result Sets

15.8 Configuring Staleness

Precomputed result sets rely on updates from their base tables to ensure data is current.

Context

When a precomputed result set is configured for immediate updates, any base table updates also update the
precomputed result set. This update occurs as an incremental maintenance using changes to the base tables.
However, if a precomputed result set is configured for manual updates, data may become stale because
updates only occur when you run the refresh command (during which SAP ASE recomputes the
precomputed result set instead of performing an incremental maintenance).

Unless you specify otherwise, SAP ASE does not use a stale precomputed result set to rewrite queries.

Procedure

Use the set materialized_view_optimization to specify at the session level whether SAP ASE can use stale
precomputed result sets when rewriting queries during optimization:

 set materialized_view_optimization {disable | fresh | stale}

Next Steps

For SAP ASE to use stale precomputed result sets to rewrite queries:

● The user must be the owner of the stale precomputed result set, and
● set materialized_view_optimization must be set to stale.

See Reference Manual: Commands.

15.9 Querying Precomputed Result Sets

SAP ASE allows you to select information from precomputed result sets, but you cannot insert, update, or
delete information from the precomputed result set. Instead, you must insert, update, or delete information
from the base tables, and then refresh the precomputed result set.

Transact-SQL Users Guide
Precomputed Result Sets P U B L I C 435

15.10 Rewriting Queries

Query rewrite mechanisms generate alternative plans based on available precomputed results.

Context

The alternative plans compete with other plans in the optimizer, and SAP ASE selects the one with the lowest
estimated cost. However, the query rewrite mechanism works only with select queries; it does not consider
insert, update, delete, and select into queries for rewrite.

SAP ASE may rewrite an entire query to create an equivalent precomputed result set, or it may rewrite part of
a query, depending on the query properties and the available precomputed result sets. The precomputed
result set must completely cover the logical data set for queries that SAP ASE rewrites.

Procedure

For example, if you have a query similar to this, which is complicated and involves multitable joins and many
predicates, groupings, and aggregations:

 select t1.col1,t2.col1,t3.col1, sum(t1.col3),sum(t2.col3), sum(t3.col3)
from t1, t2, t3
where t1.col1 = t2.col1
 and t2.col1 = t3.col1
 and t1.col2 < 60
 and t1.col1 > 5
 and t1.col2 + t2.col2 < 40
group by t1.col1, t2.col1, t3.col1

And create this precomputed result set:

create precomputed result set newprs as
select t1.col1 as p11, t1.col2 as p12, t2.col1 as p21,
 t2.col2 as p22, t3.col1 as p31, t3.col2 as p32,
 sum(t1.col3) as agg_s13,sum(t2.col3) as agg_s23,
 sum(t3.col3) as agg_s33
from t1, t2, t3
where t1.col1 = t2.col1
and t1.col2 < 60
and t1.col2 + t2.col2 < 40
group by t1.col1, t2.col1, t3.col1, t1.col2, t2.col2, t3.col2

The query rewrite mechanism may alter the original query to something similar to this, which is much simpler
and may be cheaper to execute:

select p11,p21,p31, sum(agg_s13),sum(agg_s23),sum(agg_s33)
from newprs

436 P U B L I C
Transact-SQL Users Guide

Precomputed Result Sets

where p21 = p31
 and p11 > 5 group by p11, p21, p31

15.11 Replicating Precomputed Result Sets

SAP ASE supports replication of some precomputed result set commands.

Although precomputed result set DDLs can be replicated, precomputed result sets cannot be marked for
replication. That is, unlike a regular table, SAP ASE does not replicate any maintenance changes occurring on
data stored in a precomputed result set, regardless of whether the changes are initiated from a precomputed
result set DDL (which itself could be replicated), or are part of the base table update transaction (initiated
from an immediate refresh policy).

Precomputed result set commands that can be replicated include:

● create precomputed result set
● alter precomputed result set
● drop precomputed result set
● truncate precomputed result set
● refresh precomputed result set

Precomputed result set DDL replication is supported only between two SAP ASE servers that include the
precomputed result set functionality

15.12 Restrictions for Precomputed Result Sets

Precomputed result sets include restrictions.

● References to another precomputed result set. However, precomputed result sets can reference a view if
you create the precomputed result set with a manual refresh policy.

● Expressions in the select list. However, you can include an expression as part of the group by list.
● Encrypted columns, or result sets that encrypt their own column data.
● References to tables or functions in another database.
● References to virtual computed columns in a base table. However, precomputed result sets can refer to

materialized computed columns in a base table.
● compute, compute by, group by all, or order by clauses.
● Nondeterministic functions (for example, getdate).
● XML.
● Subqueries.
● Outer and semijoins.
● Calls to user-defined functions.
● Derived tables.

Transact-SQL Users Guide
Precomputed Result Sets P U B L I C 437

● Reference to system, temporary, or fake tables.
● Union clauses.
● Any constraint other than unique key constraints.
● Columns that are defined with identity, null, or not null clauses.
● Defaults or rules.
● Cursors.
● Statistical aggregate functions.
● text, image, or unitext columns.

In addition to the previous restrictions, precomputed result sets using the immediate refresh policy cannot
include:

● top, min, max, and avg commands
● distinct clauses
● Self joins
● Functions
● References to proxy tables
● References to a view
● having clauses that reference the result of an aggregate
● sum functions that reference a nullable expression

438 P U B L I C
Transact-SQL Users Guide

Precomputed Result Sets

16 Batches and Control-of-Flow Language

Transact-SQL allows you to group a series of statements as a batch, either interactively or from an operating
system file. You can also use Transact-SQL control-of-flow language to connect the statements, using
programming constructs.

A variable is an entity that is assigned a value. This value can change during the batch or stored procedure in
which the variable is used. SAP ASE has two kinds of variables: local and global. Local variables are user-
defined, whereas global variables are predefined, and are supplied by the system during command execution.

SAP ASE can process multiple statements submitted as a batch, either interactively or from a file. A batch or
batch file is a set of Transact-SQL statements that are submitted together and executed as a group, one after
the other. A batch is terminated by an end-of-batch signal. With the isql utility, this is the word “go” on a line
by itself. For details on isql, see the Utility Guide.

This batch contains two Transact-SQL statements:

select count(*) from titles select count(*) from authors go

A single Transact-SQL statement can constitute a batch, but it is more common to think of a batch as
containing multiple statements. Frequently, a batch of statements is written to an operating system file before
being submitted to isql.

Transact-SQL provides special keywords called control-of-flow language that allow users to control the flow of
execution of statements. You can use control-of-flow language in single statements, in batches, in stored
procedures, and in triggers.

Without control-of-flow language, separate Transact-SQL statements are performed sequentially, as they
occur. Correlated subqueries, are a partial exception. Control-of-flow language permits statements to connect
and to relate to each other using programming-like constructs.

Control-of-flow language, such as if...else for conditional performance of commands and while for
repetitive execution, lets you refine and control the operation of Transact-SQL statements. The Transact-SQL
control-of-flow language transforms standard SQL into a very high-level programming language.

16.1 Rules Associated with Batches

There are rules to govern which Transact-SQL statements can be combined into a single batch.

● Before referencing objects in a database, issue a use statement for that database. For example:

use master go
select count(*)
from sysdatabases go

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 439

● You cannot combine the following database commands with other statements in a batch:
○ create procedure
○ create rule
○ create default
○ create trigger

● You can combine the following database commands with other Transact-SQL statements in a batch:
○ create database (except you cannot create a database and create or access objects in the new

database in a single batch)
○ create table
○ create index
○ create view

● You cannot bind rules and defaults to columns and use them in the same batch. sp_bindrule and
sp_bindefault cannot be in the same batch as insert statements that invoke the rule or default.

● You cannot drop an object and then reference or re-create it in the same batch.
● If a table already exists, you cannot re-create it in a batch, even if you include a test in the batch for the

table’s existence.
SAP ASE compiles a batch before executing it. During compilation, SAP ASE makes no permission checks
on objects, such as tables and views, that are referenced by the batch. Permission checks occur when SAP
ASE executes the batch. An exception to this is when SAP ASE accesses a database other than the current
one. In this case, SAP ASE displays an error message at compilation time without executing any
statements in the batch.
Assume that your batch contains these statements:

select * from taba select * from tabb
select * from tabc select * from tabd

If you have the necessary permissions for all statements except the third one (select * from tabc),
SAP ASE returns an error message for that statement and returns results for all the others.

16.1.1 Examples of Using Batches

When submitting a batch, you can use the same format as the isql utility, which has a clear end-of-batch
signal—the word “go” on a line by itself.

Here is a batch that contains two select statements in a single batch:

select count(*) from titles select count(*) from authors go

------------- 18

(1 row affected)

 23
 (1 row affected)

440 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

You can create a table and reference it in the same batch. This batch creates a table, inserts a row into it, and
then selects everything from it:

create table test (column1 char(10), column2 int)
insert test
 values ("hello", 598)
select * from test go

(1 row affected) column1 column2
------- -------
hello 598
 (1 row affected)

You can combine a use statement with other statements, as long as the objects you reference in subsequent
statements are in the database in which you started. This batch selects from a table in the master database
and then opens the pubs2 database. The batch begins by making the master database current; afterwards,
pubs2 is the current database.

use master go
select count(*) from sysdatabases
use pubs2 go

------------- 6
 (1 row affected)

You can combine a drop statement with other statements as long as you do not reference or re-create the
dropped object in the same batch. This example combines a drop statement with a select statement:

drop table test select count(*) from titles go

------------ 18
 (1 row affected)

If there is a syntax error anywhere in the batch, none of the statements are executed. For example, here is a
batch with a typing error in the last statement, and the results:

select count(*) from titles select count(*) from authors
slect count(*) from publishers go

Msg 156, Level 15, State 1: Line 3: Incorrect syntax near the keyword ’count’.

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 441

Batches that violate a batch rule also generate error messages. Here are some examples of illegal batches:

create table test (column1 char(10), column2 int)
insert test
 values ("hello", 598)
select * from test
create procedure testproc as
 select column1 from test go

Msg 111, Level 15, State 7: Line 6:
CREATE PROCEDURE must be the first command in a query batch.

create default phonedflt as "UNKNOWN" sp_bindefault phonedflt, "authors.phone" go

Msg 102, Level 15, State 1: Procedure ’phonedflt’, Line 2: Incorrect syntax near ’sp_bindefault’.

The next batch works if you are already in the database you specify in the use statement. If you try it from
another database such as master, however, you see an error message.

use pubs2 select * from titles go

Msg 208, Level 16, State 1: Server ’hq’, Line 2: titles not found. Specify owner.objectname or use sp_help to check whether the
object exists (sp_help may produce lots of output)

drop table test create table test
(column1 char(10), column2 int) go

Msg 2714, Level 16, State 1: Server ’hq’, Line 2:
There is already an object named ’test’ in the database.

442 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

16.1.2 Batches Submitted as Files

You can submit one or more batches of Transact-SQL statements to isql from an operating system file. A file
can include more than one batch, that is, more than one collection of statements, each terminated by the word
“go.”

For example, an operating system file might contain the following three batches:

use pubs2 go
select count(*) from titles
select count(*) from authors
go
create table hello
 (column1 char(10), column2 int)
insert hello
 values ("hello", 598)
select * from hello go

Here are the results of submitting this file to the isql utility:

------------- 18

(1 row affected)

 23

(1 row affected)
column1 column2
--------- ---------
hello 598
 (1 row affected)

See isql in the Utility Guide for environment-specific information about running batches stored in files.

16.2 Control-of-Flow Language Usage

Use control-of-flow language with interactive statements, in batches, and in stored procedures.

This table lists the control-of-flow and related keywords and their functions.

Keyword Function

if Defines conditional execution.

…else Defines alternate execution when the if condition is false.

case Defines conditional expressions using when…then statements instead of if…else.

begin Beginning of a statement block.

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 443

Keyword Function

…end End of a statement block.

while Repeat performance of statements while condition is true.

break Exit from the end of the next outermost while loop.

…continue Restart while loop.

declare Declare local variables.

goto label Go to label:, a position in a statement block.

return Exit unconditionally.

waitfor Set delay for command execution.

print Print a user-defined message or local variable on user’s screen.

raiserror Print a user-defined message or local variable on user’s screen and set a system flag in the
global variable @@<error>.

/* <comment> */ or --
<comment>

Insert a comment anywhere in a Transact-SQL statement.

16.2.1 if...else

The keyword if, with or without its companion else, introduces a condition that determines whether the next
statement is executed. The Transact-SQL statement executes if the condition is satisfied, that is, if it returns
true.

The else keyword introduces an alternate Transact-SQL statement that executes when the if condition
returns false.

The syntax for if and else is:

if <boolean_expression> <statement> [else [if <boolean_expression>] <statement>]

A Boolean expression returns true or false. It can include a column name, a constant, any combination of
column names and constants connected by arithmetic or bitwise operators, or a subquery, as long as the
subquery returns a single value. If the Boolean expression contains a select statement, the select
statement must be enclosed in parentheses, and it must return a single value.

444 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

Here is an example of using if alone:

if exists (select postalcode from authors where postalcode = "94705") print "Berkeley author"

If one or more of the postal codes in the authors table has the value “94705,” the message “Berkeley author”
prints. The select statement in this example returns a single value, either TRUE or FALSE, because it is used
with the keyword exists. The exists keyword functions here just as it does in subqueries.

This example uses both if and else, and tests for the presence of user-created objects that have ID numbers
greater than 50. If user objects exist, the else clause selects their names, types, and ID numbers.

if (select max(id) from sysobjects) < 50 print "There are no user-created objects in this database."
else
 select name, type, id from sysobjects where id > 50 and type = "U"

(0 rows affected)
 name type id
------------ ---- ---------
 authors U 16003088
 publishers U 48003202
 roysched U 80003316
 sales U 112003430
 salesdetail U 144003544
 titleauthor U 176003658
 titles U 208003772
 stores U 240003886
 discounts U 272004000
 au_pix U 304004114
 blurbs U 336004228
 friends_etc U 704005539
 test U 912006280
 hello U 1056006793
 (14 rows affected)

if...else constructs are frequently used in stored procedures where they test for the existence of some
parameter.

if tests can nest within other if tests, either within another if or following an else. The expression in the if
test can return only one value. Also, for each if...else construct, there can be one select statement for the
if and one for the else. To include more than one select statement, use the begin...end keywords. The
maximum number of if tests you can nest varies, depending on the complexity of the select statements (or
other language constructs) you include with each if...else construct.

Related Information

Subqueries: Queries Within Other Queries [page 260]

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 445

16.2.2 case Expression

case expression simplifies many conditional Transact-SQL constructs. Instead of using a series of if
statements, case expression allows you to use a series of conditions that return the appropriate values when
the conditions are met. case expression is ANSI-SQL-compliant.

With case expression, you can:

● Simplify queries and write more efficient code
● Convert data between the formats used in the database (such as int) and the format used in an

application (such as char)
● Return the first non-null value in a list of columns
● Write queries that avoid division by 0
● Compare two values and return the first value if the values do not match, or a null value if the values do

match

case expression includes the keywords case, when, then, coalesce, and nullif. coalesce and nullif
are an abbreviated form of case expression. See the Reference Manual: Commands.

16.2.2.1 case Expression for Alternative Representation

Use case expression to represent data in a manner that is more meaningful, for example, to display a phrase
rather than a binary (1, 0) setting.

For example, the pubs2 database stores a 1 or a 0 in the contract column of the titles table to indicate the
status of the book’s contract. However, in your application code or for user interaction, you may prefer to use
the words “Contract” or “No Contract” to indicate the status of the book. To select the type from the titles
table using the alternative representation:

select title, "Contract Status" = case
 when contract = 1 then "Contract"
 when contract = 0 then "No Contract"
 end from titles

title Contract Status ----- ---------------
The Busy Executive’s Database Guide Contract
Cooking with Computers: Surreptitio Contract
You Can Combat Computer Stress! Contract
. . .
The Psychology of Computer Cooking No Contract
. . .
Fifty Years in Buckingham Palace Contract
Sushi, Anyone? Contract
 (18 rows affected)

446 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

16.2.2.2 case and Division by Zero

case expression allows you to write queries that avoid division by zero (called exception avoidance).

This example divides the total_sales column for each book by the advance column. The query results in
division by zero when the query attempts to divide the total_sales (2032) of title_id MC2222 by the
advance (0.00):

select title_id, total_sales, advance, total_sales/advance from titles

title_id total_sales advance ------- ----------- --------- ------
BU1032 4095 5,000.00 0.82
BU1111 3876 5,000.00 0.78
BU2075 18722 10,125.00 1.85
BU7832 4095 5,000.00 0.82
 Divide by zero occurred.

You can use a case expression to avoid this by not allowing the zero to figure in the equation. In this example,
when the query comes across the zero, it returns a predefined value, rather than performing the division:

select title_id, total_sales, advance, "Cost Per Book" = case
 when advance != 0
 then convert(char, total_sales/advance)
 else "No Books Sold"
 end from titles

title_id total_sales advance Cost Per Book -------- ----------- ---------- -------------
BU1032 4095 5,000.00 0.82
BU1111 3876 5,000.00 0.78
BU2075 18722 10,125.00 1.85
BU7832 4095 5,000.00 0.82
MC2222 2032 0.00 No Books Sold
MC3021 22246 15,000.00 1.48
MC3026 NULL NULL No Books Sold
. . .
TC3218 375 7,000.00 0.05
TC4203 15096 4,000.00 3.77
TC7777 4095 8,000.00 0.51
 (18 rows affected)

The division by zero for title_id MC2222 no longer prevents the query from running. Also, the null values for
MC3021 do not prevent the query from running.

case does not avoid division by 0 errors if the divisor evaluates to a constant expression, because SAP ASE
evaluates constant expressions before executing the case logic. This sometimes causes division by zero. As a
work around:

● Use nullif(). For example:

(x/nullif(@foo.0)0

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 447

● Include column values so that they cancel each other, forcing SAP ASE to evaluate the expression for each
row. For example:

(x/(@foo + (col1 - col1))

16.2.2.3 rand Functions in case Expressions

Expressions that reference the rand function, the getdate function, and so on, produce different values each
time they are evaluated. This can yield unexpected results when you use these expressions in certain case
expressions.

For example, the SQL standard specifies that case expressions with this form:

case expression when value1 then result1
 when value2 then result2
 when value3 then result3
... end

are equivalent to this form of case expression:

case expression when expression=value1 then result1
 when expression=value2 then result2
 when expression=value3 then result3
... end

This definition explicitly requires that the expression be evaluated repeatedly in each when clause that is
examined. This definition of case expressions affects case expressions that reference functions such as the
rand function. For example, this case expression:

select CASE convert(int, (RAND() * 3))
 when 0 then "A"
 when 1 then "B"
 when 2 then "C"
 when 3 then "D"
 else "E" end

is defined to be equivalent to this one, according to the SQL standard:

 select CASE
 when convert(int, (RAND() * 3)) = 0 then "A"
 when convert(int, (RAND() * 3)) = 1 then "B"
 when convert(int, (RAND() * 3)) = 2 then "C"
 when convert(int, (RAND() * 3)) = 3 then "D"
 else "E" end

In this form, a new rand value is generated for each when clause, and the case expression frequently
produces the result “E”.

448 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

16.2.2.4 case Expression Results

case expression uses a series of alternative result expressions.

The series of alternative result expressions in the example below are: <R1>, <R2,> ..., <Rn>, which are
specified by the then and else clauses.

The rules for determining the datatype of a case expression are based on the same rules that determine the
datatype of a column in a union operation. For example:

case when <search_condition1> then <R1> when <search_condition2> then <R2> ... else <Rn
> end

The datatypes of the result expressions <R1>, <R2>, ..., <Rn> are used to determine the overall datatype of
case. The same rules that determine the datatype of a column of a union that specifies <n> tables, and has
the expressions <R1>, <R2, >…, <Rn> as the <i>th column, also determine the datatype of a case
expression. The datatype of case is determined in the same manner as by the following query:

select...R1...from ... union
select...R2...from...
union...
... select...Rn...from...

Not all datatypes are compatible, and if you specify two datatypes that are incompatible (for example, <char>
and <int>), your Transact-SQL query fails. See the Reference Manual: Building Blocks.

16.2.2.5 case Expressions and set ansinull

Case expressions may produce different results for null values if you enable set ansinull and include a
when NULL clause in certain queries.

This occures with query structures similar to:

select CVT = case <case_expression> when NULL then 'YES'
 else 'NO'
 end from A

If you set ansinull to off (the default) these case expressions match the NULL values and the predicate
evaluates to true for NULL values (similar to how the query processor evaluates a where clause that includes
a NULL value). If you set ansinull to on the case expression cannot compare the NULL values, and
evaluates the predicate to false. For example:

select CVT = case advance

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 449

 when NULL then 'YES'
 else 'NO'
 end, advance from titles

--- ------------------------ NO 5,000.00
NO 15,000.00
YES NULL
NO 7,000.00
NO 8,000.00
YES NULL NO 7,000.00

However, if you enable set ansinull and run the same query, case expressions returns a no value when it
encounters a NULL value:

set ansinull on select CVT =
 case advance
 when NULL then 'YES'
 else 'NO'
 end, advance from titles

 CVT advance --- ------------------------
NO 5,000.00
NO 15,000.00
NO NULL
NO 7,000.00
NO 8,000.00
NO NULL NO 7,000.00

See the Reference Manual: Commands.

16.2.2.6 case Expression Requires at Least one Non-Null
Result

At least one result from the case expression must return a value other than null.

This query:

select price, case
 when title_id like "%" then NULL
 when pub_id like "%" then NULL
 end from titles

returns this error message:

All result expressions in a CASE expression must not be NULL

450 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

16.2.2.7 Determining the Result Set

Use case expression to test for conditions that determine the result set.

The syntax is:

case when <search_condition1> then <result1> when <search_condition2> then <result2> . . . when <search_conditionn> then <resultn> else <resultx> end

where <search_condition> is a logical expression, and <result> is an expression.

If <search_condition1> is true, the value of case is <result1>; if <search_condition1> is not true,
<search_condition2 >is checked. If <search_condition2> is true, the value of case is <result2>, and
so on. If none of the search conditions are true, the value of case is <resultx>. The else clause is optional. If
it is not used, the default is else NULL. end indicates the end of the case expression.

The total sales of each book for each store are kept in the salesdetail table. To show a series of ranges for
the book sales, you can track how each book sold at each store:

● Books that sold less than 1000 (low-selling books)
● Books that sold between 1000 and 3000 (medium-selling books)
● Books that sold more than 3000 (high-selling books)

Write the following query:

select stor_id, title_id, qty, "Book Sales Catagory" = case
 when qty < 1000
 then "Low Sales Book"
 when qty >= 1000 and qty <= 3000
 then "Medium Sales Book"
 when qty > 3000
 then "High Sales Book"
 end
from salesdetail group by title_id

stor_id title_id qty Book Sales Catagory ------- -------- ---- ------------------
5023 BU1032 200 Low Sales Book
5023 BU1032 1000 Low Sales Book
7131 BU1032 200 Low Sales Book
. . .
7896 TC7777 75 Low Sales Book
7131 TC7777 80 Low Sales Book
5023 TC7777 1000 Low Sales Book
7066 TC7777 350 Low Sales Book
5023 TC7777 1500 Medium Sales Book
5023 TC7777 1090 Medium Sales Book
 (116 rows affected)

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 451

The following example selects the titles from the titleauthor table according to the author’s royalty
percentage (<royaltyer>) and then assigns each title with a value of high, medium, or low royalty:

select title, royaltyper, "Royalty Category" = case
 when (select avg(royaltyper) from titleauthor tta
 where t.title_id = tta.title_id) > 60 then "High Royalty"
 when (select avg(royaltyper) from titleauthor tta
 where t.title_id = tta.title_id) between 41 and 59
 then "Medium Royalty"
 else "Low Royalty"
 end
from titles t, titleauthor ta
where ta.title_id = t.title_id order by title

title royaltyper royalty Category ------- ---------- ----------------
But Is It User Friendly? 100 High Royalty
Computer Phobic and Non-Phobic Ind 25 Medium Royalty
Computer Phobic and Non-Phobic Ind 75 Medium Royalty
Cooking with Computers: Surreptiti 40 Medium Royalty
Cooking with Computers: Surreptiti 60 Medium Royalty
Emotional Security: A New Algorith 100 High Royalty
. . .
Sushi, Anyone? 40 Low Royalty
The Busy Executive’s Database Guide 40 Medium Royalty
The Busy Executive’s Database Guide 60 Medium Royalty
The Gourmet Microwave 75 Medium Royalty
You Can Combat Computer Stress! 100 High Royalty
 (25 rows affected)

16.2.2.8 case and Value Comparisons

case can be used for value comparisons. It allows only an equality check between two values; no other
comparisons are allowed.

The syntax is:

case <valueT> when <value1> then <result1> when <value2> then <result2> . . . when <valuen> then <resultn> else <result>x end

where <value >and< result >are expressions.

If <valueT >equals <value1>, the value of the case is <result1>. If <valueT >does not equal value1,
<valueT> is compared to <value2>. If <valueT> equals <value2>, then the value of the case is <result2,
>and so on.< >If <valueT> does not equal the value of <value1> through <valuen>, the value of the case is
<resultx>.

At least one result must be non-null. All the result expressions must be compatible. Also, all values must be
compatible.

452 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

The syntax described above is equivalent to:

case when <valueT> = <value>1 then <result1> when <valueT> = <value>2 then <result2> . . . when <valueT> = <value>n then <resultn> else <resultx> end

This is the same format used for case and search conditions.

The following example selects the title and pub_id from the titles table and specifies the publisher for
each book based on the pub_id:

select title, pub_id, "Publisher" = case pub_id
 when "0736" then "New Age Books"
 when "0877" then "Binnet & Hardley"
 when "1389" then "Algodata Infosystems"
 else "Other Publisher"
 end
from titles order by pub_id

title pub_id Publisher ----- ------ -------------
Life Without Fear 0736 New Age Books
Is Anger the Enemy? 0736 New Age Books
You Can Combat Computer 0736 New Age Books
. . .
Straight Talk About Computers 1389 Algodata Infosystems
The Busy Executive’s Database 1389 Algodata Infosystems
Cooking with Computers: Surre 1389 Algodata Infosystems
 (18 rows affected)

This is equivalent to the following query, which uses a case and search condition syntax:

select title, pub_id, "Publisher" = case
 when pub_id = "0736" then "New Age Books"
 when pub_id = "0877" then "Binnet & Hardley"
 when pub_id = "1389" then "Algodata Infosystems"
 else "Other Publisher"
 end
from titles order by pub_id

Related Information

Determining the Result Set [page 451]

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 453

16.2.2.9 coalesce

coalesce examines a series of values (<value1>, <value2>, ..., <valuen>) and returns the first non-null
value.

The syntax of coalesce is:

coalesce(<value1>, <value2>, ..., <valuen>)

where <value1>, <value2>, ..., <valuen> are expressions. If <value1> is non-null, the value of coalesce is
<value1>; if <value1> is null, <value>2 is examined, and so on. The examination continues until a non-null
value is found. The first non-null value becomes the value of coalesce.

When you use coalesce, SAP ASE translates it internally to:

case when <value1> is not NULL then <value1> when <value2> is not NULL then <value>2 . . . when <valuen-1> is not NULL then <valuen-1> else <valuen> end

<valuen-1> refers to the next to last value, before the final value, <valuen>.

The example below uses coalesce to determine whether a store orders a low quantity (more than 100 but
less than 1000) or a high quantity of books (more than 1000):

select stor_id, discount, "Quantity" = coalesce(lowqty, highqty) from discounts

stor_id discount Quantity ------- -------- --------- ----
NULL 10.500000 NULL
NULL 6.700000 100
NULL 10.000000 1001
8042 5.000000 NULL
 (4 rows affected)

16.2.2.10 nullif

Use nullif to find any missing, unknown, or inapplicable information that is stored in an encoded form.

For example, values that are unknown are sometimes historically stored as -1. Using nullif, you can replace
the -1 values with null and get the null behavior defined by Transact-SQL. The syntax is:

nullif(<value1>, <value2>)

If <value1> equals <value2>, nullif returns NULL. If <value1> does not equal <value2>, nullif returns
<value1>. <value1> and <value2> are expressions, and their datatypes must be comparable.

454 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

When you use nullif, SAP ASE translates it internally to:

case when <value1> = <value2> then NULL else <value1> end

For example, the titles table uses the value “UNDECIDED” to represent books whose type category is not
yet determined. The following query performs a search on the titles table for book types; any book whose
type is “UNDECIDED” is returned as type NULL (the following output is reformatted for display purposes):

select title, "type"= nullif(type, "UNDECIDED") from titles

title type ----- --------
The Busy Executive’s Database Guide business
Cooking with Computers: Surreptiti business
You Can Combat Computer Stress! business
. . .
The Psychology of Computer Cooking NULL
Fifty Years in Buckingham Palace K trad_cook
Sushi, Anyone? trad_cook
 (18 rows affected)

The Psychology of Computing is stored in the table as “UNDECIDED,” but the query returns it as type NULL.

16.2.3 begin...end

The begin and end keywords enclose a series of statements so they are treated as a unit by control-of-flow
constructs like if...else. A series of statements enclosed by begin and end is called a statement block.

The syntax of begin...end is:

begin <statement block> end

For example:

if (select avg(price) from titles) < $15 begin
 update titles
 set price = price * 2

 select title, price
 from titles
 where price > $28 end

Without begin and end, the if condition applies only to the first Transact-SQL statement. The second
statement executes independently of the first.

begin...end blocks can nest within other begin...end blocks.

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 455

16.2.4 while and break...continue

while sets a condition for the repeated execution of a statement or statement block. The statements are
executed repeatedly as long as the specified condition is true.

The syntax is:

while <boolean_expression> <statement>

In this example, the select and update statements are repeated, as long as the average price remains less
than $30:

while (select avg(price) from titles) < $30 begin
 select title_id, price
 from titles
 where price > $20
 update titles
 set price = price * 2 end

(0 rows affected)
title_id price
------ -------
PC1035 22.95
PS1372 21.59
TC3218 20.95

(3 rows affected)
(18 rows affected)
(0 rows affected)
title_id price
------ -------
BU1032 39.98
BU1111 23.90
BU7832 39.98
MC2222 39.98
PC1035 45.90
PC8888 40.00
PS1372 43.18
PS2091 21.90
PS3333 39.98
TC3218 41.90
TC4203 23.90
TC7777 29.98

(12 rows affected)
(18 rows affected) (0 rows affected)

break and continue control the operation of the statements inside a while loop. break causes an exit from
the while loop. Any statements that appear after the end keyword that marks the end of the loop are
executed. continue causes the while loop to restart, skipping any statements after continue but inside the
loop. break and continue are often activated by an if test.

The syntax for break...continue is:

while <boolean> <expression> begin

456 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

 <statement> [<statement>]... break [<statement>]... continue [<statement>]... end

Here is an example using while, break, continue, and if that reverses the inflation caused by the previous
examples. As long as the average price remains more than $20, all prices are reduced by half. The maximum
price is then selected. If it is less than $40, the while loop exits; otherwise, it attempts to loop again.
continue allows print to execute only when the average is more than $20. After the while loop ends, a
message and a list of the highest priced books print.

while (select avg(price) from titles) > $20 begin
 update titles
 set price = price / 2
 if (select max(price) from titles) < $40
 break
 else
 if (select avg(price) from titles) < $20
 continue
 print "Average price still over $20"
end

select title_id, price from titles
 where price > $20
 print "Not Too Expensive"

(18 rows affected) (0 rows affected)
(0 rows affected)
Average price still over $20
(0 rows affected)
(18 rows affected)
(0 rows affected)

title_id price
-------- -------
PC1035 22.95
PS1372 21.59
TC3218 20.95

(3 rows affected) Not Too Expensive

If two or more while loops are nested, break exits to the next outermost loop. First, all the statements after
the end of the inner loop execute. Then, the outer loop restarts.

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 457

16.2.5 declare and Local Variables

Local variables are declared, named, and typed with the declare keyword and are assigned an initial value
with a select statement; this must all happen within the same batch or procedure.

Related Information

Local Variables [page 465]

16.2.6 goto

The goto keyword causes unconditional branching to a user-defined label. goto and labels can be used in
stored procedures and batches.

A label’s name must follow the rules for identifiers and must be followed by a colon when it is first given. It is
not followed by a colon when it is used with goto.

The syntax for goto is:

<label>: goto <label>

This example uses goto and a label, a while loop, and a local variable as a counter:

declare @count smallint select @count = 1
restart:
print "yes"
select @count = @count + 1
while @count <=4 goto restart

goto is usually dependent on a while or if test or some other condition, to avoid an endless loop between
goto and the label.

16.2.7 return

The return keyword exits from a batch or procedure unconditionally. It can be used at any point in a batch or
a procedure. When used in stored procedures, return can accept an optional argument to return a status to
the caller. Statements after return are not executed.

The syntax is:

return [<int_expression>]

458 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

This stored procedure uses return as well as if...else and begin...end:

create procedure findrules @nm varchar(30) = null as if @nm is null
begin
 print "You must give a user name"
 return
end
else
begin
 select sysobjects.name, sysobjects.id, sysobjects.uid
 from sysobjects, master..syslogins
 where master..syslogins.name = @nm
 and sysobjects.uid = master..syslogins.suid
 and sysobjects.type = "R" end

If no user name is given as a parameter when findrules is called, the return keyword causes the procedure
to exit after a message has been sent to the user’s screen. If a user name is given, the names of the rules
owned by the user are retrieved from the appropriate system tables.

return is similar to the break keyword used inside while loops.

Related Information

Stored Procedures [page 504]

16.2.8 print

The print keyword, used in the previous example, displays a user-defined message or the contents of a local
variable on the user’s screen.

The local variable must be declared within the same batch or procedure in which it is used. The message can
be up to 255 bytes long.

The syntax is:

print {<format_string> | @<local_variable> | @@<global>_<variable>} [,<arg_list>]

For example:

if exists (select postalcode from authors where postalcode = "94705") print "Berkeley author"

Here is how to use print to display the contents of a local variable:

declare @msg char(50) select @msg = "What’s up, doc?" print @msg

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 459

print recognizes placeholders in the character string to be printed out. Format strings can contain up to 20
unique placeholders in any order. These placeholders are replaced with the formatted contents of any
arguments that follow <format_string> when the text of the message is sent to the client.

To allow reordering of the arguments when format strings are translated to a language with a different
grammatical structure, placeholders are numbered. A placeholder for an argument appears in this format: <
%nn!>. The components are a percent sign, followed by an integer from 1 to 20, followed by an exclamation
point. The integer represents placeholder position in the string in the original language. “%1!” is the first
argument in the original version, “%2!” is the second argument, and so on. Indicating the position of the
argument makes translations correctly, even when the order in which the arguments appear in the target
language is different from their order in the source language.

For example, assume the following is an English message:

%1! is not allowed in %2!.

The German version of this message is:

%1! ist in %2! nicht zulässig.

The Japanese version of the message is:

The characters “%1!” are in different places in the phrase. In this example, “%1!” in English, German, and
Japanese represents the same argument, and “%2!” also represents a single argument in all three languages.

You cannot skip placeholder numbers when using placeholders in a format string, although you do not need to
use placeholders in numerical order. For example, you cannot have placeholders 1 and 3 in a format string
without having placeholder 2 in the same string.

The optional <arg_list> can be a series of either variables or constants. An argument can be any datatype
except text or image; it is converted to the char datatype before it is included in the final message. If no
argument list is provided, the format string must be the message to be printed, without any placeholders.

The maximum output string length of <format_string> plus all arguments after substitution is 512 bytes.

16.2.9 raiserror

raiserror displays a user-defined error or local variable message on the user’s screen and sets a system flag
to record the fact that an error has occurred.

As with print, the local variable must be declared within the same batch or procedure in which it is used. The
message can be up to 255 characters long.

The syntax for raiserror is:

raiserror <error_number> [{<format_string> | @<local_variable>}] [, <arg_list>] [<extended_value> = <extended_value> [{, <extended_value> = <extended_value>}...]]

460 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

The <error_number> is placed in the global variable <error@@>, which stores the error number most
recently generated by SAP ASE. Error numbers for user-defined error messages must be greater than 17,000.
If the <error_number> is between 17,000 and 19,999, and <format_string> is missing or empty (“ ”), SAP
ASE retrieves error message text from the sysmessages table in the master database. These error messages
are used chiefly by system procedures.

The length of the <format_string> alone is limited to 255 bytes; the maximum output length of
<format_string> plus all arguments is 512 bytes. Local variables used for raiserror messages must be
char or varchar. The <format_string >or variable is optional; if you do not include one, SAP ASE uses the
message corresponding to the <error_number> from sysusermessages in the default language. As with
print, you can substitute variables or constants defined by <arg_list> in the <format_string>.

You can define extended error data for use by an Open Client application (when you include
<extended_values> with raiserror). For more information about extended error data, see your Open
Client documentation or the Reference Manual: Commands.

Use raiserror instead of print when you want to store an error number in <error@@>. This example uses
raiserror in the procedure named findrules:

raiserror 99999 "You must give a user name"

The severity level of all user-defined error messages is 16, which indicates that the user has made a nonfatal
mistake.

16.2.10 Create Messages for print and raiserror

You can call messages from sysusermessages using either print or raiserror with sp_getmessage. Use
sp_addmessage to create a set of messages.

This example uses sp_addmessage, sp_getmessage, and print to install a message in sysusermessages
in both English and German, retrieve it for use in a user-defined stored procedure, and print it:

/* ** Install messages
** First, the English (langid = NULL)
*/
set language us_english
go
sp_addmessage 25001,
 "There is already a remote user named ’%1!’ for remote server ’%2!’."
go
/* Then German*/
sp_addmessage 25001,
 "Remotebenutzername ’%1!’ existiert bereits auf dem Remoteserver ’
%2!’.","german"
go
create procedure test_proc @remotename varchar(30),
 @remoteserver varchar(30)
as
 declare @msg varchar(255)
 declare @arg1 varchar(40)
 /*
 ** check to make sure that there is not
 ** a @remotename for the @remoteserver.

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 461

 */
 if exists (select *
 from master.dbo.sysremotelogins l,
 master.dbo.sysservers s
 where l.remoteserverid = s.srvid
 and s.srvname = @remoteserver
 and l.remoteusername = @remotename)
 begin
 exec sp_getmessage 25001, @msg output
 select @arg1=isnull(@remotename, "null")
 print @msg, @arg1, @remoteserver
 return (1)
 end
return(0) go

To drop a user-defined message, use sp_dropmessage. To change a message, drop it with sp_dropmessage
and add it again with sp_addmessage.

Related Information

Create Error Messages for Constraints [page 107]

16.2.11 waitfor

The waitfor keyword specifies a specific time of day, a time interval, or an event at which the execution of a
statement block, stored procedure, or transaction is to occur.

The syntax is:

waitfor {delay "<time>" | time "<time>" | errorexit | processexit | mirrorexit}

where delay '<time>' instructs SAP ASE to wait until the specified period of time has passed. time '<time>'
instructs SAP ASE to wait until the specified time, given in the valid format for datetime data.

However, you cannot specify dates—the date portion of the datetime value is not allowed. The time you
specify with waitfor time or waitfor delay can include hours, minutes, and seconds—up to a maximum
of 24 hours. Use the format “hh:mm:ss”.

For example, this command instructs SAP ASE to wait until 4:23 p.m.:

waitfor time "16:23"

This command instructs SAP ASE to wait 1 hour and 30 minutes:

waitfor delay "01:30"

errorexit instructs SAP ASE to wait until a process terminates abnormally. processexit waits until a
process terminates for any reason. mirrorexit waits until a read or write to a mirrored device fails.

462 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

You can use waitfor errorexit with a procedure that kills the abnormally terminated process to free
system resources that would otherwise be taken up by an infected process. To find out which process is
infected, use sp_who to check the sysprocesses table.

The following example instructs SAP ASE to wait until 2:20 p.m. Then it updates the chess table with the next
move and executes a stored procedure called sendmessage, which inserts a message into one of Judy’s
tables notifying her that a new move now exists in the chess table.

begin waitfor time "14:20"
insert chess(next_move)
values("Q-KR5")
execute sendmessage "Judy" end

To send the message to Judy after 10 seconds instead of waiting until 2:20, substitute this waitfor statement
in the preceding example:

waitfor delay "0:00:10"

After you give the waitfor command, you cannot use your connection to SAP ASE until the time or event that
you specified occurs.

Related Information

Enter Times [page 217]

16.2.12 Comments

Use the comment notation to attach comments to statements, batches, and stored procedures. Comments
are not executed and have no maximum length.

You can insert a comment on a line by itself or at the end of a command line. Two comment styles are
available: the “slash-asterisk” style:

 /* text of comment */

and the “double-hyphen” style:

-- text of comment

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 463

16.2.12.1 Slash-Asterisk Style Comments

The /* style comment is a Transact-SQL extension. Multiple-line comments are acceptable, as long as each
comment starts with “/*” and ends with “*/”. Everything between “/*” and “*/” is treated as part of the
comment. The /* form permits nesting.

A stylistic convention often used for multiple-line comments is to begin the first line with “/*” and subsequent
lines with “**”. End such a comment with “*/” as usual:

select * from titles /* A comment here might explain the rules
** associated with using an asterisk as
** shorthand in the select list.*/ where price > $5

This procedure includes several comments:

/* this procedure finds rules by user name*/ create procedure findmyrule @nm varchar(30) = null
as
if @nm is null
begin
 print "You must give a user name"
 return
 print "I have returned"
/* this statement follows return,
** so won’t be executed */
end
else /* print the rule names and IDs, and
 the user ID */
 select sysobjects.name, sysobjects.id,
 sysobjects.uid
 from sysobjects, master..syslogins
 where master..syslogins.name = @nm
 and sysobjects.uid = master..syslogins.suid and sysobjects.type = "R"

16.2.12.2 Double-Hyphen Style Comments

This comment style begins with two consecutive hyphens followed by a space (--) and terminates with a new-
line character. Therefore, you cannot use multiple-line comments.

SAP ASE does not interpret two consecutive hyphens within a string literal or within a /*-style comment as
signaling the beginning of a comment.

To represent an expression that contains two consecutive minus signs (binary followed by unary), put a space
or an opening parenthesis between the two hyphens.

Following are examples:

-- this procedure finds rules by user name create procedure findmyrule @nm varchar(30) = null
as
if @nm is null
begin
 print "You must give a user name"
 return

464 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

 print "I have returned"
-- each line of a multiple-line comment
-- must be marked separately.
end
else -- print the rule names and IDs, and
 -- the user ID
 select sysobjects.name, sysobjects.id,
 sysobjects.uid
 from sysobjects, master..syslogins
 where master..syslogins.name = @nm
 and sysobjects.uid = master..syslogins.suid and sysobjects.type = "R"

16.3 Local Variables

Local variables are often used as counters for while loops or if...else blocks in a batch or stored
procedure.

When they are used in stored procedures, they are declared for automatic, noninteractive use by the
procedure when it executes. You can use variables nearly anywhere the Transact-SQL syntax indicates that an
expression can be used, such as <char_expr>, <integer_expression>, <numeric_expr>, or
<float_expr>.

To declare a local variable’s name and datatype, use:

declare @<variable_name> <datatype> [, @<variable_name> <datatype>]...

The variable name must be preceded by the @ sign and conform to the rules for identifiers. Specify either a
user-defined datatype or a system-supplied datatype other than text, image, or sysname.

In terms of memory and performance, this is more efficient:

declare @a int, @b char(20), @c float

than this:

declare @a int declare @b char(20) declare @c float

16.3.1 Local Variables and select Statements

When you declare a variable, it has the value NULL. Use a select statement to assign values to local variables.

As with declare statements, it is more efficient to use:

select @a = 1, @b = 2, @c = 3

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 465

than:

select @a = 1 select @b = 2 select @c = 3

See the Reference Manual: Commands.

Do not use a single select statement to assign a value to one variable and then to another whose value is
based on the first. Doing so can yield unpredictable results. For example, the following queries both try to find
the value of< @c2>. The first query yields NULL, while the second query yields the correct answer, 0.033333:

/* this is wrong*/ declare @c1 float, @c2 float
select @c1 = 1000/1000, @c2 = @c1/30
select @c1, @c2

/* do it this way */
declare @c1 float, @c2 float
select @c1 = 1000/1000
select @c2 = @c1/30 select @c1 , @c2

You cannot use a select statement that assigns values to variables to also return data to the user. The first
select statement in the following example assigns the maximum price to the local variable <@veryhigh>;
the second select statement is needed to display the value:

declare @veryhigh money select @veryhigh = max(price)
 from titles select @veryhigh

If the select statement that assigns values to a variable returns more than one value, the last value that is
returned is assigned to the variable. The following query assigns the variable the last value returned by “select
advance from titles.”

declare @m money select @m = advance from titles select @m

(18 rows affected) ------------------------
 8,000.00
 (1 row affected)

The assignment statement indicates how many rows were affected (returned) by the select statement.

If a select statement that assigns values to a variable fails to return any values, the variable is left unchanged
by the statement.

Local variables can be used as arguments to print or raiserror.

Related Information

Use the set Clause with Update [page 375]

466 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

16.3.2 Local Variables and update Statements

You can assign variables directly in an update statement. You do not need to use a select statement to
assign a value to a variable. When you declare a variable, it has the value NULL.

See the Reference Manual: Commands.

16.3.3 Local Variables and Subqueries

A subquery that assigns a value to the local variable can return only one value.

Here are some examples:

declare @veryhigh money select @veryhigh = max(price)
 from titles
if @veryhigh > $20
 print "Ouch!"
declare @one varchar(18), @two varchar(18)
select @one = "this is one", @two = "this is two"
if @one = "this is one"
 print "you got one"
if @two = "this is two"
 print "you got two"
else print "nope"
declare @tcount int, @pcount int
select @tcount = (select count(*) from titles),
 @pcount = (select count(*) from publishers) select @tcount, @pcount

16.3.4 Local Variables and while Loops and if…else Blocks

You can use local variables in a counter in a while loop, for performing matching in a where clause and in an
if statement, and for setting and resetting values in select statements.

/* Determine if a given au_id has a row in au_pix*/ /* Turn off result counting */
set nocount on
/* declare the variables */
declare @c int,
 @min_id varchar(30)
/*First, count the rows*/
select @c = count(*) from authors
/* Initialize @min_id to "" */
select @min_id = ""
/* while loop executes once for each authors row */
while @c > 0
begin
 /*Find the smallest au_id*/
 select @min_id = min(au_id)
 from authors
 where au_id > @min_id
 /*Is there a match in au_pix?*/
 if exists (select au_id
 from au_pix

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 467

 where au_id = @min_id)
 begin
 print "A Match! %1!", @min_id
 end
 select @c = @c -1 /*decrement the counter */ end

16.3.5 Variables and Null Values

Local variables are assigned the value NULL when they are declared, and may be assigned the null value by a
select statement.

The special meaning of NULL requires that the comparison between null-value variables and other null values
follow special rules.

This table shows the results of comparisons between null-value columns and null-value expressions using
different comparison operators. An expression can be a variable, a literal, or a combination of variables,
literals, and arithmetic operators.

Type of Comparison Using the = Operator Using the <, >, <=, !=, !<, !>, or <> Op
erator

Comparing <column_value> to <column_value> FALSE FALSE

Comparing <column_value> to <expression> TRUE FALSE

Comparing <expression> to <column_value> TRUE FALSE

Comparing <expression> to <expression> TRUE FALSE

For example, this test:

declare @v int, @i int if @v = @i select "null = null, true" if @v > @i select "null > null, true"

shows that only the first comparison returns true:

----------------- null = null, true
 (1 row affected)

This example returns all the rows from the titles table where the advance has the value NULL:

declare @m money select title_id, advance
from titles where advance = @m

title_id advance -------- ----------------
MC3026 NULL
PC9999 NULL

468 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

(2 rows affected)

Using a not in clause when you compare a null value with a null value produces different results, depending
on whether the variable or column contains the null values. This table shows the results compares between
not null-value columns and null-value expressions using different comparison operators

Type of Comparison Using the = Operator Using the <, >, <=, !=, !<, !>, or <> Op
erator

Comparing <column_value> to <column_value>

Comparing <column_value> to <expression>

Comparing <expression> to <column_value>

Comparing <expression> to <expression>

For example, if you create this table:

create table #test(i int not null, a char(5) null) insert into #test(i) values (1)

This example returns true because the <@a> variable contains a null value

declare @a char(5) select @a = a from #test where i = 1
if @a not in ('NTTRD', 'NTOFF')
print 'true'
else
print 'false' true

However, this example returns false because the column a contains a null value:

if (select a from #test where i = 1) not in ('NTTRD', 'NTOFF') print 'true'
else
print 'false' false

16.3.6 Declaring a Table as a Variable

A table variable, declared in a SQL batch, contains not just a single value, but an entire table (that is, zero or
more rows consisting of one or more columns).

Declare table variables at the beginning of a batch, using the table keyword and a list of column declarations,
similar to the format you use in a create table statement, such as:

Sample Code

declare @tv table (c1 int, c2 char(3))

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 469

There are some restrictions on columns used when declaring a table variable:

● You cannot use defaults
● You cannot use constraints, with the exception of NULL/NOT NULL
● You cannot use encryption, decryption, or specify storage types

The lifetime of a table variable (and its contents) is the same as that of any other local variable – the duration
of the batch in which it is declared. Table variables are initially stored in memory, and “spill” to tempdb when
they can no longer be held in memory.

As with other variables, prepend the variable with an at-sign (@). Do not use @ for regular tables, so they are
not mistaken for a table variable.

Once you declare a table variable, you can use it in queries where the name of a table is expected, such as for
insert and update, as well as the from clause of select and delete. For example:

● select * from @tv
● insert @tv values (1, 'ABC')
● update @tv set c2 = 'DEF' where c1 = 1
● delete from @tv where c1 = 1

In general, do not use table variables in queries where the name of a column or a literal is expected, such as
select @tv. And whereas the keyword table followed by a list of column specifiers appears to fulfill the role
of a datatype specifier, it may not be used in the context of a column declaration. In other words, columns of
type table (tables containing tables) are not allowed.

You can use table variables as parameters to and from stored procedures, such as:

Sample Code

create proc tabvarproc @result table (a int, b char(3)) output as begin
insert @result values (99, 'XXX')
select b from @result
end
go
declare @myresult table (c1 int, c2 char(3))
exec tabvarproc @myresult
select * from @myresult go

Note
You cannot use table variables in select . . . into.

470 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

16.4 Global Variables

Global variables are system-supplied, predefined variables, and are a Transact-SQL extension. Global
variables are distinguished from local variables by the two @ signs preceding their names—for example,
<@@error>. The two @ signs are considered part of the identifier used to define the global variable.

Users cannot create global variables and cannot update the value of global variables directly in a select
statement. If a user declares a local variable that has the same name as a global variable, that variable is
treated as a local variable.

See, Global Variables, in the Reference Manual: Building Blocks for a complete list of the global variables.

16.4.1 Transactions and Global Variables

Some global variables provide information to use in transactions.

16.4.1.1 Check for Errors with @@error

The <@@error> global variable is commonly used to check the error status of the most recently executed
batch in the current user session. <@@error> contains 0 if the last transaction succeeded; otherwise,
<@@error> contains the last error number generated by the system.

A statement such as if @@error != 0 followed by return causes an exit on error.

Every Transact-SQL statement, including print statements and if tests, resets <@@error>, so the status
check must immediately follow the batch for which success is in question.

The <@@sqlstatus> global variable has no effect on <@@error> output.

Related Information

Check the Status From the Last Fetch [page 473]

16.4.1.2 Check IDENTITY Values with @@identity

<@@identity> contains the last value inserted into an IDENTITY column in the current user session.

<@@identity> is set each time an insert, select into, or bcp attempts to insert a row into a table. The
value of <@@identity> is not affected by the failure of an insert, select into, or bcp statement or the
rollback of the transaction that contained it. <@@identity> retains the last value inserted into an IDENTITY
column, even if the statement that inserted it fails to commit.

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 471

If a statement inserts multiple rows, <@@identity> reflects the IDENTITY value for the last row inserted. If
the affected table does not contain an IDENTITY column, <@@identity> is set to 0.

16.4.1.3 Check the Transaction Nesting Level with
@@trancount

<@@trancount> contains the nesting level of transactions in the current user session.

Each begin transaction in a batch increments the transaction count. When you query <@@trancount> in
chained transaction mode, its value is never 0 because the query automatically initiates a transaction.

16.4.1.4 Check the Transaction State with @@transtate

<@@transtate> contains the current state of a transaction after a statement executes in the current user
session. Unlike <@@error>, <@@transtate> is not cleared for each batch.

<@@transtate> may contain the values in this table:

Value Meaning

0 Transaction in progress: an explicit or implicit transaction is in effect; the previous statement exe
cuted successfully.

1 Transaction succeeded: the transaction completed and committed its changes.

2 Statement aborted: the previous statement was aborted; no effect on the transaction.

3 Transaction aborted: the transaction aborted and rolled back any changes.

<@@transtate> changes only due to execution errors. Syntax and compile errors do not affect the value of
<@@transtate>.

Related Information

Transaction States [page 647]

472 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

16.4.1.5 Check the Nesting Level with @@nestlevel

<@@nestlevel> contains the nesting level of current execution with the user session, initially 0.

Each time a stored procedure or trigger calls another stored procedure or trigger, the nesting level is
incremented. The nesting level is also incremented by one when a cached statement is created. If the
maximum of 16 is exceeded, the transaction aborts.

16.4.1.6 Check the Status From the Last Fetch

<@@sqlstatus> contains status information resulting from the last fetch statement for the current user
session.

<@@sqlstatus> may contain the following values:

Value Meaning

0 The fetch statement completed successfully.

1 The fetch statement resulted in an error.

2 There is no more data in the result set. This warning occurs if the current cursor position is on the
last row in the result set and the client submits a fetch command for that cursor.

<@@sqlstatus> has no effect on <@@error> output. For example, the following batch sets <@@sqlstatus
>to 1 by causing the fetch <@@error> statement to result in an error. However, <@@error> reflects the
number of the error message, not the <@@sqlstatus> output:

declare csr1 cursor for select * from sysmessages
for read only

open csr1

begin
 declare @xyz varchar(255)
 fetch csr1 into @xyz
 select error = @@error
 select sqlstatus = @@sqlstatus end

Msg 553, Level 16, State 1: Line 3: The number of parameters/variables in the FETCH INTO clause does not match the
number of columns in cursor ’csr1’ result set.

At this point, the <@@error> global variable is set to 553, the number of the last generated error.
<@@sqlstatus> is set to 1.

Transact-SQL Users Guide
Batches and Control-of-Flow Language P U B L I C 473

<@@fetch_status> returns the status of the most recent fetch:

Value Meaning

0 fetch operation successful.

-1 fetch operation unsuccessful.

-2 Reserved for future use.

474 P U B L I C
Transact-SQL Users Guide

Batches and Control-of-Flow Language

17 Transact-SQL Functions

SAP ASE functions are Transact-SQL routines that return information from the database or the system tables.
SAP ASE provides a set of built-in functions. In addition, you can use the create function command to
create Transact-SQL and SQLJ functions.

See the Reference Manual:Building Blocks for a complete list and description of the built-in functions. See the
Reference Manual:Commands for information about the create function commands.

Typically, you can use functions in a select list, a where clause, and anywhere an expression is allowed.

The general syntax is:

select <function_name>[(<arguments>)]

For example, to find the identification number of the user who logs in as “emilya,” enter:

select user_id("emilya")

The server returns:

------------------ 1209

17.1 Built-In Functions

There are various types of built-in functions including but not limited to system functions, string, text, and
image functions, aggregate functions, and mathematical and date functions. The rules governing how you use
these function types can differ.

See the Reference Manual:Building Blocks and, for XML functions, XML Services.

17.1.1 System Functions

System functions return information about the database. Many provide a shorthand way to query the system
tables.

When the argument to a system function is optional, the current database, host computer, server user, or
database user is assumed. With the exception of user, system functions are always used with parentheses,
even if the argument is NULL.

For example, to find the name of the current user, omit the argument, but include the parentheses. For
example:

select user_name()

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 475

------------------- dbo

17.1.2 String Functions

String functions perform various operations on character strings, expressions, and sometimes on binary data.

When you use constants with a string function, enclose them in single or double quotation marks. You can
concatenate binary and character expressions, and nest them.

Most string functions can be used only on char, nchar, unichar, varchar, univarchar, and nvarchar
datatypes and on datatypes that implicitly convert to char, unichar, varchar, or univarchar. A few
string functions can also be used on binary and varbinary data. patindex can be used on text, unitext,
char, nchar, unichar, varchar, nvarchar, and univarchar columns.

Each function also accepts arguments that can be implicitly converted to the specified type. For example,
functions that accept approximate numeric expressions also accept integer expressions. SAP ASE
automatically converts the argument to the desired type.

Related Information

Concatenating Expressions [page 476]
Nest String Functions [page 478]

17.1.2.1 Concatenating Expressions

You can concatenate binary or character expressions; that is, you can combine two or more character or
binary strings, character or binary data, or a combination of them with the + string concatenation operator.
The maximum length of a concatenated string is 16384 bytes.

You can concatenate binary and varbinary columns and char, unichar, nchar, varchar, univarchar,
and nvarchar columns. If you concatenate unichar and univarchar with char, nchar, nvarchar, and
varchar, the result is unichar or univarchar. You cannot concatenate text, unitext, or image columns.

The concatenation syntax is:

select (<expression> + <expression> [+ <expression>]...)

For example, to combine two character strings:

select ("abc" + "def")

------- abcdef

476 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

 (1 row affected)

To combine California authors’ first and last names under the column heading Moniker in last name-first
name order, with a comma and space after the last name, enter:

select Moniker = (au_lname + ", " + au_fname) from authors where state = "CA"

Moniker ---
White, Johnson
Green, Marjorie
Carson, Cheryl
O’Leary, Michael
Straight, Dick
Bennet, Abraham
Dull, Ann ...

When a string function accepts two character expressions but only one expression is unichar, the other
expression is “promoted” and internally converted to unichar. This follows existing rules for mixed-mode
expressions. However, this conversion may cause truncation, since unichar data sometimes takes twice the
space.

To concatenate noncharacter or nonbinary columns, use the convert function. For example:

select "The due date is " + convert(varchar(30), pubdate)
from titles where title_id = "BU1032"

--------------------------------------- The due date is Jun 12 2006 12:00AM

SAP ASE evaluates the empty string (“ ” or ‘ ’) as a single space. This statement:

select "abc" + "" + "def"

produces:

abc def

17.1.2.1.1 Concatenation Operators and LOB Locators

The + and || Transact-SQL operators accept LOB locators as expressions for a concatenation operation. The
result of a concatenation operation involving one or more locators is a LOB locator with the same datatype as
that referenced by the input locator.

For example, assume that <@v> and <@w> are text locator variables. These are valid concatenation operations:

● select @v + @w

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 477

● select @v || "abdcef"
● select "xyz" + @w

17.1.2.2 Nest String Functions

You can nest string functions. For example, use the substring function to display the last name and the first
initial of each author, with a comma after the last name and a period after the first name.

Enter:

select (au_lname + "," + " " + substring(au_fname, 1, 1) + ".") from authors where city = "Oakland"

-- Green, M.
Straight, D.
Stringer, D.
MacFeather, S. Karsen, L.

To display the pub_id and the first two characters of each title_id for books priced more than $20, enter:

select substring(pub_id + title_id, 1, 6) from titles where price > $20

-------------- 1389PC
0877PS 0877TC

17.1.2.3 Limits on String Functions

Results of string functions are limited to 16KB. This limit is independent of the server’s page size. In Transact-
SQL string functions and string variables, literals can be as large as 16K even on a 2KB page size.

If set string_rtruncation is on, a user receives an error if an insert or update truncates a character
string. However, SAP ASE does not report an error if a displayed string is truncated. For example:

select replicate("a", 16383) + replicate("B", 4000)

This shows that the total length would be 20383, but the result string is restricted to 16K.

478 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

17.1.3 Text and Image Functions

Text functions perform operations on text, image, and unitext data. Use the set textsize option to limit
the amount of text, image, and unitext data that is retrieved by a select statement.

Note
You can also use the <@@textcolid>, <@@textdbid>, <@@textobjid>, <@@textptr>, and
<@@textsize> global variables to manipulate text, image, and unitext data.

For example, use the textptr function to locate the text column, copy, associated with title_id BU7832
in table blurbs. The text pointer, a 16-byte binary string, is put into a local variable, <@val>, and supplied as a
parameter to the readtext command. readtext returns 5 bytes starting at the second byte, with an offset of
1. readtext provides a way to retrieve text, unitext, and image values if you want to retrieve only a portion
of a column’s data.

declare @val binary(16) select @val = textptr(copy) from blurbs
where au_id = "486-29-1786" readtext blurbs.copy @val 1 5

textptr returns a 16-byte varbinary string. SAP suggests that you put this string into a local variable, as in
the preceding example, and use it by reference.

An alternative to using textptr in the preceding declare example is the <@@textptr> global variable:

readtext texttest.blurb @@textptr 1 5

Note
You can also use the string functions patindex and datalength on text, image, and unitext columns.

In previous releases, textptr points to the FTP (first text page) of a text page chain, now, it points to the
home data row that references the FTP for LOB columns in replicated tables. If users still want textptr that
points to FTP, use textptr(lob_column, 'ftp') by specifying the second parameter.

For LOB columns in replicated tables, textptr returns the text pointer containing row identifiers (RIDs) of the
data row to which the LOB data belongs. If you still want the text pointer to contain the page number of first
text page, use:

select textptr(lob_column, 'ftp') from tab_name

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 479

17.1.3.1 readtext on unitext Columns Usage

You can use the readtext command to retrieve text, unitext, and image values for only a selected portion
of a column’s data.

readtext requires the name of the table and column, the text pointer, a starting offset within the column, and
the number of characters or bytes to retrieve. You cannot use readtext on text, unitext, or image
columns in views.

For detailed information about using readtext with unitext columns, see the Reference Manual:
Commands.

17.1.4 Aggregate Functions

Aggregate functions generate summary values that appear as new columns in the query results. They can be
used in a select list or the having clause of a select statement or subquery.

When an aggregate function is applied to a char datatype value, it implicitly converts the value to varchar,
stripping all trailing blanks. In a similar manner, a unichar datatype value is implicitly converted to
univarchar.

Limitations

● Aggregate functions cannot be used in a where clause.
● Because each aggregate in a query requires its own worktable, an aggregate query cannot exceed the

maximum number (46) of worktables allowed in a query.
● If you include an aggregate function in the select clause of a cursor, that cursor cannot be updated
● You cannot use aggregate functions on virtual tables such as sysprocesses and syslocks.

17.1.4.1 Aggregate Functions Used with the group by Clause

Aggregate functions are often used with the group by clause, which divides the tables into groups.

Aggregate functions produce a single value for each group. Without group by, an aggregate function in the
select list produces a single value as a result, whether it is operating on all rows in a table or a subset of rows
defined by the where clause.

480 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

17.1.4.2 Aggregate Functions and Null Values

Aggregate functions calculate the summary values of the non-null values in a particular column.

If the ansinull option is set off (the default), there is no warning when an aggregate function encounters a
null. If ansinull is set on, a query returns the following SQLSTATE warning when an aggregate function
encounters a null:

Warning- null value eliminated in set function

17.1.4.3 Vector and Scalar Aggregates

Aggregate functions can be applied to all the rows in a table, producing a single value, which is called a scalar
aggregate.

They can also be applied to all the rows that have the same value in a specified column or expression (using
the group by and, optionally, the having clause), in which case, they produce a value for each group, a
vector aggregate. The results of the aggregate functions are shown as new columns.

You can nest a vector aggregate inside a scalar aggregate. For example:

select type, avg(price), avg(avg(price)) from titles group by type

type ------------ ------------ ------------
UNDECIDED NULL 15.23
business 13.73 15.23
mod_cook 11.49 15.23
popular_comp 21.48 15.23
psychology 13.50 15.23
trad_cook 15.96 15.23 (6 rows affected)

The group by clause applies to the vector aggregate—in this case, avg(price). The scalar aggregate,
avg(avg(price)), is the average of the average prices by type in the titles table.

In standard SQL, when a select list includes an aggregate, all the select list columns must either have
aggregate functions applied to them or be in the group by list. Transact-SQL has no such restrictions.

Example 1 shows a select statement with the standard restrictions. Example 2 shows the same statement with
another item (title_id) added to the select list. order by is also added to illustrate the difference in
displays. These “extra” columns can also be referenced in a having clause.

Example 1

select type, avg(price), avg(advance) from titles

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 481

group by type

type ------------ ------------ ------------
UNDECIDED NULL NULL
business 13.73 6,281.25
mod_cook 11.49 7,500.00
popular_comp 21.48 7,500.00
psychology 13.50 4,255.00
trad_cook 15.96 6,333.33
 (6 rows affected)

Example 2

You can use either a column name or any other expression (except a column heading or alias) after group by.

Null values in the group by column are placed into a single group.

select type, title_id, avg(price), avg(advance) from titles
group by type order by type

type title_id ----------- -------- ---------- ---------
UNDECIDED MC3026 NULL NULL
business BU1032 13.73 6,281.25
business BU1111 13.73 6,281.25
business BU2075 13.73 6,281.25
business BU7832 13.73 6,281.25
mod_cook MC2222 11.49 7,500.00
mod_cook MC3021 11.49 7,500.00
popular_comp PC1035 21.48 7,500.00
popular_comp PC8888 21.48 7,500.00
popular_comp PC9999 21.48 7,500.00
psychology PS1372 13.50 4,255.00
psychology PS2091 13.50 4,255.00
psychology PS2106 13.50 4,255.00
psychology PS3333 13.50 4,255.00
psychology PS7777 13.50 4,255.00
trad_cook TC3218 15.96 6,333.33
trad_cook TC4203 15.96 6,333.33 trad_cook TC7777 15.96 6,333.33

Example 3

The compute clause in a select statement uses row aggregates to produce summary values. The row
aggregates make it possible to retrieve detail and summary rows with one command. Exampl3 3 illustrates
this feature:

select type, title_id, price, advance from titles
where type = "psychology"

482 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

order by type compute sum(price), sum(advance) by type

type title_id price advance ----------- ------- ---------- ---------
psychology PS1372 21.59 7,000.00
psychology PS2091 10.95 2,275.00
psychology PS2106 7.00 6,000.00
psychology PS3333 19.99 2,000.00
psychology PS7777 7.99 4,000.00
 sum sum
 ------- ---------- 67.52 21,275.00

17.1.4.4 Aggregate Functions as Row Aggregates

Row aggregate functions generate summary values that appear as additional rows in query results.

To use the aggregate functions as row aggregates, use:

<Start of select statement>

compute <row_aggregate>(<column_name>) [, <row_aggregate>(<column_name>)]... [by <column_name> [, <column_name>]...]

where:

● <column_name> – is the name of a column, which must be enclosed in parentheses. Only exact numeric,
approximate numeric, and money columns can be used with sum and avg.
One compute clause can apply the same function to several columns. When using more than one function,
use more than one compute clause.

● by – indicates that row aggregate values are to be calculated for subgroups. Whenever the value of the by
item changes, row aggregate values are generated. If you use by, you must use order by.
Listing more than one item after by breaks a group into subgroups, and applies a function at each level of
grouping.

The row aggregates let you retrieve detail and summary rows with one command. The aggregate functions,
however, ordinarily produce a single value for all the selected rows in the table or for each group, and these
summary values are shown as new columns.

These examples illustrate the differences:

select type, sum(price), sum(advance) from titles
where type like "%cook" group by type

type ---------- ---------- ----------------
mod_cook 22.98 15,000.00
trad_cook 47.89 19,000.00

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 483

(2 rows affected)

select type, price, advance from titles
where type like "%cook"
order by type compute sum(price), sum(advance) by type

type price advance ---------- ---------- ----------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00
 sum sum
 ---------- ----------------
 22.98 15,000.00
type price advance
---------- ---------- ----------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00
 sum sum
 ---------- ----------------
 47.89 19,000.00
(7 rows affected)
type price advance
---------- ---------- ----------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00
Compute Result:
---------------------- -----------------
 22.98 15,000.00
type price advance
---------- ---------- ----------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00
Compute Result:
---------------------- -----------------
 47.89 19,000.00 (7 rows affected)

The columns in the compute clause must appear in the select list.

The order of columns in the select list overrides the order of the aggregates in the compute clause. For
example:

create table t1 (a int, b int, c int null) insert t1 values(1,5,8) insert t1 values(2,6,9)

(1 row affected)

compute sum(c), max(b), min(a) select a, b, c from t1

a b c ----------- ----------- -----------
 1 5 8
 2 6 9
Compute Result:
----------- ----------- -----------

484 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

 1 6 17

If the ansinull option is set off (the default), there is no warning when a row aggregate encounters a null. If
ansinull is set on, a query returns the following SQLSTATE warning when a row aggregate encounters a null:

Warning - null value eliminated in set function

You cannot use select into in the same statement as a compute clause because there is no way to store the
compute clause output in the resulting table.

17.1.5 Statistical Aggregate Functions

Statistical aggregate functions enable you to perform statistical analysis on numeric data.

These functions are true aggregate functions in that they can compute values for a group of rows as
determined by the query’s group by clause. As with other basic aggregate functions, such as max or min,
computation ignores null values in the input. Also, regardless of the domain of the expression being analyzed,
all variance and standard deviation computation uses the Institute of Electrical and Electronic Engineers (IEEE)
double-precision, floating-point standard.

If the input to any variance or standard deviation function is the empty set, then each function returns a null
value. If the input to any variance or standard deviation function is a single value, then each function returns 0.

Statistical aggregate functions are similar to the avg aggregate function in that:

● The syntax is:

<statistical_agg_function_name> ([all | distinct] <expression>)

● Only expressions with numerical datatypes are valid.
● Null values do not participate in the calculation.
● The result is NULL only if no data participates in the calculation.
● The distinct or all clauses can precede the expression (the default is all).
● You can use statistical aggregates as vector aggregates (with group by), scalar aggregates (without

group by), or in the compute clause.

Unlike the avg aggregate function, however, the results are:

● Always of float datatype (that is, a double-precision floating-point), whereas for the avg aggregate, the
datatype of the result is the same as that of the expression (with exceptions).

● 0.0 for a single data point.

Related Information

Aggregate Functions [page 480]

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 485

17.1.5.1 Formulas for Computing Standard Deviations

The stddev_samp, stddev_pop var_samp, and var_pop functions are similar but have different purposes.

See the stddev_samp, stddev_pop var_samp, and var_pop reference pages in the Reference Manual:
Blocks to see the formulas that SAP ASE uses to define variances and standard deviations.

The functions are similar, but are used for different purposes:

● var_samp and stddev_samp – are used when you want evaluate a sample—that is, a subset—of a
population as being representative of the entire population.

● var_pop and stddev_pop – are used when you have all of the data available for a population, or when
<n> is so large that the difference between <n> and <n-1> is insignificant.

17.1.6 Mathematical Functions

Mathematical functions return values that are commonly needed for operations on mathematical data.

Each function also accepts arguments that can be implicitly converted to the specified type. For example,
functions that accept approximate numeric types also accept integer types. SAP ASE converts the argument
to the desired type.

SAP ASE provides error traps to handle domain or range errors. Use the arithabort and arithignore
functions to specify how domain errors are handled.

This table displays examples using the floor, ceiling, and round mathematical functions.

Statement Result

● select floor(123)
● select floor(123.45)
● select floor(1.2345E2)
● select floor(-123.45)
● select floor(-1.2345E2)
● select floor($123.45)

123 123.000000 123.000000 -124.000000
-124.000000 123.00

● select ceiling(123.45)
● select ceiling(-123.45)
● select ceiling(1.2345E2)
● select ceiling(-1.2345E2)
● select ceiling($123.45)

124.000000 -123.000000 124.000000
-123.000000 124.00

● select round(123.4545, 2)
● select round(123.45, -2)
● select round(1.2345E2, 2)
● select round(1.2345E2, -2)

123.4500 100.00 123.450000 100.000000

486 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

Related Information

Conversion Error Handling [page 499]

17.1.7 Date Functions

The date functions perform arithmetic operations and display information about datetime, bigtime,
bigdatetime, smalldatetime, date, and time values. You can use them in the select list or the where
clause of your query.

Use datetime datatypes for values later than January 1, 1753; use date for dates from January 1, 0001 to
January 1, 9999. Enclose the date values in double or single quotes. SAP ASE recognizes many different date
formats. See the Reference Manual: Building Blocks for more information about datatypes.

This is the default display format:

Apr 15 2010 10:23PM

Each date is divided into parts with abbreviations recognized by SAP ASE. This table lists each date part, its
abbreviation (if there is one), and possible integer values for that part.

Date Part Abbreviation Values

year yy 1753 – 9999 (datetime) 1900 – 2079
(smalldatetime) 0001 – 9999 (date)

quarter qq 1– 4

month mm 1– 12

week wk 1– 54

day dd 1– 31

dayofyear dy 1– 366

weekday dw 1– 7 (Sunday – Saturday)

hour hh 0 – 23

minute mi 0 – 59

second ss 0 – 59

millisecond ms 0 – 999

microsecond us 0 – 999999

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 487

For example, use the datediff function to calculate the amount of time in date parts between the first and
second of the two dates you specify. The result is a signed integer value equal to <date2> - <date1 >in date
parts.

This query finds the number of days between pubdate and November 30, 2010:

select pubdate, newdate = datediff(day, pubdate, "Nov 30 2010") from titles

pubdate newdate ------------------------ ---------------
Jun 12 2006 12:00AM 1632
Jun 9 2005 12:00AM 2000
Jun 30 2005 12:00AM 1979
Jun 22 2004 12:00AM 2352
Jun 9 2006 12:00AM 1635
Jun 15 2004 12:00AM 2356 ...

Use the dateadd function to add an interval (specified as a integer) to a date you specify. For example, if the
publication dates of all the books in the titles table slipped three days, you could get the new publication
dates with this statement:

select dateadd(day, 3, pubdate) from titles

--------------------- Jun 15 2006 12:00AM
Jun 12 2005 12:00AM
Jul 3 2005 12:00AM
Jun 25 2004 12:00AM
Jun 12 2006 12:00AM
Jun 21 2004 12:00AM ...

17.1.8 Datatype Conversion Functions

Datatype conversions change an expression from one datatype to another, and reformat the display format for
date and time information.

SAP ASE performs certain datatype conversions, called implicit conversions. For example, if you compare a
char expression and a datetime expression, or a smallint expression and an int expression, or char
expressions of different lengths, SAP ASE automatically converts one datatype to another.

For other conversions, called explicit conversions, you must use a datatype conversion function to make the
datatype conversion. For example, before concatenating numeric expressions, you must convert them to
character expressions. If you attempt to explicitly convert a date to a datetime and the value is outside the
datetime range such as “Jan 1, 1000” the conversion is not allowed and an error message appears.

Some datatype conversions are not allowed, either implicitly or explicitly. For example, you cannot convert
smallint or binary data to datetime.

● E – explicit datatype conversion required.

488 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

● I – conversion can be explicit or implicit.
● U – datatype conversion is not allowed.

Table 6: Explicit, Implicit, and Unsupported Datatype Conversions

From bin
ary

var
bin
ary

bit [n
]ch
ar

[n
]va
rch
ar

dat
eti
me

sma
lld
ate
tim
e

big
dat
eti
me

big
tim
e

tin
yin
t

sma
lli
nt

uns
ign
ed
sma
lli
nt

int uns
ign
ed
int

binary – I I I I U U I I I I I I I

varbinary I – I I I U U I I I I I I I

bit I I – I I U U U U I I I I I

[n]char I I E – I I I I I E E E E E

[n]varchar I I E I – I I I I E E E E E

datetime I I U I I – I I I U U U U U

smalldatetime I I U I I I – I I U U U U U

bigdatetime I I U I I I I - I U U U U U

bigtime I I U I I I I I - U U U U U

tinyint I I I E E U U U U – I I I I

smallint I I I E E U U U U I – I I I

unsigned smallint I I I E E U U U U I I – I I

int I I I E E U U U U I I I – I

unsigned int I I I E E U U U U I I I I –

bigint I I I E E U U U U I I I I I

unsigned bigint I I I E E U U U I I I I I

decimal I I I E E U U U U I I I I I

numeric I I I E E U U U U I I I I I

float I I I E E U U U U I I I I I

real I I I E E U U U U I I I I I

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 489

From bin
ary

var
bin
ary

bit [n
]ch
ar

[n
]va
rch
ar

dat
eti
me

sma
lld
ate
tim
e

big
dat
eti
me

big
tim
e

tin
yin
t

sma
lli
nt

uns
ign
ed
sma
lli
nt

int uns
ign
ed
int

money I I I I I U U U U I I I I I

smallmoney I I I I I U U U U I I I I I

text U U U E E U U U U U U U U U

unitext E E E E E U U U U U U U U U

image E E U U U U U U U U U U U U

unichar I I E I I I I I I E E E E E

univarchar I I E I I I I I I E E E E E

date I I U I I I U I U U U U U U

time I I U I I I U I I U U U U U

Table 7: Explicit, Implicit, and Unsupported Datatype Conversions

From big
int

uns
ign
ed
big
int

dec
ima
l

num
eri
c

flo
at

rea
l

mon
ey

sma
llm
one
y

tex
t

uni
tex
t

ima
ge

uni
cha
r

uni
var
cha
r

dat
e

tim
e

binary I I I I I I I I U I I I I I I

varbinary I I I I I I I I U I I I I I I

bit I I I I I I I I U U U E E U U

[n]char E E E E E E E E I I I I I I I

[n]varchar E E E E E E E E I I I I I I I

datetime U U U U U U U U U U U I I I I

smalldatetime U U U U U U U U U U U I I I I

bigdatetime U U U U U U U U U U U I I I I

bigtime U U U U U U U U U U U I I U I

490 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

From big
int

uns
ign
ed
big
int

dec
ima
l

num
eri
c

flo
at

rea
l

mon
ey

sma
llm
one
y

tex
t

uni
tex
t

ima
ge

uni
cha
r

uni
var
cha
r

dat
e

tim
e

tinyint I I I I I I I I U U U E E U U

smallint I I I I I I I I U U U U E U U

unsigned smallint I I I I I I I I U U U E E U U

int I I I I I I I I U U U E E U U

unsigned int I I I I I I I I U U U E E U U

bigint – I I I I I I I U U U E E U U

unsigned bigint I – I I I I I I U U U E E U U

decimal I I – I I I I I U U U E E U U

numeric I I I – I I I I U U U E E U U

float I I I I – I I I U U U E E U U

real I I I I I – I I U U U E E U U

money I I I I I I – I U U U E E U U

smallmoney I I I I I I I – U U U E E U U

text U U U U U U U U – I U E E U U

unitext U U U U U U U U I – I U U U U

image U U U U U U U U U I – E E U U

unichar E E E E E E E E I I I – I I I

univarchar E E E E E E E E I I I I – I I

date U U U U U U U U U U U I I – I

time U U U U U U U U U U U I I I –

Related Information

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 491

convert Function Usage for Explicit Conversions [page 492]

17.1.8.1 convert Function Usage for Explicit Conversions

The general conversion function, convert, converts between a variety of datatypes and, for date and time
information, specifies a new display format.

Its syntax is:

convert(<datatype> [(<length>) | (<precision>[, <scale>])] [null | not null], <expression> [, <style>])

This example uses convert in the select list:

select title, convert(char(5), total_sales) from titles where type = "trad_cook"

title ------------------------------------ -----
Onions, Leeks, and Garlic: Cooking
 Secrets of the Mediterranean 375
Fifty Years in Buckingham Palace
 Kitchens 15096
Sushi, Anyone? 4095
 (3 rows affected)

Certain datatypes expect either a length or a precision and scale. If you do not specify a length, SAP ASE uses
the default length of 30 for character and binary data. If you do not specify a precision or scale, SAP ASE uses
the defaults of 18 and 0, respectively.

17.1.8.2 Datatype Conversion Guidelines and Constraints

There are general guidelines and limitations to consider for datatype conversions.

17.1.8.2.1 Convert Character Data to a Noncharacter Type

You can convert character data to a noncharacter type—such as a money, date/time, exact numeric, or
approximate numeric type—if it consists entirely of characters that are valid for the new type.

Leading blanks are ignored. However, if a char expression that consists of a blank or blanks is converted to a
datetime expression, SAP ASE converts the blanks into the default datetime value of “Jan 1, 1900.”

Syntax errors occur when the data includes unacceptable characters. These are examples of characters that
cause syntax errors:

● Commas or decimal points in integer data

492 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

● Commas in monetary data
● Letters in exact or approximate numeric data or bit stream data
● Misspelled month names in date and time data

Implicit conversions between unichar/univarchar and datetime/smalldatetime are supported.

17.1.8.2.2 Convert from One Character Type to Another

When converting from a multibyte character set to a single-byte character set, characters with no single-byte
equivalent are converted to question marks.

You can explicitly convert text and unitext columns to char, nchar, varchar, unichar, univarchar,
or nvarchar. You are limited to the maximum length of the character datatypes, which is determined by the
maximum column size for your server’s logical page size. If you do not specify the length, the converted value
has a default length of 30 bytes.

17.1.8.2.3 Convert Numbers to a Character Type

You can convert exact and approximate numeric data to a character type.

If the new type is too short to accommodate the entire string, an insufficient space error is generated. For
example, the following conversion tries to store a 5-character string in a 1-character type:

select convert(char(1), 12.34)

Insufficient result space for explicit conversion of NUMERIC value '12.34' to a CHAR field.

When converting float data to a character type, the new type should be at least 25 characters long.

Note
The str function may be preferable to convert or cast when making conversions, because it provides
more control over conversions and avoids errors.

17.1.8.2.4 Convert to or from unitext

You can implicitly convert to unitext from other character and binary datatypes. You can explicitly convert
from unitext to other datatypes, and vice versa.

However, the conversion result is limited to the maximum length of the destination datatype. When a unitext
value cannot fit the destination buffer on a Unicode character boundary, data is truncated. If you have set
enable surrogate processing, the unitext value is never truncated in the middle of a surrogate pair of
values, which means that fewer bytes may be returned after the datatype conversion. For example, if a

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 493

unitext column ut in table tb stores the string “U+0041U+0042U+00c2” (U+0041 represents the Unicode
character “A”), this query returns the value “AB” if the server’s character set is UTF-8, because U+00C2 is
converted to 2-byte UTF-8 0xc382:

select convert(char(3), ut) from tb

Currently, the alter table modify command does not support text, image, or unitext columns as the
modified column. To migrate from a text to a unitext column, you must first use bcp out to copy the
existing data out, create a table with unitext columns, and then use bcp in to place data into the new table.
This migration path works only when you invoke bcp with the -Jutf8 option.

17.1.8.2.5 Rounding During Conversion To and From Money
Types

The money and smallmoney types store four digits to the right of the decimal point, but rounds up to the
nearest hundredth (.01) for display purposes. When data is converted to a money type, it is rounded up to four
places.

Data converted from a money type follows the same rounding behavior if possible. If the new type is an exact
numeric with less than three decimal places, the data is rounded to the scale of the new type. For example,
when $4.50 is converted to an integer, it yields 5:

select convert(int, $4.50)

 ----------- 5

Data converted to money or smallmoney is assumed to be in full currency units, such as dollars, rather than in
fractional units, such as cents. For example, the integer value of 5 is converted to the money equivalent of 5
dollars, not 5 cents, in the us_english language.

17.1.8.2.6 Convert Date and Time Information

Data that is recognizable as a date can be converted to datetime, smalldatetime, date, or time. Incorrect
month names lead to syntax errors. Dates that fall outside the acceptable range for the datatype lead to
arithmetic overflow errors.

When datetime values are converted to smalldatetime, they are rounded to the nearest minute.

Related Information

Change the Date Format [page 497]

494 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

17.1.8.2.7 Convert Between Numeric Types

You can convert data from one numeric type to another. Errors can occur if the new type is an exact numeric
with precision or scale that is insufficient to hold the data.

For example, if you provide a float or numeric value as an argument to a built-in function that expects an
integer, the value of the float or numeric is truncated. However, SAP ASE does not implicitly convert numerics
that have a fractional part but return a scale error message. For example, SAP ASE returns error 241 for
numerics that have a fractional part and error 257 if other datatypes are passed.

Use the arithabort and arithignore options to determine how SAP ASE handles errors resulting from
numeric conversions.

17.1.8.2.8 Convert Between Binary and Integer Types

binary and varbinary types store hexadecimal-like data consisting of a “0x” prefix followed by a string of
digits and letters.

These strings are interpreted differently by different platforms. For example, the string “0x0000100”
represents 65536 on machines that consider byte 0 most significant (little-endian) and 256 on machines that
consider byte 0 least significant (big-endian).

Binary types can be converted to integer types either explicitly, using the convert function, or implicitly. If the
data is too short for the new type, it is stripped of its “0x” prefix and zero-padded. If it is too long, it is
truncated.

Both convert and the implicit datatype conversions evaluate binary data differently on different platforms.
Because of this, results may vary from one platform to another. Use the hextoint function for platform-
independent conversion of hexadecimal strings to integers, and the inttohex function for platform-
independent conversion of integers to hexadecimal values. Use the hextobigint function for platform-
independent conversion of hexadecimal strings to 64-bit integers, and the biginttohex function for
platform-independent conversion of 64-bit integers to hexadecimal values.

17.1.8.2.9 Convert Between Binary and Numeric or Decimal
Types

When you convert a binary or varbinary type to numeric or decimal, you must specify the “00” or “01”
values after the “0x” digit; otherwise, the conversion fails.

In binary and varbinary data strings, the first two digits after “0x” represent the binary type: “00”
represents a positive number and “01” represents a negative number.

For example, to convert the following binary data to numeric use:

select convert(numeric (38, 18),0x000000000000000006b14bd1e6eea0000000000000000000000000000000)

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 495

 123.456000

To convert the same numeric data back to binary use:

select convert(binary,convert(numeric(38, 18), 123.456))

-- 0x000000000000000006b14bd1e6eea0000000000000000000000000000000

17.1.8.2.10 Convert Image Columns to Binary Types

You can use the convert function to convert an image column to binary or varbinary.

You are limited to the maximum length of the binary datatypes, which is determined by the maximum
column size for your server’s logical page size. If you do not specify the length, the converted value has a
default length of 30 characters.

17.1.8.2.11 Convert Other Types to bit

Exact and approximate numeric types can be implicitly converted to the bit type. Character types require an
explicit convert function.

The expression being converted must consist only of digits, a decimal point, a currency symbol, and a plus or
minus sign. The presence of other characters generates syntax errors.

The bit equivalent of 0 is 0. The bit equivalent of any other number is 1.

17.1.8.2.12 Convert Hexadecimal Data

For conversion results that are reliable across platforms, use the hextoint and inttohex functions.

Similar functions, hextobigint and biginttohex, are available to convert to and from 64-bit integers.

hextoint accepts literals or variables consisting of digits and the uppercase and lowercase letters A – F, with
or without a “0x” prefix. These are all valid uses of hextoint:

select hextoint("0x00000100FFFFF") select hextoint("0x00000100") select hextoint("100")

hextoint strips data of the “0x” prefix. If the data exceeds 8 digits, hextoint truncates it. If the data is fewer
than 8 digits, hextoint right-justifies and pads it with zeros. Then hextoint returns the platform-
independent integer equivalent. The above expressions all return the same value, 256, regardless of the
platform that executes the hextoint function.

The inttohex function accepts integer data and returns an 8-character hexadecimal string without a “0x”
prefix. inttohex always returns the same results, regardless of platform.

496 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

17.1.8.2.13 Convert bigtime and bigdatetime Data

Implicit and explicit conversions are allowed where a decreased precision results in the loss of data.

Implicit conversion between types without matching primary fields may cause either data truncation, the
insertion of a default value, or an error message to be raised. For example, when a bigdatetime value is
converted to a date value, the time portion is truncated leaving only the date portion. If a bigtime value is
converted to a bigdatetime value, a default date portion of Jan 1, 0001 is added to the new bigdatetime
value. If a date value is converted to a bigdatetime value, a default time portion of 00:00:00.000000 is
added to the bigdatetime value.

17.1.8.2.14 Convert NULL Value

You can use the convert function to change NULL to NOT NULL and NOT NULL to NULL.

17.1.8.3 Change the Date Format

The <style> parameter of convert provides a variety of date display formats for converting datetime or
smalldatetime data to char or varchar.

The number argument you supply as the <style> parameter determines how the data appears. The year can
use either two or four digits. Add 100 to a <style> value to get a 4-digit year, including the century (<yyyy>).

The table below shows the possible values for <style, >and the variety of date formats you can use. When
you use <style> with smalldatetime, the styles that include seconds or milliseconds show zeros in those
positions.

In the table, “mon” indicates a month spelled out, “mm” the month number or minutes. “HH ”indicates a 24-
hour clock value, “hh” a 12-hour clock value. The last row, 23, includes a literal “T” to separate the date and
time portions of the format.

Without Century (yy) With Century (yyyy) Standard Output

- 0 or 100 Default <mon dd yyyy hh:mm> AM (or PM)

1 101 USA <mm/dd/yy >

2 2 SQL standard <yy.mm.dd >

3 103 English/French <dd/mm/yy >

4 104 German <dd.mm.yy >

5 105 <dd-mm-yy >

6 106 <dd mon yy >

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 497

Without Century (yy) With Century (yyyy) Standard Output

7 107 <mon dd, yy >

8 108 <HH:mm:ss >

- 9 or 109 Default + milliseconds <mon dd yyyy hh:mm:sss> AM (or
PM)

10 110 USA <mm-dd-yy >

11 111 Japan <yy/mm/dd >

12 112 ISO <yymmdd >

13 113 <yy/dd/mm>

14 114 <mm/yy/dd>

15 115 <dd/yy/mm>

- 16 or 116 <mon dd yyyy HH:mm:ss>

17 117 <hh:mmAM>

18 118 <HH:mm>

19 <hh:mm:ss:zzzAM>

20 <HH:mm:ss:zzz>

21 <yy/mm/dd> <HH:mm:ss>

22 <yy/mm/dd hh:mm >AM (or PM)

23 <yyyy-mm-ddTHH:mm:ss>

The default values, style 0 or 100, and 9 or 109, always return the century (<yyyy>).

This example converts the current date to style 3, <dd/mm/yy>:

select convert(char(12), getdate(), 3)

When converting date data to a character type, use style numbers 1 – 7 (101 – 107) or 10 – 12 (110 – 112) to
specify the display format. The default value is 100 (<mon dd yyyy hh:mi>AM (or PM)). If date data is
converted to a style that contains a time portion, that time portion reflects the default value of zero.When
converting time data to a character type, use style number 8 or 9 (108 or 109) to specify the display format.
The default is 100 (<mon dd yyyy hh:mi>AM (or PM)). If time data is converted to a style that contains a
date portion, the default date of Jan 1, 1900 appears.

498 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

Note
convert with NULL in the <style> argument returns the same result as convert with no <style>
argument. For example:

select convert(datetime, "01/01/01") ------------

Jan 1 2001 12:00AM

select convert(datetime, "01/01/01", NULL) ------------

Jan 1 2001 12:00AM

17.1.8.4 Conversion Error Handling

Conversion results can produce errors for divide-by-zero, arithmetic overflow, scale, and domain.

Arithmetic Overflow and Divide-by-Zero Errors

Divide-by-zero errors occur when SAP ASE tries to divide a numeric value by zero. Arithmetic overflow errors
occur when the new type has too few decimal places to accommodate the results.

This happens during:

● Explicit or implicit conversions to exact types with a lower precision or scale
● Explicit or implicit conversions of data that falls outside the acceptable range for a money or date/time

type
● Conversions of hexadecimal strings requiring more than 4 bytes of storage using hextoint

Both arithmetic overflow and divide-by-zero errors are considered serious, whether they occur during an
implicit or explicit conversion. Use the arithabort arith_overflow option to specify how SAP ASE
handles these errors. The default setting, arithabort arith_overflow on, rolls back the entire
transaction in which the error occurs. If the error occurs in a batch that does not contain a transaction,
arithabort arith_overflow on does not roll back earlier commands in the batch, and SAP ASE does not
execute statements that follow the error-generating statement in the batch. If you set arithabort
arith_overflow off, SAP ASE aborts the statement that causes the error, but continues to process other
statements in the transaction or batch.You can use the <@@error> global variable to check statement results.

Use the arithignore arith_overflow option to determine whether SAP ASE displays a message after
these errors. The default setting, off, displays a warning message when a divide-by-zero error or a loss of
precision occurs. Setting arithignore arith_overflow on suppresses warning messages after these
errors. You can omit optional arith_overflow keyword without any effect.

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 499

Scale Errors

When an explicit conversion results in a loss of scale, the results are truncated without warning.

For example, when you explicitly convert a float, numeric, or decimal type to an integer, SAP ASE
assumes you want the result to be an integer and truncates all numbers to the right of the decimal point.

During implicit conversions to numeric or decimal types, loss of scale generates a scale error. Use the
arithabort numeric_truncation option to determine how serious such an error is considered. The
default setting, arithabort numeric_truncation on, aborts the statement that causes the error, but
continues to process other statements in the transaction or batch. If you set arithabort
numeric_truncation off, SAP ASE truncates the query results and continues processing.

Note
For entry-level ANSI SQL compliance, set:

● arithabort arith_overflow off
● arithabort numeric_truncation on
● arithignore off

Domain Errors

The convert function generates a domain error when the function’s argument falls outside the range over
which the function is defined. This rarely happens.

17.1.9 Security Functions

The security functions return information about security services and user-defined roles.

See the Security Administration Guide for information about managing user permissions.

17.1.10 XML Functions

The XML functions let you manage XML in the SAP ASE database.

The XML functions are described in the XML Services book.

500 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

17.2 User-Created Functions

Use the create function command to create and save your own scalar and table Transact-SQL functions.

You can include:

● declare statements to define data variables and cursors that are local to the function
● Assigned values to objects local to the function (for example, assigning values to scalar and variables local

to a table with select or set commands)
● Cursor operations that reference local cursors that are declared, opened, closed, and deallocated in the

function
● Control-of-flow statements
● set options (valid only in the scope of the function)

You cannot include :

● select or fetch statements that return data to the client.
● insert, update, or delete statements. For table user-defined functions, however, you can include

insert and update statements on a table variable that are returned to the caller.
● Utility commands, such as dbcc, dump and load.
● print statements.
● Statements that references rand, rand2, getdate, or newid.

You can include select or fetch statements that assign values only to local variables.

See the Reference Manual: Commands.

Note
You can also create Transact-SQL functions that return a value specified by a Java method. Use the create
function (SQLJ) command to add a Transact-SQL wrapper to a Java method. See Java in the SAP ASE
Database and the Reference Manual: Commands.

17.2.1 Table User-Defined Functions

Using table SQL UDFs offer modularity and encapsulation in SQL programming, allowing you to use
parameterized views or multi-statement views.

There are two types of table user-defined functions you can create:

● Multi-statement table UDFs – contain one or more statements and will not be merged when called, with
the caller statement.

● Inline table UDFs – contain just one statement when the function is called.
Although SAP ASE could merge inline table UDFs, it does not.

A table user-defined function takes zero or more input parameters and returns table, multi-set rows. A
function can have up to 1023 input parameters. When a parameter of the function has a default value, the
keyword DEFAULT must be specified when calling the function to get the default value. This behavior is

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 501

different from parameters with default values in stored procedures in which omitting the parameter also
implies the default value. User-defined functions do not support output parameters.

To create a table-valued user-defined function, use the create function command, using the returns
table parameter. See create function in Reference Manual: Commands for full syntax information and
examples.

To drop a table-valued user-defined function, use the drop function command.

Note
drop function does not check for dependencies on the functions you are dropping.

To modify a table-valued UDF, use drop function then re-create the function with create function. You
cannot use alter function to modify a table-valued UDF.

You can only invoke table-valued functions in the from clause of a select query. When you reference or
invoke a table-valued user-defined function, you specify the function name followed by parentheses. Within
the parentheses, you can specify expressions as arguments for all the parameters. You cannot specify
parameter names in the arguments when invoking a function. When you invoke a function, you must supply
argument values for all of the parameters and you must specify the argument values in the same sequence in
which the parameters are defined in the create function statement. . When a parameter of the function
has a default value, the keyword "default" must be specified when calling the function in order to get the
default value.

Transact-SQL errors that cause a statement to be aborted and then continue with the next statement in a
stored procedure are treated differently inside a function. In functions, such errors will cause the function
execution to be stopped. This in turn will cause the statement that invoked the function to be aborted.

The number of times that a function specified in a query is actually executed can depend on whether the
function is laterally joined (correlated) with other tables or not.

For a function that is not joined with other tables, the number of times it gets executed is one.

Consider the following statement:

select * from dbo.get_authors('authors :Alfredo Muzatti, Ali MacNamara, Nouri Abdu; editor : Sci&tech; Title : The database world; short_descr: It is all about the database;', 1)

The function will also be executed once if the function is joined but not correlated with a table, like

select * from books, dbo.get_authors('authors :Alfredo Muzatti, Ali MacNamara, Nouri Abdu; editor : Sci&tech; Title : The database world; short_descr: It is all about the database;', 1)

Despite the fact that the query above is a Cartesian product between the result set of get_authors() and
books table and the join order is not important, from a result standpoint, the optimizer makes sure, from a
performance standpoint, that the function is executed just once, before the scan of the table.

When you include the value from a table into a table user-defined function as a parameter, it is a lateral join
between the table and the user-defined function, and is called a correlated SQL user-defined function. In the
query below get_authors is correlated with the books table.

select b.book_id , author, title, editor from books b, dbo.get_authors(b.book_descr, b.book_id)

502 P U B L I C
Transact-SQL Users Guide
Transact-SQL Functions

For every qualified row in books, get_authors() is executed with the value parameters from books.

Transact-SQL Users Guide
Transact-SQL Functions P U B L I C 503

18 Stored Procedures

A stored procedure is a named collection of SQL statements or control-of-flow language. You can create
stored procedures for commonly used functions, and to improve performance. SAP ASE also provides system
procedures for performing administrative tasks that update the system tables.

Stored procedures can:

● Take parameters
● Call other procedures
● Return a status value to a calling procedure or batch to indicate success or failure and the reason for

failure
● Return values of parameters to a calling procedure or batch
● Be executed on remote servers

The ability to write stored procedures greatly enhances the power, efficiency, and flexibility of SQL. Compiled
procedures dramatically improve the performance of SQL statements and batches. In addition, stored
procedures on other servers can be executed if both your server and the remote server are set up to allow
remote logins. You can write triggers on your local server that execute procedures on a remote server
whenever certain events, such as deletions, updates, or inserts, take place locally.

Stored procedures differ from ordinary SQL statements and from batches of SQL statements in that they are
precompiled. The first time you run a procedure, the SAP ASE query processor analyzes it and prepares an
execution plan that is, after successful execution, stored in a system table. Subsequently, the procedure is
executed according to the stored plan. Since most of the query processing work has already been performed,
stored procedures execute almost instantly.

SAP ASE supplies a variety of stored procedures as convenient tools for the user. The procedures stored in the
sybsystemprocs database whose names begin with “sp_” are known as system procedures, because they
insert, update, delete, and report on data in the system tables.

The Reference Manual: Procedures includes a complete list of all SAP-provided system procedures.

You can also create and use extended stored procedures to call procedural language functions from SAP ASE.

Related Information

Extended Stored Procedures Usage [page 544]

504 P U B L I C
Transact-SQL Users Guide

Stored Procedures

18.1 Examples

Examples are provided to illustrate how to create and execute a stored procedure.

To create a simple stored procedure, without special features such as parameters, the syntax is:

create procedure <procedure_name> as <SQL_statements>

Stored procedures are database objects, and their names must follow the rules for identifiers.

Any number and kind of SQL statements can be included except for create statements.

A procedure can be as simple as a single statement that lists the names of all the users in a database:

create procedure namelist as select name from sysusers

To execute a stored procedure, use the keyword execute and the name of the stored procedure, or just use
the procedure’s name, as long as it is submitted to SAP ASE by itself or is the first statement in a batch. You
can execute namelist in any of these ways:

namelist execute namelist exec namelist

To execute a stored procedure on a remote SAP ASE, include the server name. The syntax for a remote
procedure call is:

execute <server_name>.[<database_name>].[<owner>].<procedure_name>

The database name is optional only if the stored procedure is located in your default database. The owner
name is optional only if the database owner (“dbo”) owns the procedure or if you own it. You must have
permission to execute the procedure.

A procedure can include more than one statement.

create procedure showall as select count(*) from sysusers
select count(*) from sysobjects select count(*) from syscolumns

When the procedure is executed, the results of each command appear in the order in which the statement
appears in the procedure.

showall ------------

 5
(1 row affected)

 88

(1 row affected)

Transact-SQL Users Guide
Stored Procedures P U B L I C 505

 349
 (1 row affected, return status = 0)

When a create procedure command is successfully executed, the procedure’s name is stored in
sysobjects, and its source text is stored in syscomments.

After you create a stored procedure, the source text describing the procedure is stored in the text column of
the syscomments system table. Do not remove this information from syscomments; doing so can cause
problems for future upgrades of SAP ASE. Use sp_hidetext to encrypt the text in syscomments. See the
Reference Manual: Procedures.

Use sp_helptext to display the source text of a procedure:

sp_helptext showall

Lines of Text ---------------
 1

(1 row affected)
text
--
create procedure showall as
select count(*) from sysusers
select count(*) from sysobjects
select count(*) from syscolumns
 (1 row affected, return status = 0)

When you create procedures with deferred name resolution (which lets you create a stored procedure that
references objects that do not yet exist), the text in syscomments is stored without performing the select *
expansion. After the procedure’s first successful execution, SAP ASE performs the select * expansion and
the text for the procedure is updated with the expanded text. Since the select * expansion is executed
before updating the text, the final text contains the expanded select *, as this example shows:

create table t (a int, b int) set deferred_name_resolution on
create proc p as select * from t
sp_helptext p
Lines of Text

 1
(1 row affected)
text

create proc p as select * from t
(1 row affected)
(return status = 0)exec p

a b
----------- -----------
(0 rows affected)
(return status = 0)sp_helptext p

Lines of Text

 1
(1 row affected)

506 P U B L I C
Transact-SQL Users Guide

Stored Procedures

text

/* SAP ASE has expanded all '*' elements in the following statement */
create proc p as select t.a, t.b from t
(1 row affected) (return status = 0)

Related Information

Restrictions Associated with Stored Procedures [page 536]
Execute Procedures Remotely [page 524]
Compiled Objects [page 22]

18.2 Permissions

Stored procedures can serve as security mechanisms, since a user can be granted permission to execute a
stored procedure, even if she or he does not have permissions on the tables or views referenced in it, or
permission to execute specific commands.

You can protect the source text of a stored procedure against unauthorized access by restricting select
permission on the text column of the syscomments table to the creator of the procedure and the system
administrator. This restriction is required to run SAP ASE in the evaluated configuration. To enact this
restriction, a system security officer must reset the allow select on syscomments.text column
parameter using sp_configure. See, Setting Configuration Parameters, the System Administration Guide:
Volume 1.

Another way to protect access to the source text of a stored procedure is to use sp_hidetext to hide the
source text . See the Reference Manual: Procedures.

See, Managing User Permissions, in the Security Administration Guide.

18.3 Performance

As a database changes, you can optimize the original query plans used to access its tables by recompiling
them. This saves you from having to find, drop, and re-create every stored procedure and trigger.

This example marks every stored procedure and trigger that accesses the table titles to be recompiled the
next time it is executed.

sp_recompile titles

See the Reference Manual: Procedures.

Transact-SQL Users Guide
Stored Procedures P U B L I C 507

18.4 Create and Execute Stored Procedures

You can create a procedure in the current database.

In versions of SAP ASE earlier than 15.5, all referenced objects where required to exist when a procedure was
created. The deferred name resolution feature allows objects, except for user-created datatype objects, to be
resolved when the stored procedure is initially executed.

Deferred name resolution uses the deferred name resolution configuration parameter, which operates
at the server level, or set deferred_name_resolution parameter, which operates at the connection level.

The default behavior is to resolve the objects before execution. You must explicitly indicate deferred name
resolution using the configuration option deferred name resolution, or the set parameter.

See the System Administration Guide: Volume 1, and the Reference Manual: Commands.

Permission to issue create procedure defaults to the database owner, who can transfer it to other users.

18.4.1 Deferred Name Resolution Usage

When deferred name resolution is active objects inside procedures are resolved at execution time, instead of
at creation time.

You can use this option to create procedures that reference objects that did not exist when the procedure was
created. For example, using deferred_name_resolution allows creating a procedure that references a
table that does not yet exist. This example shows an attempt to create a procedure without
deferred_name_resolution:

select * from non_existing_table

error message Msg 208, Level 16, State 1:
Line 1: non_existing_table not found. Specify owner.objectname or use sp_help to check
whether the object exists (sp_help may produce lots of output).

However, using this option allows you to create the procedure without raising an error because of the missing
objects.

set deferred_name_resolution on go
create proc p as select * from non_existing_table go

Note
deferred_name_resolution does not resolve user-defined datatypes at execution. They are resolved at
creation time, so if the resolution fails, the procedure cannot be created.

Resolving objects at creation time means that object resolution errors are also raised at execution, not
creation.

508 P U B L I C
Transact-SQL Users Guide

Stored Procedures

18.4.2 Parameters

A parameter is an argument to a stored procedure. You can optionally declare one or more parameters in a
create procedure statement. The value of each parameter named in a create procedure statement
must be supplied by the user when the procedure is executed.

Parameter names must be preceded by an @ sign and must conform to the rules for identifiers. Parameter
names are local to the procedure that creates them; the same parameter names can be used in other
procedures. Enclose any parameter value that includes punctuation (such as an object name qualified by a
database name or owner name) in single or double quotes. Parameter names, including the @ sign, can be a
maximum of 255 bytes long.

Parameters must be given a system datatype (except text, unitext, or image) or a user-defined datatype,
and (if required for the datatype) a length or precision and scale in parentheses.

Here is a stored procedure for the pubs2 database. Given an author’s last and first names, the procedure
displays the names of any books written by that person and the name of each book’s publisher.

create proc au_info @lastname varchar(40), @firstname varchar(20) as
select au_lname, au_fname, title, pub_name
from authors, titles, publishers, titleauthor
where au_fname = @firstname
and au_lname = @lastname
and authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id and titles.pub_id = publishers.pub_id

Now, execute au_info:

au_info Ringer, Anne

au_lname au_fname title pub_name -------- -------- --------------------- ----------
Ringer Anne The Gourmet Microwave Binnet & Hardley
Ringer Anne Is Anger the Enemy? New Age Books (2 rows affected, return status = 0)

The following stored procedure queries the system tables. Given a table name as the parameter, the
procedure displays the table name, index name, and index ID:

create proc showind @table varchar(30) as select table_name = sysobjects.name,
index_name = sysindexes.name, index_id = indid
from sysindexes, sysobjects
where sysobjects.name = @table and sysobjects.id = sysindexes.id

The column headings, for example, table_name, were added to improve the readability of the results. Here
are acceptable syntax forms for executing this stored procedure:

execute showind titles exec showind titles
execute showind @table = titles
execute GATEWAY.pubs2.dbo.showind titles showind titles

Transact-SQL Users Guide
Stored Procedures P U B L I C 509

The last syntax form, without exec or execute, is acceptable as long as the statement is the only one or the
first one in a batch.

Here are the results of executing showind in the pubs2 database when <titles> is given as the parameter:

table_name index_name index_id ---------- ---------- ----------
titles titleidind 0
titles titleind 2
 (2 rows affected, return status = 0)

If you supply the parameters in the form “@<parameter> = <value>” you can supply them in any order.
Otherwise, you must supply parameters in the order of their create procedure statement. If you supply one
value in the form “@<parameter> = <value>”, then supply all subsequent parameters this way.

This procedure displays the datatype of the qty column from the salesdetail table:

create procedure showtype @tabname varchar(18), @colname varchar(18) as select syscolumns.name, syscolumns.length,
 systypes.name
 from syscolumns, systypes, sysobjects
 where sysobjects.id = syscolumns.id
 and @tabname = sysobjects.name
 and @colname = syscolumns.name and syscolumns.type = systypes.type

When you execute this procedure, you can give the <@tabname> and <@colname> in a different order from
the create procedure statement if you specify them by name:

exec showtype @colname = qty , @tabname = salesdetail

You can use case expressions in any stored procedure where you use a value expression. The following
example checks the sales for any book in the titles table:

create proc booksales @titleid tid as
select title, total_sales,
case
when total_sales != null then "Books sold"
when total_sales = null then "Book sales not available"
end
from titles where @titleid = title_id

For example:

booksales MC2222

title total_sales ------------------------ -----------
Silicon Valley Gastronomic Treats 2032 Books sold
 (1 row affected)

510 P U B L I C
Transact-SQL Users Guide

Stored Procedures

Related Information

Naming Convention Identifiers [page 29]

18.4.3 Default Parameters

You can assign a default value for a parameter in the create procedure statement. This value, which can be
any constant, is used as the argument to the procedure if the user does not supply one.

Here is a procedure that displays the names of all the authors who have written a book published by the
publisher given as a parameter. If no publisher name is supplied, the procedure shows the authors published
by Algodata Infosystems.

create proc pub_info @pubname varchar(40) = "Algodata Infosystems" as
select au_lname, au_fname, pub_name
from authors a, publishers p, titles t, titleauthor ta
where @pubname = p.pub_name
and a.au_id = ta.au_id
and t.title_id = ta.title_id and t.pub_id = p.pub_id

If the default value is a character string that contains embedded blanks or punctuation, it must be enclosed in
single or double quotes.

When you execute pub_info, you can give any publisher’s name as the parameter value. If you do not supply
any parameter, SAP ASE uses the default, Algodata Infosystems.

exec pub_info

au_lname au_fname pub_name -------------- ------------ --------------------
Green Marjorie Algodata Infosystems
Bennet Abraham Algodata Infosystems
O’Leary Michael Algodata Infosystems
MacFeather Stearns Algodata Infosystems
Straight Dick Algodata Infosystems
Carson Cheryl Algodata Infosystems
Dull Ann Algodata Infosystems
Hunter Sheryl Algodata Infosystems
Locksley Chastity Algodata Infosystems
 (9 rows affected, return status = 0)

This procedure, showind2, assigns “titles” as the default value for the @<table> parameter:

create proc showind2 @table varchar(30) = titles as
select table_name = sysobjects.name,
 index_name = sysindexes.name, index_id = indid
from sysindexes, sysobjects
where sysobjects.name = @table and sysobjects.id = sysindexes.id

Transact-SQL Users Guide
Stored Procedures P U B L I C 511

The column headings, for example, table_name, clarify the result display. Here is what showind2 shows for
the authors table:

showind2 authors

table_name index_name index_id ----------- ------------- ---------
authors auidind 1
authors aunmind 2
 (2 rows affected, return status = 0)

If the user does not supply a value, SAP ASE uses the default, <titles>.

showind2

table_name index_name index_id ----------- ----------- ---------
titles titleidind 1
titles titleind 2
 (2 rows affected, return status =0)

If a parameter is expected but none is supplied, and a default value is not supplied in the create procedure
statement, SAP ASE displays an error message listing the parameters expected by the procedure.

18.4.3.1 Default Parameters Usage

If you create a stored procedure that uses defaults for parameters, and a user issues the stored procedure,
but misspells the parameter name, SAP ASE executes the stored procedure using the default value and does
not issue an error message.

For example, if you create the following procedure:

create procedure test @x int = 1 as select @x

It returns the following:

exec test @x = 2 go
---------------- 2

However, if you pass this stored procedure an incorrect parameter, it returns an incorrect result set, but does
not issue a error message:

exec test @z = 4 go

 1
(1 row affected) (return status = 0)

512 P U B L I C
Transact-SQL Users Guide

Stored Procedures

18.4.3.2 NULL as the Default Parameter

In the create procedure statement, you can declare null as the default value for individual parameters.

The syntax is:

create procedure <procedure_name> @<param datatype> [= null] [, @<param datatype> [= null]]...

If the user does not supply a parameter, SAP ASE executes the stored procedure without displaying an error
message.

The procedure definition can specify an action be taken if the user does not give a parameter, by checking to
see that the parameter’s value is null. Here is an example:

create procedure showind3 @table varchar(30) = null as
if @table is null
 print "Please give a table name."
else
 select table_name = sysobjects.name,
 index_name = sysindexes.name,
 index_id = indid
 from sysindexes, sysobjects
 where sysobjects.name = @table and sysobjects.id = sysindexes.id

If the user does not give a parameter, SAP ASE prints the message from the procedure on the screen.

For other examples of setting the default to null, examine the source text of system procedures using
sp_helptext.

18.4.3.3 Wildcard Characters in the Default Parameter

The default can include the wildcard characters (%, _, [] , and [^]) if the procedure uses the parameter with
the like keyword.

For example, you can modify showind to display information about the system tables if the user does not
supply a parameter, like this:

create procedure showind4 @table varchar(30) = "sys%" as
select table_name = sysobjects.name,
 index_name = sysindexes.name,
 index_id = indid
from sysindexes, sysobjects
where sysobjects.name like @table and sysobjects.id = sysindexes.id

Transact-SQL Users Guide
Stored Procedures P U B L I C 513

18.4.4 Using Multiple Parameters
Examples are provided for using multiple parameters in a procedure.

An example of a variant of au_info that uses defaults with wildcard characters for both parameters.

create proc au_info2 @lastname varchar(30) = "D%",
 @firstname varchar(18) = "%" as
select au_lname, au_fname, title, pub_name
from authors, titles, publishers, titleauthor
where au_fname like @firstname
and au_lname like @lastname
and authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id and titles.pub_id = publishers.pub_id

If you execute au_info2 with no parameters, all the authors with last names beginning with “D” are returned:

au_info2

au_lname au_fname title pub_name --------- --------- --------------------------- -------------
Dull Ann Secrets of Silicon Valley Algodata Infosystems
DeFrance Michel The Gourmet Microwave Binnet & Hardley
 (2 rows affected)

If defaults are available for parameters, parameters can be omitted at execution, beginning with the last
parameter. You cannot skip a parameter unless NULL is its supplied default.

Note
If you supply parameters in the form <@parameter> = <value>, you can supply parameters in any order.
You can also omit a parameter for which a default has been supplied. If you supply one value in the form
<@parameter> = <value>, then supply all subsequent parameters this way.

As an example of omitting the second parameter when defaults for two parameters have been defined, you
can find the books and publishers for all authors with the last name “Ringer” like this:

au_info2 Ringer

au_lname au_fname title Pub_name -------- -------- --------------------- ------------
Ringer Anne The Gourmet Microwave Binnet & Hardley
Ringer Anne Is Anger the Enemy? New Age Books
Ringer Albert Is Anger the Enemy? New Age Books Ringer Albert Life Without Fear New Age Books

If a user executes a stored procedure and specifies more parameters than the number of parameters
expected by the procedure, SAP ASE ignores the extra parameters. For example, sp_helplog displays the
following for the pubs2 database:

sp_helplog

In database ‘pubs2’, the log starts on device ‘pubs2dat’.

514 P U B L I C
Transact-SQL Users Guide

Stored Procedures

If you erroneously add some meaningless parameters, the output of sp_helplog is the same:

sp_helplog one, two, three

In database ‘pubs2’, the log starts on device ‘pubs2dat’.

Remember that SQL is a free-form language. There are no rules about the number of words you can put on a
line or where you must break a line. If you issue a stored procedure followed by a command, SAP ASE
attempts to execute the procedure and then the command. For example, if you issue:

sp_help checkpoint

SAP ASE returns the output from sp_help and runs the checkpoint command. Using delimited identifiers
for procedure parameters can produce unintended results.

18.4.5 LOB Datatypes in Stored Procedures

You can declare a large object (LOB) text, image, or unitext datatype for a local variable, and pass that
variable as an input parameter to a stored procedure.

This example uses an LOB datatype in a stored procedure:

1. Suppose we create table_1:

create table t1 (a1 int, a2 text) insert into t1 values(1, "aaaa")
 insert into t1 values(2, "bbbb") insert into t1 values(3, "cccc")

2. Create a stored procedure using a LOB local variable as a parameter:

create procedure my_procedure @loc text as select @loc

3. Declare the local variable and execute the stored procedure.

declare @a text select @a = a2 from t1 where a1 = 3

exec my_procedure @a

--------------------------- cccc

Certain restrictions apply. An LOB datatype:

● Cannot be used as an output parameter of a stored procedure
● Cannot be used in a datatype conversion using the convert() function
● Is not supported for replication

Transact-SQL Users Guide
Stored Procedures P U B L I C 515

18.4.6 Procedure Groups

You can optionally use a semicolon and integer number after the name of a procedure in the create
procedure, and execute statements, to group procedures of the same name so that they can be dropped
together with a single drop procedure statement.

Procedures used in the same application are often grouped this way. For example, you might create a series of
procedures called orders;1, orders;2, and so on. To drop the entire group, use:

drop proc orders

Once you have grouped procedures by appending a semicolon and number to their names, you cannot drop
them individually. For example, the following statement is not allowed:

drop proc orders;2

To run SAP ASE in the evaluated configuration, prohibit procedure grouping. This ensures that every stored
procedure has a unique object identifier and can be dropped individually. To disallow procedure grouping, a
system security officer must reset the allow procedure grouping configuration parameter. See, Setting
Configuration Parameters, in the System Administration Guide: Volume 1.

18.4.7 Compiling Individual Statements in a Stored
Procedure

SAP ASE allows you to include a with recompile clause at the statement level in a stored procedure to
compile individual statements.

While executing a stored procedure, the query processor creates a new plan for only those statements that are
marked for recompile. This avoids recompiling the entire stored procedure, which may consist of hundreds of
statements.

This version of SAP ASE supports with recompile only for certain select statements. See the Restrictions
section.

The syntax is:

create procedure <procedure_name> as begin select <select_list> from <object_name> with recompile end

Where with recompile indicates that only the statements in the stored procedure that are marked for
recompile are recompiled.

For example, assume that table t1 has 500 rows with a value of 100, a single row with value 1, and an index on
column a. If you create this stored procedure:

create procedure p3 @var1 INT as begin
select * from t1 where a=@var1 with recompile
select * from t1 where a=@var1

516 P U B L I C
Transact-SQL Users Guide

Stored Procedures

 end

Running exec p3 100 recompiles both statements and chooses a table scan over t1 (shown in bold below):

QUERY PLAN FOR STATEMENT 1 (at line 1). STEP 1
 The type of query is EXECUTE.
QUERY PLAN FOR STATEMENT 1 (at line 0).
 STEP 1
 The type of query is DECLARE.
QUERY PLAN FOR STATEMENT 2 (at line 3).
 STEP 1
 The type of query is SET OPTION ON.
QUERY PLAN FOR STATEMENT 3 (at line 4).
To be Optimized at runtime using Deferred Compilation.
QUERY PLAN FOR STATEMENT 4 (at line 5).
Optimized using Deferred Compilation.
Optimized using Serial Mode
 STEP 1
 The type of query is SELECT.
 1 operator(s) under root
 |ROOT:EMIT Operator (VA = 1)
 |
 | |SCAN Operator (VA = 0)
 | | FROM TABLE
 | | t1 | | Table Scan. | | Forward Scan.
 | | Positioning at start of table.
 | | Using I/O Size 2 Kbytes for data pages.
 | | With LRU Buffer Replacement Strategy for data pages.
QUERY PLAN FOR STATEMENT 3 (at line 4).
Optimized at runtime using Deferred Compilation.
Optimized using Serial Mode
 STEP 1
 The type of query is SELECT.
 1 operator(s) under root
 |ROOT:EMIT Operator (VA = 1)
 |
 | |SCAN Operator (VA = 0)
 | | FROM TABLE
 | | t1 | | Table Scan. | | Forward Scan.
 | | Positioning at start of table.
 | | Using I/O Size 2 Kbytes for data pages.
 | | With LRU Buffer Replacement Strategy for data pages.
(return status = 0)

However, running exec p3 1 reuses the plan (that is, the table scan) for the first statement and recreates a
new plan (that is, the index scan using t1.i1) for the second statement, which was marked for recompile:

QUERY PLAN FOR STATEMENT 1 (at line 1). STEP 1
 The type of query is EXECUTE.

QUERY PLAN FOR STATEMENT 1 (at line 0).
 STEP 1
 The type of query is DECLARE.
QUERY PLAN FOR STATEMENT 2 (at line 3).
 STEP 1
 The type of query is SET OPTION ON.

QUERY PLAN FOR STATEMENT 3 (at line 4).
To be optimized at runtime using Deferred Compilation.

Transact-SQL Users Guide
Stored Procedures P U B L I C 517

QUERY PLAN FOR STATEMENT 4 (at line 5).
Optimized using Deferred Compilation.
Optimized using Serial Mode
 STEP 1
 The type of query is SELECT.
 1 operator(s) under root
 |ROOT:EMIT Operator (VA = 1)
 |
 | |SCAN Operator (VA = 0)
 | | FROM TABLE
 | | t1 | | Table Scan. | | Forward Scan.
 | | Positioning at start of table.
 | | Using I/O Size 2 Kbytes for data pages.
 | | With LRU Buffer Replacement Strategy for data pages.
QUERY PLAN FOR STATEMENT 3 (at line 4).
Optimized at runtime using Deferred Compilation.
Optimized using Serial Mode
 STEP 1
 The type of query is SELECT.
 1 operator(s) under root
 |ROOT:EMIT Operator (VA = 1)
 |
 | |SCAN Operator (VA = 0)
 | | FROM TABLE
 | | t1 | | Index : idx | | Forward Scan.
 | | Positioning by key.
 | | Index contains all needed columns. Base table will not be read.
 | | Keys are:
 | | a ASC
 | | Using I/O Size 2 Kbytes for index leaf pages.
 | | With LRU Buffer Replacement Strategy for index leaf pages.

Earlier versions of SAP ASE restricted you from recompiling entire procedures instead of individual
statements in the procedure.

select ... with recompile includes some restrictions:

● You cannot include:
○ with recompile in an inner query. However, you can include the with recompile clause with

statements that include subqueries in an inner query (or a subquery). You can include with
recompile with the outermost query in statements that have subqueries or derived tables. For
example:

select pub_name from publishers where "business" in (select type from (select type from titles, publishers where titles.pub_id = publishers.pub_id) dt_titles) with recompile

Queries with this syntax are not allowed:

select pub_name from publishers where "business" in(select type from
(select type from titles, publishers where titles.pub_id = publishers.pub_id with recompile) dt_titles)

○ with recompile within each sub-select. For example, syntax similar to this is not allowed:

select * from table with recompile union select * from table with recompile

518 P U B L I C
Transact-SQL Users Guide

Stored Procedures

However, syntax similar to this is allowed because with recompile is attached to the outermost
query:

select * from table UNION select * from table with recompile

○ with recompile statements in a select into. For example:

select * into testnew from test with recompile

Including syntax similar to:

insert t2 into select * from t1 with recompile

● with recompile is not allowed when its part of an inner query of a subquery (it can be included as the
outermost parent query. For example, queries using this syntax are not allowed:

if exists (select c1 from t2 where c2 = 48 with recompile) select c1, c2
from t1 where c1=@v

However, you can use if exists syntax similar to:

if exists (select c1 from t2 where c2 = 48) select c1, c2 from t1 where c1=@v
with recompile

● The with recompile statement must appear just before the abstract plan clause in the select syntax.
For example:

select count(*) from t1, t2 where t1.c1 = t2.c2 at isolation repeatable read with recompile plan '(h_join (scan t1) (scan t2))'

Which implies that all clauses that will usually occur before the abstract plan clause (for example, for
browse) will also occur before the with recompile clause, and all clauses that appear after the abstract
plan clause (for example, for xml) will occur after the with recompile clause:

select c1, c2 from t1 where c1=@v for browse with recompile for xml

● You can use syntax similar to the following with derived tables

 select * from (select c1, c2 from t1 where c1 > 496 union select c1, c2 from t1 where c1 < 6) dt_info with
recompile

● You cannot use with recompile in these statements:
○ Nonprocedural statements
○ select into
○ return
○ cursors
○ exec immediate
○ nonuser connections
○ cached statements
○ dynamic execute immediate
○ Fastpath queries
○ Dynamic SQL
○ Batch SQL
○ insert, update, and delete

Transact-SQL Users Guide
Stored Procedures P U B L I C 519

18.4.8 with recompile in create procedure

In the create procedure statement, the optional clause with recompile comes immediately before the
SQL statements. It instructs SAP ASE not to save a plan for this procedure. A new plan is created each time
the procedure is executed.

In the absence of with recompile, SAP ASE stores the execution plan that it created. This execution plan is
usually satisfactory. However, a change in the data or parameter values supplied for subsequent executions
may cause SAP ASE to create an execution plan that is different from the one it created when the procedure
was first executed. In such situations, SAP ASE needs a new execution plan. Use with recompile in a
create procedure statement when you think you need a new plan.

If the operated data for various executions of a stored procedure is not uniform, then the stored procedure
should be created using with recompile, so that SAP ASE recompiles the stored procedure for each
execution rather than using the plan from a previous execution.

The problem of using query plans from a previous execution can be exacerbated from simultaneous
executions of the stored procedure, when multiple copies of a stored procedure are included in the procedure
cache. If the different executions of the stored procedure used very different data sets, the result is two or
more copies of the stored procedure in the procedure cache, each using very different plans. Subsequent
executions of the stored procedure will use the copy chosen on the basis of the most recently used (MRU)
algorithm.

This problem can cause dramatic performance swings on different executions of the same stored procedure.

Note
When troubleshooting performance problems with stored procedures, use with recompile to make sure
that each of the stored procedures used during the test are recompiled, so that no plan from a previous
compilation is used during the test.

18.4.9 with recompile in execute

In the execute statement, the optional clause with recompile comes after any parameters. It instructs SAP
ASE to compile a new plan, which is used for subsequent executions.

Use with recompile when you execute a procedure if your data has changed a great deal, or if the parameter
you are supplying is atypical—that is, if you have reason to believe that the plan stored with the procedure
might not be optimal for this execution of it.

Using execute procedure <with recompile> many times can adversely affect procedure cache
performance. Since a new plan is generated every time you use <with recompile>, a useful performance
plan may age out of the cache if there is insufficient space for new plans.

If you use select * in your create procedure statement, the procedure, even if you use the with
recompile option to execute, does not pick up any new columns added to the table. You must drop the
procedure and re-create it.

520 P U B L I C
Transact-SQL Users Guide

Stored Procedures

18.4.10 Nesting Procedures

Nesting occurs when one stored procedure or trigger calls another. The nesting level is incremented when the
called procedure or trigger begins execution and is decremented when the called procedure or trigger
completes execution.

The nesting level is also incremented by one when a cached statement is created. Exceeding the maximum of
16 levels of nesting causes the procedure to fail. The current nesting level is stored in the< @@nestlevel
>global variable.

You can call another procedure by name or by a variable name in place of the actual procedure name. For
example:

create procedure test1 @proc_name varchar(30) as exec @proc_name

18.4.11 Temporary Tables in Stored Procedures

You can create and use temporary tables in a stored procedure, but they exists only for the duration of the
stored procedure that creates it. When the procedure completes, SAP ASE automatically drops temporary
tables.

A single procedure can:

● Create a temporary table
● Insert, update, or delete data
● Run queries on the temporary table
● Call other procedures that reference the temporary table

Since the temporary table must exist to create procedures that reference it, here are the steps to follow:

1. Create the temporary table using a create table statement or a select into statement. For example:

create table #tempstores (stor_id char(4), amount money)

Note
Using set deferred_name_resolution makes this step unnecessary.

2. Create the procedures that accesses the temporary table.

create procedure inv_amounts as select stor_id, "Total Due" = sum(amount)
 from #tempstores group by stor_id

3. Drop the temporary table:

drop table #tempstores

This step is unnecessary if you use deferred_name_resolution.

Transact-SQL Users Guide
Stored Procedures P U B L I C 521

4. Create the procedure that creates the table and calls the procedures created in step 2:

create procedure inv_proc as create table #tempstores
(stor_id char(4), amount money)
insert #tempstores
select stor_id, sum(qty*(100-discount)/100*price)
from salesdetail, titles
where salesdetail.title_id = titles.title_id
group by stor_id,
salesdetail.title_id
exec inv_amounts

When you run the inv_proc procedure, it creates the #tempstores table, inserts a row into it, and
executes subprocedure inv_amounts. The #tempstores table only exists until inv_proc exits.
Trying to insert values into the #tempstores table or running the inv_amounts procedure after
executing inv_proc will fail:

execute inv_proc insert #tempstores
select stor_id,
sum(qty*(100-discount)/100*price)
from salesdetail, titles
where salesdetail.title_id =
titles.title_id
group by stor_id,
salesdetail.title_id
execute inv_proc exec inv_amounts

Errors are raised because the #tempstores table no longer exists after inv_proc has completed.

You can also create temporary tables without the # prefix, using create table tempdb..<tablename>...
from inside a stored procedure. These tables do not disappear when the procedure completes, so they can be
referenced by independent procedures. Follow the above steps to create these tables.

Related Information

Deferred Name Resolution Usage [page 508]

18.4.12 Set Options in Stored Procedures

You can use almost all of the set command options inside stored procedures. However, if you use a set
option (such as identity_insert) that requires the user to be the object owner, a user who is not the object
owner cannot execute the stored procedure. The set option remains in effect during the execution of the
procedure, and most options revert to the former setting at the close of the procedure.

Only the dateformat, datefirst, language, and role options do not revert to their former settings. The
role options do revert to their settings for execute as owner procedures and if the set proxy statement
is inside regular procedures. Note that the roles which were activated before the set proxy statement is used
inside a stored procedure will remain active even after execution of the procedure .

522 P U B L I C
Transact-SQL Users Guide

Stored Procedures

setuser Command in Stored Procedures

When the setuser command is executed in a stored procedure, it remains in effect after the procedure
execution until another setuser command is given, or until the current database is changed with the use
command.

18.4.12.1 Query Optimization Settings

You can export optimization settings, such as set plan optgoal and set plan optcriteria, using set
export_options on. Optimization settings are not local to the stored procedure; they apply to the entire
user session.

Note
By default, set export_options is enabled for login triggers.

18.4.12.2 Maximum Number of Arguments

The maximum number of arguments for stored procedures is 2048. However, you may notice a performance
degradation if you execute procedures with large numbers of arguments, because the query processing
engine must process all the arguments and copy argument values to and from memory.

SAP recommends that you first test any stored procedures you write that include large numbers of arguments
before you implement them in a production environment.

18.4.12.3 Maximum Size for Expressions, Variables, and
Arguments

The maximum size for expressions, variables, and arguments passed to stored procedures is 16384 bytes
(16K), for any page size. This can be either character or binary data. You can insert variables and literals up to
this maximum size into text columns without using the writetext command.

Some early versions of SAP ASE had a maximum size of 255 bytes for expressions, variables, and arguments
for stored procedures.

Any scripts or stored procedures that you wrote for earlier versions of SAP ASE, restricted by the lower
maximum, may now return larger string values because of the larger maximum page sizes.

Because of the larger value, SAP ASE may truncate the string, or the string may cause overflow if it was stored
in another variable or inserted into a column or string.

Transact-SQL Users Guide
Stored Procedures P U B L I C 523

If columns of existing tables are modified to increase the length of character columns, you must change any
stored procedures that operate data on these columns to reflect the new length.

select datalength(replicate("x", 500)), datalength("abcdefgh....255 byte long string.." + "xxyyzz ... another 255 byte long string")

----------- ----------- 255 255

18.4.13 Execution of Stored Procedures

You can execute stored procedures after a time delay, or remotely.

18.4.13.1 Execute Procedures After a Time Delay

The waitfor command delays execution of a stored procedure until a specified time or until a specified
amount of time has passed.

For example, to execute the procedure testproc in half an hour:

begin waitfor delay "0:30:00"
 exec testproc end

After issuing the waitfor command, you cannot use that connection to SAP ASE until the specified time or
event occurs.

18.4.13.2 Execute Procedures Remotely

You can execute procedures on a remote server from your local server.

Once both servers are properly configured, you can execute any procedure on the remote server simply by
using the server name as part of the identifier. For example, to execute a procedure named remoteproc on a
server named GATEWAY:

exec gateway.remotedb.dbo.remoteproc

The following examples execute the procedure namelist in the pubs2 database on the GATEWAY server:

execute gateway.pubs2..namelist gateway.pubs2.dbo.namelist exec gateway...namelist

The last example works only if pubs2 is your default database.

524 P U B L I C
Transact-SQL Users Guide

Stored Procedures

See, Managing Remote Servers, in the System Administration Guide: Volume 1. You can pass one or more
values as parameters to a remote procedure from the batch or procedure that contains the execute
statement for the remote procedure. Results from the remote SAP ASE appear on your local terminal.

Use the return status from procedures to capture and transmit information messages about the execution
status of your procedures.

Caution
If Component Integration Services is not enabled, SAP ASE does not treat remote procedure calls (RPCs)
as part of a transaction. Therefore, if you execute an RPC as part of a transaction, and then roll back the
transaction, SAP ASE does not roll back any changes made by the RPC. When Component Integration
Services is enabled, use set transactional rpc and set cis rpc handling to use transactional
RPCs. See the Reference Manual: Commands.

Related Information

Return Status [page 530]

18.4.13.3 Execute a Procedure with execute as owner or
execute as caller

You can create a procedure using execute as owner or execute as caller, which checks runtime
permissions, executes DDL, and resolves objects names.

If you create a procedure using execute as caller, SAP ASE performs these operations as the procedure
caller. If you on create a procedure using execute as owner, these operations are performed on the behalf
of the procedure owner. Creating procedures for execution as the procedure owner is useful for applications
that require all actions in a procedure to be checked against the privileges of the procedure owner. The
application end user requires no privilege in the database other than execute permission on the stored
procedure. Additionally, any DDL executed by the procedure is conducted on behalf of the procedure owner,
and any objects created in the procedure are owned by the procedure owner. This relieves the administrator of
the requirement of having to grant DDL commands to the application user. Creating the procedures for
execution as the session user or caller is necessary if permissions must be checked on behalf of the individual
user. For example, use execute as caller if a table accessed by the procedure is subject to fine-grained
access control through predicated privileges, such that one user is entitled to see one set of rows and another
user another set of rows. If the execute as is omitted:

● Object names are resolved on behalf of the procedure owner.
● DDL commands and cross-database access are on behalf of the procedure caller.
● Permission checks for DML, execute, truncate table and update stats are made on behalf of the

caller unless there exists an ownership chain between the referenced object and the procedure, in which
case permission checks are bypassed.

Transact-SQL Users Guide
Stored Procedures P U B L I C 525

If the execute as owner is specified, the procedure behavior conforms to the expected behavior following
an implicit set proxy to the owner at the beginning of execution. This behavior includes:

● Object names are resolved on behalf of the procedure owner. If the procedure references a table or other
object without qualifying the name with an owner name, SAP ASE looks up a table of that name belonging
to the procedure owner. If no such table exists, SAP ASE looks for a table of that name owned by the
database owner.

● DDL commands and cross-database access are on behalf of the procedure owner.
● All access control checks are based on the procedure owner's permission, his group, his system roles, his

default user-defined roles, and those roles granted to the owner that are activated in the procedure body.
● Procedures called from an execute as owner procedure are executed as the owner of the calling

procedure unless the nested procedure is defined as execute as owner.
● Dynamic SQL statements inside a procedure are executed with permissions of procedure owner

regardless of the 'Dynamic Ownership Chain' setting on sp_procxmode.
● Because temporary tables are owned by the session, temporary tables created outside the procedure by

the caller are available inside the procedure to the procedure owner. This behavior reflects temporary
table availability after a set proxy command is executed in a session.

● Audit records of statements executed within the procedure show the procedure owner's suid.

If the execute as caller is specified:

● Objects are resolved on behalf of caller. If the procedure references a table or other object without
qualifying the name with an owner name, SAP ASE looks up a table of that name belonging to the user who
called the procedure. If no such table exists, SAP ASE looks for a table of that name owned by the
database owner.

● No implicit granting of permissions through ownership chains occurs.
● DDL commands and cross-database access are on behalf of the caller.
● Permissions are checked on behalf of caller, caller's group, active roles and system roles.
● Procedures called from an execute as caller procedure are executed on behalf of the caller of the

parent procedure unless the nested procedure is defined as execute as owner.
● Dynamic SQL executes as caller regardless of the 'Dynamic Ownership Chain' setting on

sp_procxmode.
● Temporary tables created outside the procedure are available inside the procedure.
● Unqualified object references by the procedure are not entered into sysdepends.
● select * is not expanded in syscomments .
● Plans in the procedure cache for the same procedure are not shared across users.

In the following example, the procedure created by user Jane has no execute as clause. The procedure
selects from jane.employee into an intermediate table named emp_interim.:

create procedure p_emp

 select * into emp_interim from jane.employee

grant execute on p_emp to bill

Bill executes the procedure:

exec jan.p_emp

526 P U B L I C
Transact-SQL Users Guide

Stored Procedures

● Bill is not required to have select permission on jane.employee because Jane owns p_emp and
employee. By granting execute permission on p_emp to Bill, Jane has implicitly granted him select on
employee.

● Bill must have been granted create table permission. The emp_interim table will be owned by Bill.

In following example, Jane creates a procedure with an identical body using the execute as owner clause
and Bill execute the procedure:

create procedure p_emp

 with execute as owner as

 select * into emp_interim from jane.employee

grant execute on p_emp to bill

● Bill requires only execute permission to run the procedure successfully.
● emp_interim table is created on behalf of Jane, meaning Jane is the owner. If Jane does not have create

table permission, the procedure will fail.

In following example, Jane creates the same procedure with the execute as caller clause:

create procedure p_emp

 with execute as caller as

 select * into emp_interim from jane.employee

grant execute on p_emp to bill

● Bill must have select permission on jane.employee.
● Bill must have create table permission. emp_interim is created on behalf of Bill, meaning Bill is the

owner.

18.4.13.3.1 Example with execute as Omitted

Create a procedure with references to an object with an unqualified name.

This is an example where the procedure has no execute as clause.

create procedure insert p insert t1 (c1) values (100)
 grant execute on insert p to bill

Bill executes the procedure:

exec jane.insert p

Transact-SQL Users Guide
Stored Procedures P U B L I C 527

● SAP ASE will look for a table named t1 owned by Jane. If jane.t1 does not exist, SAP ASE will look for
dbo.t1.

● If SAP ASE resolves t1 to dbo.t1, permission to insert into t1 must be held by Bill.
● If t1 resolves to jane.t1, Bill will have implicit insert permission because of the ownership chain between

jane.insert_p and jane.t1.

In the following example, Jane creates the same procedure as above with execute as owner:

create procedure insert p with execute as owner as
 insert t1 (c1) values (100) grant execute on insert p to bill

Bill executes the procedure:

exec jane.insert p

● SAP ASE will look for a table named t1 owned by Jane. If jane.t1 does not exist SAP ASE will look for
dbo.t1.

● If SAP ASE resolves t1 to dbo.t1, permission to insert into t1 must been granted to Jane.

In the following example, Jane creates the same procedure as above with execute as caller:

create procedure insert p with execute as caller as
 insert t1 (c1) values (100) grant execute on insert p to bill

Bill executes the procedure:

exec jane.insert p

● SAP ASE will look for a table named t1 owned by Bill. If bill.t1 does not exist SAP ASE will look for
dbo.t1.

● If SAP ASE resolves t1 to dbo.t1, Bill must have permission to insert into t1.

18.4.13.3.2 Example of Procedure with execute as

Create a procedure that invokes a nested procedure in another database with a fully qualified name.

In the following example, Jane creates a procedure that invokes a nested procedure in another database with a
fully qualified name. The login associated with Jane resolves to user Jane in otherdb.

This example uses execute as owner:

create procedure p master with execute as owner
 as exec otherdb.jim.p_child grant execute on p master to bill

Bill executes the procedure:

● SAP ASE checks that user Jane in otherdb has execute permission on jim.p_child.

528 P U B L I C
Transact-SQL Users Guide

Stored Procedures

● If jim.p_child has been created execute as owner then p_child will be executed on behalf of Jim.
● If jim.p_child has been created execute as caller then p_child will execute on behalf of Jane.

In the following example, Jane creates the same procedure as above using execute as caller. The login
associated with user Bill in the current database resolves to user Bill in otherdb:

create procedure p master with execute as caller
 as exec otherdb.jim.p_child
 grant execute p master to bill

Bill executes the procedure:

exec jane.insert p

● SAP ASE checks that Bill in otherdb has execute permission on jim.p_child.
● If jim.p_child has been created execute as owner then p_child will be executed on behalf of Jim.
● If jim.p_child has been created execute as caller then p_child will execute on behalf of Bill.

18.5 Deferred Compilation in Stored Procedures

SAP ASE optimizes stored procedures when they are first executed, as long as the values that are passed for
variables are available.

With deferred compilation, SAP ASE has already executed statements that appear earlier in the stored
procedure, such as statements that assign a value to a local variable or create a temporary table. This means
the statement is optimized based on known values and temporary tables, rather than on magic numbers.
Using real values allows the optimizer to select a better plan for executing the stored procedure for the given
data set.

SAP ASE can reuse the same plan for subsequent executions of the stored procedure, as long as the data
operated on is similar to the data used when the stored procedure was compiled.

Deferred compilation is used for stored procedures that reference local variables or temporary tables are not
compiled until they are ready to be executed.

Since the plan is optimized specifically for the values and data set used in the first execution, it may not be a
good plan for subsequent executions of the stored procedure with different values and data sets.

18.6 Information Returned From Stored Procedures

Stored procedures return the certain types of information, including return status and parameters, and the
privileges that are assigned to the user who executed each procedure.

The following types of information are returned:

Transact-SQL Users Guide
Stored Procedures P U B L I C 529

● Return status – indicates whether or not the stored procedure completed successfully.
● proc role function – checks whether the procedure was executed by a user with sa_role, sso_role,

or ss_oper privileges.
● Return parameters – report the parameter values back to the caller, who can then use conditional

statements to check the returned value.

Return status and return parameters allow you to modularize your stored procedures. A set of SQL
statements that are used by several stored procedures can be created as a single procedure that returns its
execution status or the values of its parameters to the calling procedure. For example, many SAP ASE system
procedures include another procedure that verifies certain parameters as valid identifiers.

Remote procedure calls, which are stored procedures that run on a remote SAP ASE, also return both status
and parameters. All the examples below can be executed remotely if the syntax of the execute statement
includes the server, database, and owner names, as well as the procedure name.

18.6.1 Return Status

Stored procedures report a return status that indicates whether or not they completed successfully, and if
they did not, the reasons for failure.

This value can be stored in a variable when a procedure is called, and used in future Transact-SQL statements.
System-defined return status values for failure range from -1 through -99; you can define your own return
status values outside this range.

Here is an example of a batch that uses the form of the execute statement that returns the status:

declare @status int execute @status = byroyalty 50 select @status

The execution status of the byroyalty procedure is stored in the variable <@status>. “50” is the supplied
parameter, based on the royaltyper column of the titleauthor table. This example prints the value with a
select statement; later examples use this return value in conditional clauses.

18.6.1.1 Reserved Return Status Values

SAP ASE reserves 0, to indicate a successful return, and negative values from -1 through -99, to indicate the
reasons for failure.

Value Meaning

0 Procedure executed without error

-1 Missing object

-2 Datatype error

530 P U B L I C
Transact-SQL Users Guide

Stored Procedures

Value Meaning

-3 Process was chosen as deadlock victim

-4 Permission error

-5 Syntax error

-6 Miscellaneous user error

-7 Resource error, such as out of space

-8 Nonfatal internal problem

-9 System limit was reached

-10 Fatal internal inconsistency

-11 Fatal internal inconsistency

-12 Table or index is corrupt

-13 Database is corrupt

-14 Hardware error

Values -15 through -99 are reserved for future use by SAP ASE.

If more than one error occurs during execution, the status with the highest absolute value is returned.

18.6.1.2 User-Generated Return Values

You can generate your own return values in stored procedures by adding a parameter to the return
statement. You can use any integer outside the 0 through -99 range.

The following example returns 1 when a book has a valid contract and returns 2 in all other cases:

create proc checkcontract @titleid tid as
if (select contract from titles where
 title_id = @titleid) = 1
 return 1
else return 2

For example:

checkcontract MC2222

(return status = 1)

Transact-SQL Users Guide
Stored Procedures P U B L I C 531

The following stored procedure calls checkcontract, and uses conditional clauses to check the return
status:

create proc get_au_stat @titleid tid as
declare @retvalue int
execute @retvalue = checkcontract @titleid
if (@retvalue = 1)
 print "Contract is valid."
else print "There is not a valid contract."

Here are the results when you execute get_au_stat with the title_id of a book with a valid contract:

get_au_stat MC2222

Contract is valid

18.6.2 Check Roles in Procedures

If a stored procedure performs system administration or security-related tasks, you may want to ensure that
only users who have been granted a specific role can execute it.

The proc_role function allows you to check roles when the procedure is executed; it returns 1 if the user
possesses the specified role. The role names are sa_role, sso_role, and oper_role.

Here is an example using proc_role in the stored procedure test_proc to require the invoker to be a
system administrator:

create proc test_proc as
if (proc_role("sa_role") = 0)
begin
 print "You do not have the right role."
 return -1
end
else
 print "You have SA role." return 0

For example:

test_proc

You have SA role.

532 P U B L I C
Transact-SQL Users Guide

Stored Procedures

18.6.3 Return Parameters

Another way that stored procedures can return information to the caller is through return parameters. The
caller can then use conditional statements to check the returned value.

When both a create procedure statement and an execute statement include the output option with a
parameter name, the procedure returns a value to the caller. The caller can be a SQL batch or another stored
procedure. The value returned can be used in additional statements in the batch or calling procedure. When
return parameters are used in an execute statement that is part of a batch, the return values are printed with
a heading before subsequent statements in the batch are executed.

This stored procedure performs multiplication on two integers (the third integer, @<result>, is defined as an
output parameter):

create procedure mathtutor @mult1 int, @mult2 int, @result int output
as select @result = @mult1 * @mult2

To use mathtutor to figure a multiplication problem, you must declare the <@result> variable and include it
in the execute statement. Adding the output keyword to the execute statement displays the value of the
return parameters.

declare @result int exec mathtutor 5, 6, @result output

(return status = 0)
Return parameters:

----------- 30

If you wanted to guess at the answer and execute this procedure by providing three integers, you would not
see the results of the multiplication. The select statement in the procedure assigns values, but does not
print:

mathtutor 5, 6, 32

(return status = 0)

The value for the output parameter must be passed as a variable, not as a constant. This example declares
the @<guess> variable to store the value to pass to mathtutor for use in @<result>. SAP ASE prints the
return parameters:

declare @guess int select @guess = 32
exec mathtutor 5, 6, @result = @guess output

(1 row affected) (return status = 0)

Return parameters:

Transact-SQL Users Guide
Stored Procedures P U B L I C 533

@result
----------- 30

The value of the return parameter is always reported, whether or not its value has changed. Note that:

● In the example above, the output parameter @<result> must be passed as “@<parameter> =
@<variable>”. If it were not the last parameter passed, subsequent parameters would have to be
passed as “@<parameter> = <value>”.

● @<result> does not have to be declared in the calling batch; it is the name of a parameter to be passed
to mathtutor.

● Although the changed value of @<result> is returned to the caller in the variable assigned in the
execute statement (in this case @<guess>), it appears under its own heading, @<result>.

To use the initial value of @<guess> in conditional clauses after the execute statement, store it in another
variable name during the procedure call. The following example illustrates the last two bulleted items, above,
by using @<store> to hold the value of the variable during the execution of the stored procedure, and by
using the “new” returned value of @<guess> in conditional clauses:

declare @guess int declare @store int
select @guess = 32
select @store = @guess
execute mathtutor 5, 6,
@result = @guess output
select Your_answer = @store,
Right_answer = @guess
if @guess = @store
 print "Bingo!"
else print "Wrong, wrong, wrong!"

(1 row affected) (1 row affected)
(return status = 0)

@result

 30

 Your_answer Right_answer
 ----------- ------------
 32 30
 Wrong, wrong, wrong!

This stored procedure checks to determine whether new book sales would cause an author’s royalty
percentage to change (the @<pc> parameter is defined as an output parameter):

create proc roy_check @title tid, @newsales int, @pc int output
as
declare @newtotal int
select @newtotal = (select titles.total_sales + @newsales
from titles where title_id = @title)
select @pc = royalty from roysched
 where @newtotal >= roysched.lorange and
 @newtotal < roysched.hirange and roysched.title_id = @title

534 P U B L I C
Transact-SQL Users Guide

Stored Procedures

The following SQL batch calls the roy_check after assigning a value to the <percent> variable. The return
parameters are printed before the next statement in the batch is executed:

declare @percent int select @percent = 10
execute roy_check "BU1032", 1050, @pc = @percent output
select Percent = @percent go

(1 row affected) (return status = 0)

@pc

 12
Percent

 12
 (1 row affected)

The following stored procedure calls roy_check and uses the return value for <percent> in a conditional
clause:

create proc newsales @title tid, @newsales int as
declare @percent int
declare @stor_pc int
select @percent = (select royalty from roysched, titles
 where roysched.title_id = @title
 and total_sales >= roysched.lorange
 and total_sales < roysched.hirange
 and roysched.title_id = titles.title_id)
select @stor_pc = @percent
execute roy_check @title, @newsales, @pc = @percent
 output
if
 @stor_pc != @percent
begin
 print "Royalty is changed."
 select Percent = @percent
end
else print "Royalty is the same."

If you execute this stored procedure with the same parameters used in the earlier batch, you see:

execute newsales "BU1032", 1050

Royalty is changed Percent

 12
 (1 row affected, return status = 0)

In the two preceding examples that call roy_check, @<pc> is the parameter that is passed to roy_check,
and <@percent> is the variable containing the output. When newsales executes roy_check, the value
returned in <@percent> may change, depending on the other parameters that are passed. To compare the

Transact-SQL Users Guide
Stored Procedures P U B L I C 535

returned value of <percent> with the initial value of @<pc>, you must store the initial value in another
variable. The preceding example saved the value in <stor_pc>.

18.6.3.1 Pass Values in Parameters

You cannot pass constants; there must be a variable name to “receive” the return value. The parameters can
be of any SAP ASE datatype except text, unitext, or image.

The syntax is:

@<parameter> = @<variable>

Note
If the stored procedure requires several parameters, either pass the return value parameter last in the
execute statement or pass all subsequent parameters in the form <@parameter = value>.

18.6.3.2 The Output Keyword

A stored procedure can return several values; each must be defined as an output variable in the stored
procedure and in the calling statements. You can abbreviate the output keyword to out.

exec myproc @a = @myvara out, @b = @myvarb out

If you specify output while you are executing a procedure, and the parameter is not defined using output in
the stored procedure, you see an error message. It is not an error to call a procedure that includes return value
specifications without requesting the return values with output. However, you do not get the return values.
The stored procedure writer has control over the information users can access, and users have control over
their variables.

18.7 Restrictions Associated with Stored Procedures

Several restrictions apply when creating stored procedures.

● You cannot combine create procedure statements with other statements in the same batch.
● The create procedure definition itself can include any number and kind of SQL statements, except use

and these create statements:
○ create view
○ create default
○ create rule
○ create trigger

536 P U B L I C
Transact-SQL Users Guide

Stored Procedures

○ create procedure
● You can create other database objects within a procedure. You can reference an object you created in the

same procedure, as long as you create it before you reference it. The create statement for the object
must come first in the actual order of the statements within the procedure.

● Within a stored procedure, you cannot create an object, drop it, and then create a new object with the
same name.

● SAP ASE creates the objects defined in a stored procedure when the procedure is executed, not when it is
compiled.

● If you execute a procedure that calls another procedure, the called procedure can access objects created
by the first procedure.

● You can reference temporary tables within a procedure.
● If you create a temporary table with the # prefix inside a procedure, the temporary table exists only for

purposes of the procedure—it disappears when you exit the procedure. Temporary tables created using
create table tempdb..<tablename> do not disappear unless you explicitly drop them.

● The maximum number of parameters in a stored procedure is 255.
● The maximum number of local and global variables in a procedure is limited only by available memory.

18.7.1 Qualify Names Inside Procedures

Inside a stored procedure, object names used with create table and dbcc must be qualified with the object
owner’s name, if other users are to use the stored procedure.

Object names used with other statements, like select and insert, inside a stored procedure need not be
qualified, because the names are resolved when the procedure is compiled.

For example, user “mary,” who owns table marytab, should qualify the name of her table with her own name
when it is used with select or insert, if she wants other users to execute the procedure in which the table is
used. Object names are resolved when the procedure is compiled, and stored as a database ID or object ID
pair. If this pair is not available at runtime, the object is resolved again, and if it is not qualified with the owner’s
name, the server looks for a table called marytab owned by the user “mary” and not a table called marytab
owned by the user executing the stored procedure. If it finds no object ID “marytab,” it looks for an object with
the same name owned by the database owner.

Thus, if marytab is not qualified, and user “john” tries to execute the procedure, SAP ASE looks for a table
called marytab owned by the owner of the procedure (“mary,” in this case) or by the database owner if the
user table does not exist. For example, if the table mary.marytab is dropped, the procedure references
dbo.marytab.

● If you cannot qualify an object name used with create table with the object owner’s name, use “dbo,”
or “guest” to qualify the object name.

● If a user with sa_role privileges executes the stored procedure, the user should qualify the table name as
tempdb.dbo.mytab.

● If a user without sa_role privileges executes the stored procedure, the user should qualify the table name
as tempdb.guest.mytab. If an object name in a temporary database is already qualified with the default
owner’s name, a query such as the following may not return a correct object ID when users without
sa_role privileges execute the stored procedure:

select object_id ('tempdb..mytab')

Transact-SQL Users Guide
Stored Procedures P U B L I C 537

To obtain the correct object ID when you do not have sa_role privileges, use the execute command:

exec("select object_id('tempdb..mytab')")

18.8 Rename Stored Procedures

Use sp_rename to rename stored procedures.

sp_rename <objname>, <newname>

For example, to rename showall to countall:

sp_rename showall, countall

The new name must follow the rules for identifiers. You can change the name only of stored procedures that
you own. The database owner can change the name of any user’s stored procedure. The stored procedure
must be in the current database.

18.8.1 Rename Objects Referenced by Procedures

If you rename any of the objects a stored procedure references, you must drop and re-create the procedure.

Although a stored procedure that references a table or view with a changed name may seem to work fine for a
while, it in fact works only until SAP ASE recompiles it. Recompiling occurs for many reasons and without
notification to the user.

Use sp_depends to get a report of the objects referenced by a procedure.

18.9 Stored Procedures as Security Mechanisms

You can use stored procedures as security mechanisms to control access to information in tables, and to
control the ability to perform data modification.

For example, you can deny other users permission to use the select command on a table that you own, and
create a stored procedure that allows them to see only certain rows or certain columns. You can also use
stored procedures to limit update, delete, or insert statements.

The person who owns the stored procedure must own the table or view used in the procedure. Not even a
system administrator can create a stored procedure to perform operations on another user’s tables, if the
system administrator has not been granted permissions on those tables.

See, Managing User Permissions, in the Security Administration Guide.

538 P U B L I C
Transact-SQL Users Guide

Stored Procedures

18.10 Dropping Stored Procedures

Use drop procedure to remove stored procedures.

The syntax is:

drop proc[edure] [<owner>.]<procedure_name> [, [<owner>.]<procedure_name>] ...

If a stored procedure that was dropped is called by another stored procedure, SAP ASE displays an error
message. However, if a new procedure of the same name is defined to replace the one that was dropped, other
procedures that reference the original procedure can call it successfully.

Once procedures have been grouped, procedures within the group cannot be dropped individually.

18.11 System Procedures

System procedures are shortcuts for retrieving information from the system tables, and mechanisms for
performing database administration and other tasks that involve updating system tables.

Usually, system tables can be updated only through stored procedures. A system administrator can allow
direct updates of system tables by changing a configuration variable and issuing the reconfigure with
override command. See, Managing User Permissions, in the Security Administration Guide.

System procedures are created by the installmaster script in the sybsystemprocs database during SAP
ASE installation. The name of the system procedure usually indicates its purpose. For example sp_addalias
adds an alias.

18.11.1 Execute System Procedures

You can run system procedures from any database. If a system procedure is executed from a database other
than the sybsystemprocs database, any references to system tables are mapped to the database from which
the procedure is executed.

For example, if the database owner of pubs2 runs sp_adduser from pubs2, the new user is added to
pubs2..sysusers. To run a system procedure in a specific database, either open that database with the use
command and execute the procedure, or qualify the procedure name with the database name.

When the parameter for a system procedure is an object name, and the object name is qualified by a database
name or owner name, the entire name must be enclosed in single or double quotes.

Transact-SQL Users Guide
Stored Procedures P U B L I C 539

18.11.2 Permissions on System Procedures

Since system procedures are located in the sybsystemprocs database, their permissions are also set there.

Some system procedures can be run only by database owners. These procedures ensure that the user
executing the procedure is the owner of the database on which they are executed. Other system procedures
can be executed by any user who has been granted execute permission on them, but this permission must be
granted in the sybsystemprocs database. This situation has two consequences:

● A user can have permission to execute a system procedure either in all databases or in none of them.
● The owner of a user database cannot directly control permissions on the system procedures within his or

her own database.

18.11.3 Types of System Procedures

System procedures can be grouped by function, such as auditing, security administration, data definition, and
so on.

See the Reference Manual: Procedures for detailed descriptions of all system procedures, listed alphabetically.

18.11.4 Other SAP ASE-Supplied Stored Procedures

SAP ASE provides catalog stored procedures, system extended stored procedures (system ESPs), and dbcc
procedures.

● Catalog stored procedures – system procedures that retrieve information from the system tables in
tabular form.

● Extended stored procedures (ESPs) – call procedural language functions from SAP ASE. The system
extended stored procedures, created by installmaster at installation, are located in the
sybsystemprocs database and are owned by the system administrator. They can be run from any
database and their names begin with “xp_”.

● dbcc procedures – created by installdbccdb, are stored procedures for generating reports on
information created by dbcc checkstorage. These procedures reside in the dbccdb database or in the
alternate database, dbccalt.

540 P U B L I C
Transact-SQL Users Guide

Stored Procedures

18.12 Get Information About Stored Procedures

Several system procedures provide information from the system tables about stored procedures.

18.12.1 Get a Report with sp_help

You can get a report on a stored procedure using sp_help. For example, you can get information on the
stored procedure byroyalty, which is part of the pubs2 database, using:

sp_help byroyalty

Name Owner Object_type Create_date -------- ------ ----------------
byroyalty dbo stored procedure Jul 27 2005 4:30PM
(1 row affected)
Parameter_name Type Length Prec Scale Param_order Mode
-------------- ------ ------ ---- ----- -----------
@percentage int 4 NULL NULL 1
 (return status = 0)

You can get help on a system procedure by executing sp_help when using the sybsystemprocs database.

18.12.2 View the Source Text of a Procedure with sp_helptext

To display the source text of the create procedure statement, execute sp_helptext.

sp_helptext byroyalty

Lines of Text ---------------
 1

(1 row affected)

text

create procedure byroyalty @percentage int
as
select au_id from titleauthor
where titleauthor.royaltyper = @percentage
 (1 row affected, return status = 0)

You can view the source text of a system procedure by executing sp_helptext when using the
sybsystemprocs database.

If the source text of a stored procedure was encrypted using sp_hidetext, SAP ASE displays a message
advising you that the text is hidden. See the Reference Manual: Procedures.

Transact-SQL Users Guide
Stored Procedures P U B L I C 541

18.12.3 Identify Dependent Objects with sp_depends

sp_depends lists all the stored procedures that reference the object you specify or all the procedures that it is
dependent upon.

For example, this command lists all the objects referenced by the user-created stored procedure byroyalty:

sp_depends byroyalty

Things the object references in the current database. object type updated selected
---------------- ----------- --------- --------
dbo.titleauthor user table no no
 (return status = 0)

The following statement uses sp_depends to list all the objects that reference the table titleauthor:

sp_depends titleauthor

Things inside the current database that reference the object.
object type
-------------- ------------------
dbo.byroyalty stored procedure
dbo.titleview view

(return status = 0)
Dependent objects that reference all columns in the table.
Use sp_depends on each column to get more information.
Columns referenced in stored procedures views, or triggers are not included in
this report.
........
(1 row affected) (return status = 0)

You must drop and re-create the procedure if any of its referenced objects have been renamed.

18.12.3.1 Use sp_depends with deferred_name_resolution

Since procedures created using deferred name resolution dependency information are created at execution, a
message is raised when sp_depends executes a procedure created with deferred name resolution but not yet
executed.

sp_depends p ----------
The dependencies of the stored procedure cannot be determined until the first
successful execution. (return status = 0)

After the first successful execution, the dependency information is created and the execution of sp_depends
returns the expected information.

542 P U B L I C
Transact-SQL Users Guide

Stored Procedures

For example:

 set deferred_name_resolution on -----------------create procedure p as
select id from sysobjects
where id =1sp_depends p

The dependencies of the stored procedure cannot be determined until the first successful execution.(return status = 0)exec p

id ----------- 1
(1 row affected)
(return status = 0)
sp_depends p

The object references in the current database.
object type updated selected
-------------- -------------- ------- ----------
dbo.sysobjects system table no no (return status = 0)

18.12.4 Identify Permissions with sp_helprotect

sp_helprotect reports permissions on a stored procedure (or any other database object).

For example:

sp_helprotect byroyalty

grantor grantee type action object column grantable --------- --------- ---- --------- ------- ----- ---------
dbo public Grant Execute byroyalty All FALSE
 (return status = 0)

Transact-SQL Users Guide
Stored Procedures P U B L I C 543

19 Extended Stored Procedures Usage

Extended stored procedures (ESPs) provide a mechanism for calling external procedural language functions
from within SAP ASE. Users invoke ESPs using the same syntax as stored procedures; the difference is that an
ESP executes procedural language code rather than Transact-SQL statements.

Each ESP is associated with a corresponding function, which is executed when the ESP is invoked from SAP
ASE.

An ESP allows SAP ASE to perform a task outside SAP ASE in response to an event occurring within SAP ASE.
For example, you could create an ESP function to sell a security. This ESP is invoked in response to a trigger,
fired when the price of the security reaches a certain value. Or you could create an ESP function that sends an
e-mail notification or a network-wide broadcast in response to an event occurring within the relational
database system.

For the purposes of ESPs, “a procedural language” is a programming language that is capable of calling a C
language function and manipulating C-language datatypes.

After a function has been registered in a database as an ESP, it can be invoked just like a stored procedure
from isql, from a trigger, from another stored procedure, or from a client application.

ESPs can:

● Take input parameters
● Return a status value indicating success or failure and the reason for the failure
● Return values of output parameters
● Return result sets

SAP ASE supplies some system ESPs. For example, one system ESP, xp_cmdshell, executes an operating
system command from within SAP ASE. You can also write your own ESPs using a subset of the Open Server
application programming interface (API).

19.1 XP Server

Extended stored procedures are implemented by an Open Server application called XP Server, which runs on
the same machine as SAP ASE. SAP ASE and XP Server communicate through remote procedure calls
(RPCs).

Running ESPs in a separate process prevents SAP ASE being affected by failures that may result from faulty
ESP code. The advantage of using ESPs over RPCs is that the ESP runs in SAP ASE the same way a stored
procedure runs; you do not need to have Open Server to run the ESP.

XP Server is automatically installed with SAP ASE. However, if you intend to develop XP Server libraries, you
must purchase an Open Server license. Everything you need to use XP Server DLLs and run XP Server
commands is included with your SAP ASE license.

XP Server must be running for SAP ASE to execute an ESP. SAP ASE starts XP Server the first time an ESP is
invoked and shuts down XP Server when SAP ASE exits.

544 P U B L I C
Transact-SQL Users Guide

Extended Stored Procedures Usage

Normally, there is no reason for a user to start XP Server manually, since SAP ASE starts it when it receives
the first ESP request of the session. However, if you are creating and debugging your own ESPs, you may find
it necessary to manually start XP Server from the command line using the xpserver utility.

Trust is negotiated between SAP ASE and XP Server when SAP ASE starts XP Server. Only the SAP ASE server
that starts XP Server can communicate with the XP Server, all other connections are rejected.

See the Utility Guide for the syntax of xpserver.

19.1.1 sybesp_dll_version

SAP recommends that all libraries loaded into XP Server implement the function sybesp_dll_version. The
function returns the Open Server API version used by the DLL.

Enter:

CS_INT sybesp_dll_version() ---------- CS_CURRENT_VERSION

CS_CURRENT_VERSION is a macro defined in the Open Server API. Using this DLL prevents you from having to
hard-code a specific value. If CS_CURRENT_VERSION is not implemented, XP Server does not attempt version
matching, and prints error message 11554 in the log file. (For information on error messages, see the
Troubleshooting and Error Messages Guide.) However, XP Server continues loading the DLL.

If there is a mismatch in versions, XP Server prints error message 11555 in the log file, but continues loading
the DLL.

19.2 Dynamic Link Library Support

The procedural functions that contain the ESP code are compiled and linked into dynamic link libraries (DLLs),
which are loaded into XP Server memory in response to an ESP execution request.

The library remains loaded unless:

● XP Server exits
● The sp_freedll system procedure is invoked
● The esp unload dll configuration parameter is set using sp_configure

Transact-SQL Users Guide
Extended Stored Procedures Usage P U B L I C 545

19.3 Open Server API

SAP ASE uses the Open Server API, which allows users to run the system ESPs provided with SAP ASE. Users
can also use the Open Server API to implement their own ESPs.

This table lists the Open Server routines required for ESP development. For complete documentation of these
routines, see the Open Server Server-Library/C Reference Manual.

Function Purpose

srv_bind Describes and binds a program variable to a parameter

srv_descfmt Describes a parameter

srv_numparams Returns the number of parameters in the ESP client request

srv_senddone Sends results completion message

srv_sendinfo Sends messages

srv_sendstatus Sends status value

srv_xferdata Sends and receives parameters or data

srv_yield Suspends execution of the current thread and allows another thread to execute

After an ESP function has been written, compiled, and linked into a DLL, you can create an ESP for the function
using the as external name clause of the create procedure command:

create procedure <procedure_name> [<parameter_list>] as external name <dll_name>

<procedure_name> is the name of the ESP, which must be the same as the name of its implementing
function in the DLL. ESPs are database objects, and their names must follow the rules for identifiers.

<dll_name> is the name of the DLL in which the implementing function is stored. The naming conventions for
DLL are platform-specific.

Table 8: Naming conventions for DLL extensions

Platform DLL extension

HP 9000/800 HP-UX .sl

Sun Solaris .so

Windows .dll

The following statement creates an ESP named getmsgs, which is in msgs.dll. The getmsgs ESP takes no
parameters. This example is for a Windows SAP ASE:

create procedure getmsgs

546 P U B L I C
Transact-SQL Users Guide

Extended Stored Procedures Usage

as external name "msgs.dll"

The next statement creates an ESP named getonemsg, which is also in msgs.dll. The getonemsg ESP
takes a message number as a single parameter.

create procedure getonemsg @msg int as external name "msgs.dll"

When SAP ASE creates an ESP, it stores the procedure’s name in the sysobjects system table, with an
object type of “XP” and the name of the DLL containing the ESP’s function in the text column of the
syscomments system table.

Execute an ESP as if it were a user-defined stored procedure or system procedure. You can use the keyword
execute and the name of the stored procedure, or just give the procedure’s name, as long as it is submitted to
SAP ASE by itself or is the first statement in a batch. For example, you can execute getmsgs in any of these
ways:

getmsgs execute getmsgs exec getmsgs

You can execute getonemsg in any of these ways:

getonemsg 20 getonemsg @msg=20
execute getonemsg 20
execute getonemsg @msg=20
exec getonemsg 20 exec getonemsg @msg=20

19.4 ESPs and Permissions

You can grant and revoke permissions on an ESP as you would on a regular stored procedure.

In addition to normal SAP ASE security, you can use the xp_cmdshell context configuration parameter to
restrict execution permission of xp_cmdshell to users who have system administration privileges. Use this
configuration parameter to prevent ordinary users from using xp_cmdshell to execute operating system
commands that they would not have permission to execute directly from the command line. The behavior of
the xp_cmdshell configuration parameter is platform-specific.

By default, a user must have the sa_role to execute xp_cmdshell. To grant permission to other users to use
xp_cmdshell, use the grant command. You can revoke the permission with revoke. The grant or revoke
permission is applicable whether xp_cmdshell context is set to 0 or 1.

Transact-SQL Users Guide
Extended Stored Procedures Usage P U B L I C 547

19.5 ESPs and Performance

Since both SAP ASE and XP Server reside on the same machine, they can affect each other’s performance
when XP Server is executing a function that consumes significant resources.

Use esp execution priority to set the priority of the XP Server thread high, so the Open Server scheduler
runs it before other threads on its run queue, or low, so the scheduler runs XP Server only when there are no
other threads to run. The default value of esp execution priority is 8, but you can set it anywhere from 0
to 15.

All ESPs running on the same server must yield to one another, using the Open Server srv_yield routine to
suspend their XP Server thread and allow another thread to execute.

See the discussion of multithread programming in the Open Server Server-Library/C Reference Manual.

You can minimize the amount of memory XP Server uses by unloading a DLL from XP Server memory after the
ESP request that loaded it terminates. To do so, set esp unload dll so that the DLLs are automatically
unloaded when ESP execution finishes. If esp unload dll is not set, you can use sp_freedll to explicitly
free DLLs.

You cannot unload DLLs that support system ESPs.

19.6 Create Functions for ESPs

A function that implements an ESP must be written in a procedural programming language that is capable of
calling a C-language function, manipulating C-language datatypes, and linking with the Open Server API. .

However, an ESP function should not call a C runtime signal routine on Windows. This can cause XP Server to
fail, because Open Server does not support signal handling on Windows.

By using the Open Client API, an ESP function can send requests to SAP ASE, either to the one from which it
was originally invoked or to another one.

19.6.1 Files for ESP Development

To use the Open Server libraries for development, you must first purchase an Open Server license. The header
files needed for ESP development are in $SAP/$SAP_OCS/include.

To locate these files in your source files, include the following in the source code:

● ospublic.h
● oserror.h

The Open Server library is in $SAP/$SAP_OCS/lib.The source for the sample program is in $SAP/
$SAP_ASE/sample/esp.

548 P U B L I C
Transact-SQL Users Guide

Extended Stored Procedures Usage

Related Information

ESP Function Example [page 550]

19.6.2 Open Server Data Structures

Certain data structures are available for writing ESP functions.

● SRV_PROC – all ESP functions are coded to accept a single parameter, which is a pointer to a SRV_PROC
structure. The SRV_PROC structure passes information between the function and its calling process. ESP
developers cannot directly manipulate this structure.
The ESP function passes the SRV_PROC pointer to the Open Server routines that get parameter types and
data and return output parameters, status codes, and result sets.

● CS_SERVERMSG – Open Server uses the CS_SERVERMSG structure to send error messages to a client
using the <srv_sendinfo> routine. See the Open Server-Library/C Reference Manual for information
about CS_SERVERMSG..

● CS_DATAFMT – Open Server uses the CS_DATAFMT structure to describe data values and program
variables.

19.6.3 Open Server Return Codes

Open Server functions return a code of type CS_RETCODE.

The most common CS_RETCODE values for ESP functions are:

● CS_SUCCEED
● CS_FAIL

19.6.4 Outline of a Simple ESP Function

An ESP function should follow a certain structure with regard to its interaction with the Open Server API.

Context

The structure should be:

Transact-SQL Users Guide
Extended Stored Procedures Usage P U B L I C 549

Procedure

1. Get the number of parameters.
2. Get the values of the input/output parameters and bind them to local variables.
3. Use the input parameter values to perform processing, and store the results in local variables.
4. Initialize any output parameters with appropriate values, bind them with local variables, and transfer them

to the client.
5. Use srv_sendinfo to send the returned row to the client.

6. Use srv_sendstatus to send the status to the client.

7. Use srv_senddone to inform the client that processing is done.

8. If there is an error condition, use srv_sendinfo to send the error message to the client.

Results

See the Open Server Server-Library/C Reference Manual for documentation of the Open Server routines.

19.6.5 ESP Function Example

xp_echo.c includes an ESP that accepts a user-supplied input parameter and echoes it to the ESP client,
which invokes the ESP. An example demonstrates the inclusion of the xp_message function, which sends
messages and status, and the xp_echo function which processes the input parameter and performs the
echoing.

You can use this example as a template for building your own ESP functions. The source is in $SAP/
$SAP_ASE/sample/esp.

/* ** xp_echo.c
**
** Description:
** The following sample program is generic in
** nature. It echoes an input string which is
** passed as the first parameter to the xp_echo
** ESP. This string is retrieved into a buffer
** and then sent back (echoed) to the ESP client.
*/
#include <string.h>
#include <stdlib.h>
#include <malloc.h>
/* Required Open Server include files.*/
#include <ospublic.h>
#include <oserror.h>
/*
** Constant defining the length of the buffer that receives the
** input string. All of the parameters related
** to ESP may not exceed 255 char long.
*/
#define ECHO_BUF_LEN 255
/*

550 P U B L I C
Transact-SQL Users Guide

Extended Stored Procedures Usage

** Function:
** xp_message
** Purpose: Sends information, status and completion of the
** command to the server.
** Input:
** SRV_PROC *
** char * a message string.
** Output:
** void
*/
void xp_message
(
 SRV_PROC *srvproc, /* Pointer to Open Server thread
 control structure */
 char *message_string /* Input message string */
)
{
 /*
 ** Declare a variable that will contain information
 ** about the message being sent to the SQL client.
 */
 CS_SERVERMSG *errmsgp;
 /*
 ** A SRV_DONE_MORE instead of a SRV_DONE_FINAL must
 ** complete the result set of an Extended Stored
 ** Procedure.
 */
 srv_senddone(srvproc, SRV_DONE_MORE, 0, 0);
 free(errmsgp);
}
/*
** Function: xp_echo
** Purpose:
** Given an input string, this string is echoed as an output
** string to the corresponding SQL (ESP) client.
** Input:
** SRV_PROC *
** Output
** SUCCESS or FAILURE
*/
CS_RETCODE xp_echo
(
 SRV_PROC *srvproc
)
{
 CS_INT paramnum; /* number of parameters */
 CS_CHAR echo_str_buf[ECHO_BUF_LEN + 1];
 /* buffer to hold input string */
 CS_RETCODE result = CS_SUCCEED;
 CS_DATAFMT paramfmt; /* input/output param format */
 CS_INT len; /* Length of input param */
 CS_SMALLINT outlen;
 /*
 ** Get number of input parameters.*/
 */
 srv_numparams(srvproc, ¶mnum);
 /*
 ** Only one parameter is expected.*/
 */
 if (paramnum != 1)
 {
 /*
 ** Send a usage error message.*/
 */
 xp_message(srvproc, "Invalid number of
 parameters");
 result = CS_FAIL;
 }

Transact-SQL Users Guide
Extended Stored Procedures Usage P U B L I C 551

 else
 {
 /*
 ** Perform initializations.
 */
 outlen = CS_GOODDATA;
 memset(¶mfmt, (CS_INT)0,
 (CS_INT)sizeof(CS_DATAFMT));
 /*
 ** We are receiving data through an ESP as the
 ** first parameter. So describe this expected
 ** parameter.
 */
 if ((result == CS_SUCCEED) &&
 srv_descfmt(srvproc, CS_GET
 SRV_RPCDATA, 1, ¶mfmt) != CS_SUCCEED)
 {
 result = CS_FAIL;
 }
 /*
 ** Describe and bind the buffer to receive the
 ** parameter.
 */
 if ((result == CS_SUCCEED) &&
 (srv_bind(srvproc, CS_GET, SRV_RPCDATA,
 1, ¶mfmt,(CS_BYTE *) echo_str_buf,
 &len, &outlen) != CS_SUCCEED))
 {
 result = CS_FAIL;
 }
 /* Receive the expected data.*/
 if ((result == CS_SUCCEED) &&
 srv_xferdata(srvproc,CS_GET,SRV_RPCDATA)
 != CS_SUCCEED)
 {
 result = CS_FAIL;
 } /*
 ** Now we have the input info and are ready to
 ** send the output info.
 */
 if (result == CS_SUCCEED)
 {
 /*
 ** Perform initialization.
 */
 if (len == 0)
 outlen = CS_NULLDATA;
 else
 outlen = CS_GOODDATA;
 memset(¶mfmt, (CS_INT)0,
 (CS_INT)sizeof(CS_DATAFMT));
 strcpy(paramfmt.name, "xp_echo");
 paramfmt.namelen = CS_NULLTERM;
 paramfmt.datatype = CS_CHAR_TYPE;
 paramfmt.format = CS_FMT_NULLTERM;
 paramfmt.maxlength = ECHO_BUF_LEN;
 paramfmt.locale = (CS_LOCALE *) NULL;
 paramfmt.status |= CS_CANBENULL;
 /*
 ** Describe the data being sent.
 */
 if ((result == CS_SUCCEED) &&
 srv_descfmt(srvproc, CS_SET,
 SRV_ROWDATA, 1, ¶mfmt)
 != CS_SUCCEED)
 {
 result = CS_FAIL;
 }

552 P U B L I C
Transact-SQL Users Guide

Extended Stored Procedures Usage

 /*
 ** Describe and bind the buffer that
 ** contains the data to be sent.
 */
 if ((result == CS_SUCCEED) &&
 (srv_bind(srvproc, CS_SET,
 SRV_ROWDATA, 1,
 ¶mfmt, (CS_BYTE *)
 echo_str_buf, &len, &outlen)
 != CS_SUCCEED))
 {
 result = CS_FAIL;
 }
 /*
 ** Send the actual data.
 */
 if ((result == CS_SUCCEED) &&
 srv_xferdata(srvproc, CS_SET,
 SRV_ROWDATA)!= CS_SUCCEED)
 {
 result = CS_FAIL;
 }
 }
 /*
 ** Indicate to the ESP client how the
 ** transaction was performed.
 */
 if (result == CS_FAIL)
 srv_sendstatus(srvproc, 1);
 else
 srv_sendstatus(srvproc, 0);
 /*
 ** Send a count of the number of rows sent to
 ** the client.
 */
 srv_senddone(srvproc,(SRV_DONE_COUNT |
 SRV_DONE_MORE), 0, 1);
 }
 return result; }

19.6.6 Building the DLL

To compile a function that uses the Open Server API, you can use any compiler that can produce the required
DLL on your server platform.

Search Order for DLLs

Windows searches for DLLs in a ccertain order.

1. The directory from which the application was invoked
2. The current directory
3. The system directory (SYSTEM32)
4. Directories listed in the PATH environment variable

UNIX searches for the library in the directories listed in the LD_LIBRARY_PATH environment variable (on
Solaris), SHLIB_PATH (on HP), or LIBPATH in AIX, in the order in which they are listed.

Transact-SQL Users Guide
Extended Stored Procedures Usage P U B L I C 553

If XP Server does not find the library for an ESP function in the search path, it attempts to load it from
$SAP/DLL on Windows or $SAP/lib on other platforms.

Absolute path names for the DLL are not supported.

Sample Makefile (UNIX)

A sample makefile, make.unix, used to create the dynamically linked shared library for the xp_echo program
on UNIX platforms.

It generates a file named examples.so on Solaris, and examples.sl on HP. The source is in $SAP/
$SAP_ASE/sample/esp, so you can modify it for your own use.

To build the example library using this makefile, enter:

make -f make.unix

This makefile creates a shared library. It needs the open
server header
files usually installed in $SAP/include directory.
This make file can be used for generating the template ESPs.
It references the following macros:
#
PROGRAM is the name of the shared library you may want to
create.PROGRAM = example.so
BINARY = $(PROGRAM)
EXAMPLEDLL = $(PROGRAM)
Include path where ospublic.h etc reside. You may have them in
the standard places like /usr/lib etc.
INCLUDEPATH = $(SAP)/include
Place where the shared library will be generated.
DLLDIR = .
RM = /usr/bin/rm
ECHO = echo
MODE = normal
Directory where the source code is kept.
SRCDIR = .
Where the objects will be generated.
OBJECTDIR = .
OBJS = xp_echo.o
CFLAGS = -I$(INCLUDEPATH)
LDFLAGS = $(GLDFLAGS) -Bdynamic
DLLLDFLAGS = -dy -G
#==
$(EXAMPLEDLL) : $(OBJS)
 -@$(RM) -f $(DLLDIR)/$(EXAMPLEDLL)
 -@$(ECHO) "Loading $(EXAMPLEDLL)"
 -@$(ECHO) " "
 -@$(ECHO) " MODE: $(MODE)"
 -@$(ECHO) " OBJS: $(OBJS)"
 -@$(ECHO) " DEBUGOBJS: $(DEBUGOBJS)"
 -@$(ECHO) " "
 cd $(OBJECTDIR); \
 ld -o $(DLLDIR)/$(EXAMPLEDLL) $(DEBUGOBJS) $(DLLLDFLAGS) $(OBJS)
 -@$(ECHO) "$(EXAMPLEDLL) done"
 exit 0
#==
$(OBJS) : $(SRCDIR)/xp_echo.c
 cd $(SRCDIR); \

554 P U B L I C
Transact-SQL Users Guide

Extended Stored Procedures Usage

 $(CC) $(CFLAGS) -o $(OBJECTDIR)/$(OBJS) -c xp_echo.c

Sample Definitions File

A sample definitions file that lists every function to be used as an ESP function in the EXPORTS section.

The following file, xp_echo.def, must be in the same directory as xp_echo.mak.

LIBRARY examples CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD SINGLE
EXPORTS xp_echo . 1

19.7 Registering ESPs

Once you have created an ESP function and linked it into a DLL, register it as an ESP in a database, which lets
users execute the function as an ESP.

To register an ESP, use either:

● The Transact-SQL create procedure command, or,
● sp_addextendedproc.

19.7.1 create procedure Usage

When creating a procedue, the name must be the same as its supporting function.

The syntax is:

create procedure [<owner>.]<procedure_name> [[(]@<parameter_name> <datatype> [= default] [output] [, @<parameter_name> <datatype> [= default] [output]]...[)]] [with recompile] as external name <dll_name>

<procedure_name> is the name of the ESP as it is known in the database.

SAP ASE ignores the with recompile clause if it is included in a create procedure command used to
create an ESP.

The <dll_name> is the name of the library containing the ESP’s supporting function. Specify it as a name with
no extension (for example, msgs), or as a name with a platform-specific extension, such as msgs.dll on
Windows or msgs.so on Solaris. In either case, the platform-specific extension is assumed to be part of the
library’s actual file name.

Transact-SQL Users Guide
Extended Stored Procedures Usage P U B L I C 555

Since create procedure registers an ESP in a specific database, specify the database in which you are
registering the ESP before invoking the command. From isql, specify the database with the use <database>
command, if you are not already working in the target database.

The following statements register an ESP supported by the xp_echo routine, assuming that the function is
compiled in a DLL named< examples.dll>. The ESP is registered in the pubs2 database.

use pubs2 create procedure xp_echo @in varchar(255) as external name "examples.dll"

See the Reference Manual: Commands.

Related Information

Stored Procedures [page 504]
ESP Function Example [page 550]

19.7.2 sp_addextendedproc Usage

You can use sp_addextendedproc as an alternative to create procedure.

The syntax is:

sp_addextendedproc <esp_name>, <dll_name>

<esp_name> is the name of the ESP. It must match the name of the function that supports the ESP.

<dll_name> is the name of the DLL containing the ESP’s supporting function.

sp_addextendedproc must be executed in the master database by a user who has the sa_role. Therefore,
sp_addextendedproc always registers the ESP in the master database, unlike create procedure, which
registers the ESP in the current database. Unlike create procedure, sp_addextendedproc does not allow
for parameter checking in SAP ASE or for default values for parameters.

The following statements register in the master database an ESP supported by the xp_echo routine,
assuming that the function is compiled in a DLL named< examples.dll>:

use master sp_addextendedproc "xp_echo", "examples.dll"

See the Reference Manual: Procedures.

Related Information

ESP Function Example [page 550]

556 P U B L I C
Transact-SQL Users Guide

Extended Stored Procedures Usage

19.8 Remove ESPs

To remove an ESP from the database, use either drop procedure or sp_dropextendedproc.

The syntax for drop procedure is the same as for stored procedures:

drop procedure [<owner>.]<procedure_name>

For example:

drop procedure xp_echo

The syntax for sp_dropextendedproc is:

sp_dropextendedproc <esp_name>

For example:

sp_dropextendedproc xp_echo

Both methods drop the ESP from the database by removing references to it in the sysobjects and
syscomments system tables. They have no effect on the underlying DLL.

19.8.1 Renaming ESPs

Because an ESP name is bound to the name of its function, you cannot rename an ESP using sp_rename, as
you can with a stored procedure.

Procedure

1. Use drop procedure or sp_dropextendedproc to remove the ESP.

2. Rename and recompile the supporting function.
3. create procedure or sp_addextendedproc to re-create the ESP, assigning to it the new name.

19.9 Execute ESPs

Execute an ESP using the same execute command that you use to execute a regular stored procedure.

You can also execute an ESP remotely.

Because the execution of any ESP involves a remote procedure call between SAP ASE and XP Server, you
cannot combine parameters by name and parameters by value in the same execute command. All the

Transact-SQL Users Guide
Extended Stored Procedures Usage P U B L I C 557

parameters must be passed by name, or all must be passed by value. This is the only way in which the
execution of extended stored procedures differs from that of regular stored procedures.

ESPs can return:

● A status value indicating success or failure, and the reason for failure
● Values of output parameters
● Result sets

An ESP function reports the return status value with the srv_sendstatus Open Server routines. The return
status values from srv_sendstatus are application-specific. However, a status of zero indicates that the
request completed normally.

When there is no parameter declaration list for an extended stored procedure, SAP ASE ignores all supplied
parameters but issues no error message. If you supply more parameters when you execute the ESP than you
declare in the declaration list, SAP ASE calls them anyway. To avoid confusion about what parameters are
called, check that the parameters on the declaration list match the parameters supplied at run-time. Also
check the number of parameters in the specified ESP at the Open Server function build.

An ESP function returns the values of output parameters and result sets using the srv_descfmt, srv_bind,
and srv_xferdata Open Server routine.

See the Open Server Server-Library/C Reference Manual for more information about passing values from an
ESP function. From the SAP ASE side, returned values from an ESP are handled the same as for a regular
stored procedure.

Related Information

Create and Execute Stored Procedures [page 508]
Execute Procedures Remotely [page 524]
ESP Function Example [page 550]

19.10 System ESPs

In addition to xp_cmdshell, there are several system ESPs that support Windows features, such as the
integration of SAP ASE with the Windows Event Log or mail system.

The names of all system ESPs begin with “xp_”. They are created in the sybsystemprocs database during
SAP ASE installation. Since system ESPs are located in the sybsystemprocs database, their permissions are
set there. However, you can run system ESPs from any database. The system ESPs are:

● xp_cmdshell
● xp_enumgroups
● xp_logevent

See, System Extended Stored Procedures, in the Reference Manual: Procedures for information about the
system ESPs, and the Configuration Guide for Windows discusses some specific features in more detail, such
as Event Log integration.

558 P U B L I C
Transact-SQL Users Guide

Extended Stored Procedures Usage

19.11 Get Information About ESPs

Use sp_helpextendedproc to get information about ESPs that are registered in the current database.

With no parameters, sp_helpextendedproc displays all the ESPs in the database, with the names of the
DLLs containing their associated functions. With an ESP name as a parameter, it provides the same
information only for the specified ESP.

sp_helpextendedproc getmsgs

ESP Name DLL -------- --------- getmsgs msgs.dll

Since the system ESPs are in the sybsystemprocs database, you must be using the sybsystemprocs
database to display their names and DLLs:

use sybsystemprocs sp_helpextendedproc

ESP Name DLL -------- ---------
xp_freedll sybyesp xp_cmdshell sybyesp

If the source text of an ESP was encrypted using sp_hidetext, SAP ASE displays a message advising you
that the text is hidden. See the Reference Manual: Procedures.

19.12 ESP Exceptions and Messages

SAP ASE handles all messages and exceptions from XP Server. It logs standard ESP messages in the log file in
addition to sending them to the client. User-defined messages from user-defined ESPs are not logged, but
they are sent to the client.

ESP-related messages may be generated by XP Server, by a system procedure that creates or manipulates
ESPs, or by a system ESP. See the Troubleshooting and Error Messages Guide for the list of ESP-related
messages.

A function for a user-defined ESP can generate a message using the srv_sendinfo Open Server routine.

Related Information

ESP Function Example [page 550]

Transact-SQL Users Guide
Extended Stored Procedures Usage P U B L I C 559

20 Cursors: Accessing Data

A cursor accesses the results of a SQL select statement one or more rows at a time. Cursors allow you to
modify or delete individual rows or a group of rows.

Cursors are associated with a select statement.

They consists of:

● Cursor result set – the set (table) of qualifying rows that results from the execution of a query associated
with the cursor.

● Cursor position – a pointer to a row within the cursor result set. If a cursor is not specified as read-only,
you can explicitly modify or delete that row using update or delete statements.

You can use two keywords to specify sensitivity when declaring a cursor.

● insensitive
● semi_sensitive

If you declare a cursor insensitive, the cursor shows only the result set as it is when the cursor is opened;
data changes in the underlying tables are invisable. If you declare a cursor semi_sensitive (the default
value), some changes in the base tables made since opening the cursor may appear in the result set. Data
changes may or may not be visible to a semisensitive cursor.

There are also two keywords to specify scrollability:

● scroll
● no scroll

Note
Scrollable cursor allows you to select one or several rows, and to scroll back and forth among them.
Scrollable cursors are always read-only. Using a nonscrollable cursor, you cannot go back to a row you have
already selected, and you cannot move more than one row at a time.SAP continues to support the default,
forward-only cursor, but recommends that you use the more convenient and flexible scrollable cursor
whenever you do not need to update a result set through a cursor.

If you use scroll to declare a cursor, you can fetch the result rows either sequentially or non-sequentially,
and you can scan the result set repeatedly. If no scroll (the default value) appears in the cursor declaration,
the cursor is nonscrollable; the result set appears in a forward-only direction, one row at a time.

If you specify neither attribute, the default value is no scroll.

Think of a cursor as a “handle” on the result set of a select statement. The cursor can be fetched either
sequentially or nonsequentially, depending on the cursor’s scrollability.

A nonscrollable cursor can be fetched only in a forward direction; you cannot go back to a row that is already
fetched. A scrollable cursor can be fetched in either direction, backward or forward.

A scrollable cursor allows you to set the position of the cursor anywhere in the cursor result set as long as the
cursor is open, by specifying the option first, last, absolute, next, prior, or relative in a fetch
statement.

560 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

To fetch the last row in a result set, enter:

fetch last [from] <cursor_name>

All scrollable cursors are read-only. Any cursor that can be updated is nonscrollable.

For detailed information on the global variables, commands, and functions that support cursors, see the
Reference Manual: Building Blocks and the Reference Manual: Commands.

20.1 Types of Cursors

There are four types of cursors: client, execute, server, and language.

● Client cursors – declared through Open Client calls (or Embedded SQL). Open Client keeps track of the
rows returned from and buffers them for the application. Updates and deletes to the result set of client
cursors can be performed only through Open Client calls. Client cursors are the most frequently used type
of cursors.

● Execute cursors – a subset of client cursors, for which the result set is defined by a stored procedure. The
stored procedure can use parameters. Parameter values are sent through Open Client calls.

● Server cursors – declared in SQL. If server cursors are used in stored procedures, the client executing the
stored procedure is unaware of them. Results returned to the client for a fetch are the same as the
results from a normal select.

● Language cursors – declared in SQL without using Open Client. As with server cursors, the client is
unaware of the cursors, and results are returned to the client in the same format as a normal select.

To simplify the discussion of cursors, the examples in this manual are only for language and server cursors.
For examples of client or execute cursors, see your Open Client or Embedded SQL documentation.

20.2 Cursor Scope

A cursor’s existence depends on its scope, which refers to the context in which the cursor is used: within a
user session, within a stored procedure, or within a trigger.

Within a user session, the cursor exists only until a user ends the session. After the user logs off, SAP ASE
deallocates the cursors created in that session. The cursor does not exist for additional sessions that other
users start.

A cursor name must be unique within a given scope. SAP ASE detects name conflicts within a particular scope
only during runtime. A stored procedure or trigger can define two cursors with the same name if only one is
executed. For example, the following stored procedure works because only one names_crsr cursor is
defined in its scope:

create procedure proc2 @flag int as
if @flag > 0
 declare names_crsr cursor
 for select au_fname from authors

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 561

else
 declare names_crsr cursor
 for select au_lname from authors return

20.3 Cursor Scans and the Cursor Result Set

The method SAP ASE uses to create the cursor result set depends on the cursor and on the query plan for the
cursor select statement. If a worktable is not required, SAP ASE performs a fetch by positioning the cursor
in the base table, using the table’s index keys.

This executes similarly to a select statement, except that it returns the number of rows specified by the
fetch. After the fetch, SAP ASE positions the cursor at the next valid index key, until you fetch again or close
the cursor.

All scrollable cursors and insensitive nonscrollable cursors require worktables to hold cursor result sets.
Some queries also require worktables to generate cursor result sets. To verify whether a particular cursor
uses a worktable, check the output of a set showplan, no exec on statement.

When a worktable is used, the rows retrieved with a cursor fetch statement may not reflect the values in the
actual base table rows. For example, a cursor declared with an order by clause usually requires the creation
of a worktable to order the rows for the cursor result set. SAP ASE does not lock the rows in the base table that
correspond to the rows in the worktable, which permits other clients to update these base table rows. The
rows returned to the client from the cursor statement are different from the base table rows.

In general, the cursor result set for both default and semi_sensitive cursors is generated as the rows are
returned through a fetch of that cursor. This means that a cursor select query is processed like a normal
select query. This process, known as a cursor scan, provides a faster turnaround time and eliminates the
need to read rows the application does not require.

SAP ASE requires cursor scans to use a unique index of a table, particularly for isolation-level 0 reads. If the
table has an IDENTITY column and you must create a nonunique index on it, use the identity in
nonunique index database option to include an IDENTITY column in the table’s index keys so that all
indexes created on the table are unique. This option makes logically nonunique indexes internally unique and
allows them to process updatable cursors for isolation-level 0 reads.

You can still use cursors that reference tables without indexes, if none of those tables are updated by another
process that causes the current row position to move. For example:

declare storinfo_crsr cursor for select stor_id, stor_name, payterms
 from stores where state = "CA"

The table stores, specified with the above cursor, does not have any indexes. SAP ASE allows the declaration
of cursors on tables without unique indexes, as long as you have not specified for update in the declare
cursor statement. If an update does not change the position of the row, the cursor position does not change
until the next fetch.

562 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

Related Information

Cursors and Locking [page 585]

20.4 Make Cursors Updatable

You can update or delete a row returned by a cursor if the cursor is updatable. If the cursor is read-only, you
cannot update or delete it. By default, SAP ASE attempts to determine whether a cursor can be updated
before designating it as read-only.

You can explicitly specify whether a cursor is read-only by using the read only or update keywords in the
declare statement. Specifying a cursor as read-only ensures that SAP ASE correctly performs positioned
updates. Make sure the table being updated has a unique index. If it does not, SAP ASE rejects the declare
cursor statement.

All scrollable cursors and all insensitive cursors are read-only.

The following example defines an updatable result set for the pubs_crsr cursor:

declare pubs_crsr cursor for select pub_name, city, state
from publishers for update of city, state

The example includes all the rows from the publishers table, but it explicitly defines only the city and
state columns as updatable.

Unless you plan to update or delete rows through a cursor, declare it as read-only. If you do not explicitly
specify read only or update, the semi_sensitive nonscrollable cursor is implicitly updatable when the
select statement does not contain any of the following constructs:

● distinct option
● group by clause
● Aggregate function
● Subquery
● union operator
● at isolation read uncommitted clause

You cannot specify the for update clause if a cursor’s select statement contains one of these constructs.
SAP ASE also defines a cursor as read-only if you declare certain types of cursors that include an order by
clause as part of their select statement.

Related Information

select for update [page 236]
Types of Cursors [page 561]

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 563

20.4.1 Determine Which Columns Can Be Updated

Scrollable cursors and insensitive nonscrollable cursors are read-only. If you do not specify a
<column_name_list> with the for update clause, all the specified columns in the query can be updated.
SAP ASE attempts to use unique indexes for updatable cursors when scanning the base table.

For cursors, SAP ASE considers an index containing an IDENTITY column to be unique, even if it is not so
declared.

SAP ASE allows you to update columns in the <column_name_list> that are not specified in the list of
columns of the cursor’s select statement, but that are part of the tables specified in the select statement.
However, when you specify a <column_name_list> with for update, you can update only the columns in
that list.

In the following example, SAP ASE uses the unique index on the pub_id column of publishers (even though
pub_id is not included in the definition of newpubs_crsr):

declare newpubs_crsr cursor for select pub_name, city, state
from publishers for update

If you do not specify the for update clause, SAP ASE chooses any unique index, although it can also use
other indexes or table scans if no unique index exists for the specified table columns. However, when you
specify the for update clause, SAP ASE must use a unique index defined for one or more of the columns to
scan the base table. If no unique index exists, SAP ASE returns an error message.

In most cases, include only columns to be updated in the <column_name_list> of the for update clause.
If the cursor is declared with a for update clause, and the table has only one unique index, you cannot
include its column in the for update <column_name_list>; SAP ASE uses it during the cursor scan. If the
table has more than one unique index, you can include the index column in the for update
<column_name_list>, so that SAP ASE can use another unique index, which may not be in the
<column_name_list>, to perform the cursor scan. For example, the table used in the following declare
cursor statement has one unique index, on the column c3, so that column should not be included in the for
update list:

declare mycursor cursor for select c1, c2, 3
from mytable for update of c1, c2

However, if mytable has more than one unique index, for example, on columns c3 and c4, you must specify
one unique index in the for update clause as follows:

declare mycursor cursor for select c1, c2, 3
from mytable for update of c1, c2, c3

You cannot include both c3 and c4 in the <column_name_list>. In general, SAP ASE needs at least one
unique index key, not on the list, to perform a cursor scan.

Allowing SAP ASE to use the unique index in the cursor scan in this manner helps prevent an update anomaly
called the Halloween problem. The Halloween problem occurs when a client updates a column through a

564 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

cursor, and that column defines the order in which the rows are returned from the base tables (that is, a
unique indexed column). For example, if SAP ASE accesses a base table using an index, and the index key is
updated by the client, the updated index row can move within the index and be read again by the cursor. The
row seems to appear twice in the result set: when the index key is updated by the client and when the updated
index row moves farther down the result set.

Another way to avoid the Halloween problem is to create tables with the unique auto_identity index
database option set to on. See, Optimization for Cursors, in the Performance and Tuning Series: Query
Processing and Abstract Plans.

20.5 How SAP ASE Processes Cursors

When accessing data using cursors, SAP ASE divides the process into several operations.

● When you declare a cursor, SAP ASE creates a cursor structure. The server does not compile the cursor
from the cursor declaration, however, until the cursor is open.
The following cursor declaration of a default, nonscrollable cursor, business_crsr, finds the titles and
identification numbers of all business books in the titles table.

declare business_crsr cursor for select title, title_id
from titles
where type = "business" for update of price

Using the for update clause when declaring a cursor ensures that SAP ASE correctly performs the
positioned updates. In this example, it allows you to use the cursor to change the price.
This example declares a scrollable cursor, authors_scroll_crsr, which finds authors from California in
the authors table.

declare authors_scroll_crsr scroll cursor for select au_fname, au_lname
from authors where state = 'CA'

Because scrollable cursors are read-only, you cannot use a for update clause in a cursor declaration.
● When you open a cursor that has been declared outside of a stored procedure, SAP ASE compiles the

cursor and generates an optimized query plan. It then performs the preliminary operations for scanning
the rows defined in the cursor and is ready to return a result row.
When you declare a cursor within a stored procedure, SAP ASE compiles the cursor the first time the
stored procedure is called. SAP ASE also generates an optimized query plan, and stores the plan for later
use. When the stored procedure is called again, the cursor already exists in compiled form. When the
cursor is opened, SAP ASE needs only to perform preliminary operations for executing a scan and
returning a result set.

Note
Since Transact-SQL statements are compiled during the open phase of a cursor, any error messages
related to declaring the cursor appear during the cursor open phase.

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 565

● The fetch command executes the compiled cursor to return one or more rows meeting the conditions
defined in the cursor. By default, a fetch returns only a single row.
In nonscrollable cursors, the first fetch returns the first row that meets the cursor’s search conditions,
and stores the current position of the cursor. The second fetch uses the cursor position from the first
fetch, returns the next row that meets the search conditions, and stores its current position. Each
subsequent fetch uses the cursor position of the previous fetch to locate the next cursor row.
In scrollable cursors, you can fetch any rows and set the current cursor position to any row in the result
set, by specifying a fetch orientation in a fetch statement. The orientation options are first, last,
next, prior, absolute, and relative. fetch for scrollable cursors executes in both forward and
backward directions, and the result set can be scanned repeatedly.
You can change the number of rows returned by a fetch by using set cursor rows.
In the following example, the fetch command displays the title and identification number of the first row
in the titles table containing a business book:

fetch business_crsr

title title_id ----------------------------------- --------
The Busy Executive’s Database Guide BU1032
 (1 row affected)

Running fetch business_crsr a second time displays the title and identification number of the next
business book in titles.
In the following example, the first fetch command to a scrollable cursor displays the tenth row in the
authors table, containing authors from California:

fetch absolute 10 authors_scroll_crsr au_fname au_lname
-------------------- Akiko Yokomoto

A second fetch, with the orientation option prior, returns the row before the tenth row:

fetch prior authors_scroll_crsr au_fname au_lname
------------------ Chastity Locksley

● SAP ASE updates or deletes the data in the cursor result set (and in the corresponding base tables that
supplied the data) at the current cursor position. These operations are optional.
The following update statement raises the price of business books by 5 percent; it affects only the book
currently pointed to by the business_crsr cursor:

update titles set price = price * .05 + price where current of business_crsr

Updating a cursor row involves changing data in the row or deleting the row. You cannot use cursors to
insert rows. All updates performed through a cursor affect the corresponding base tables included in the
cursor result set.

566 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

● SAP ASE closes the cursor result set, removes any remaining temporary tables, and releases the server
resources held for the cursor structure. However, it keeps the query plan for the cursor so that it can be
opened again. Use the close command to close a cursor. For example:

close business_crsr

When you close a cursor and then reopen it, SAP ASE re-creates the cursor result, and positions the
cursor before the first valid row. This allows you to process a cursor result set as many times as
necessary. You can close the cursor at any time; you do not have to go through the entire result set.

● SAP ASE removes the query plan from memory and eliminates all trace of the cursor structure. To
deallocate a cursor, use the deallocate cursor command. For example:

deallocate cursor business_crsr

In SAP ASE version 15.0 and later, The keyword cursor is optional for this command.
You must declare the cursor again before using it.

Related Information

declare cursor [page 568]
Get Multiple Rows With Each Fetch [page 574]

20.6 Monitor Cursor Statements

SAP ASE uses the monCachedStatement table to monitor cursors.

The StmtType column in monCachedStatement indicates the types of queries in the statement cache. The
values for StmtType are:

● 1 – batch statement
● 2 – cursor statement
● 3 – dynamic statement

Note
You must set the enable functionality group configuration parameter to 1 to monitor cursor
statements.

This example shows the contents of monCachedStatement (including the SSQLID for new_cursor), and then
uses the show_cached_text function to show the SQL text for new_cursor:

select InstanceID, SSQLID, Hashkey, UseCount, StmtType from monCachedStatement

InstanceID SSQLID Hashkey UseCount StmtType ---------- ----------- ----------- ----------- ----------
 0 329111220 1108036110 0 2

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 567

 0 345111277 1663781964 1 1

select show_cached_text(329111220) -------------------------------------- select id from sysroles

See, Monitoring Tables, in the Reference Manual: Tables and the Performance and Tuning Series: Monitoring
Tables.

20.7 declare cursor

The declare cursor statement must precede any open statement for that cursor. You cannot combine
declare cursor with other statements in the same Transact-SQL batch, except when using a cursor in a
stored procedure.

The <select_statement> is the query that defines the cursor result set. In general, <select_statement>
can use nearly the full syntax and semantics of a Transact-SQL select statement, including the holdlock
keyword. However, it cannot contain a compute, for browse, or into clause.

Examples of the declare cursor Command

The following declare cursor statement defines a result set for the authors_crsr cursor that contains all
authors who do not reside in California:

declare authors_crsr cursor for select au_id, au_lname, au_fname
from authors
where state != 'CA' for update

The following example defines an insensitive scrollable result set, of the stores_scrollcrsr, containing
bookstores in California, for:

declare storinfo_crsr insensitive scroll cursor for select stor_id, stor_name, payterms
from stores where state = "CA"

To declare an insensitive, nonscrollable cursor called “C1,” enter:

declare C1 insensitive cursor for select fname from emp_tab

To declare an insensitive, scrollable cursor called “C3,”enter:

declare C3 insensitive scroll cursor for select fname from emp_tab

568 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

To fetch the first row, enter:

fetch first from <cursor_name>

You can also fetch the columns of the first row from the result set. To place them in the variables you specify in
<fetch_target_list>, enter:

fetch first from <cursor_name> into <fetch_target_list>

You can fetch the 20th row in the result set directly, regardless of the cursor’s current position:

fetch absolute 20 from <cursor_name> into <fetch_target_list>

20.7.1 cursor_scrollability

You can use either scroll or no scroll to specify cursor_scrollability. If the cursor is scrollable, you
can scroll through the cursor result set by fetching any, or many rows back and forth; you can also repeatedly
scan the result set.

All scrollable cursors are read-only, and cannot be used with for update in a cursor declaration.

20.7.2 Cursor Sensitivity

You can use either insensitive or semi_sensitive to explicitly specify cursor sensitivity.

An insensitive cursor is a snapshot of the result set, taken when the cursor is opened. An internal
worktable is created and fully populated with the cursor result set when you open the cursor.

Any locks on the base tables are released, and only the worktable is accessed when you execute fetch. Any
data changes in the base table on which the cursor is declared do not affect the cursor result set. The cursor is
read-only, and cannot be used with for update.

In a semi_sensitive cursor, some data changes in the base tables may appear in the cursor. The query plan
chosen and whether the data rows have been fetched at least once may affect the visibility of the base table
data change.

semi_sensitive scrollable cursors are like insensitive cursors, in that they use a worktable to hold the
result set for scrolling purposes. In semi_sensitive mode, the cursor’s worktable materializes as the rows
are fetched, rather than when you open the cursor. The membership of the result set is fixed only after all the
rows have been fetched once, and copied to the scrolling worktable.

If you do not specify cursor sensitivity, the default value is semi_sensitive.

Even if you declare a cursor semi_sensitive, the visibility of data changes in the base table of the cursor
depends on the query plan chosen by the optimizer.

Any sort command forces the cursor to become insensitive, even if you have declared it
semi_sensitive, because it requires the rows in a table to be ordered before sort can be executed. A
worktable, however, can be populated before any rows can be fetched.

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 569

For example, if a select statement contains an order by clause, and there is no index on the order by
column, the worktable is fully populated when the cursor is opened, whether or not you declare the cursor to
be semi_sensitive. The cursor becomes insensitive.

Generally, rows that have not yet been fetched can display data changes, while rows that have already been
fetched do not.

The main benefit of using a semi_sensitive scrollable cursor instead of an insensitive scrollable cursor
is that the first row of the result set is returned promptly to the user, since the table lock is applied row by row.
If you fetch a row and update it, it becomes part of the worktable through fetch, and the update is executed
on the base table. There is no need to wait for the result set worktable to be fully populated.

20.7.3 read_only Option

The read_only option specifies that the cursor result set cannot be updated. In contrast, the for update
option specifies that the cursor result set is updatable. You can specify of <column_name_list> after for
update with the list of columns from the <select_statement> that is defined as updatable.

20.8 Open Cursors

After you declare a cursor, you must open it to fetch, update, or delete rows. Opening a cursor lets SAP
ASE begin to create the cursor result set by evaluating the select statement that defines the cursor and
makes it available for processing.

open <cursor_name>

You cannot open a cursor that is already open or that has not been defined with the declare cursor
statement. You can reopen a closed cursor to reset the cursor position to the beginning of the cursor result
set.

Depending on the cursor’s type and the query plan, a worktable may be created and populated when you open
the cursor.

20.9 Fetch Data Rows Using Cursors

A fetch completes the cursor result set and returns one or more rows to the client. Depending on the type of
query defined in the cursor, SAP ASE creates the cursor result set either by scanning the tables directly or by
scanning a worktable generated by the query type and cursor type.

The fetch command positions a nonscrollable cursor before the first row of the cursor result set. If the table
has a valid index, SAP ASE positions the cursor at the first index key.

570 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

20.9.1 fetch Syntax

first, next, prior, last, absolute, and relative specify the fetch direction of the scrollable cursor. If
no keyword is specified, the default value is next.

See the Reference Manual: Commands.

If you use fetch absolute or fetch relative, specify <fetch_offset>. The value can be a literal of an
integer, an exact, signed numeric with a scale of 0, or a Transact-SQL local variable with an integer or numeric
datatype with a scale of 0. When the cursor is positioned beyond the last row or before the first row, no data is
returned and no error is raised.

When you use fetch absolute and <fetch_offset> is greater than or equal to 0, the offset is calculated
from the position before the first row of the result set. If fetch absolute is less than 0, the offset is
calculated from the position after the last row of the result set.

If you use fetch relative when <fetch_offset> n is greater than 0, the cursor is placed <n> rows after
the current position; if <fetch_offset n>0>, the cursor is placed <abs(n)> rows before the current
position.

For example, with the scrollable cursor <stores_scrollcrsr>, you can fetch any row you want. This fetch
positions the cursor on the third row in the result set:

fetch absolute 3 stores_scrollcrsr stor_id stor_name
--------------------------------------- 7896 Fricative Bookshop

A subsequent fetch prior operation positions the cursor on the second row of the result set:

fetch prior stores_scrollcrsr stor_id stor_name
--------------------------------------- 7067 News & Brews

A subsequent fetch relative -1 positions the cursor on the first row of the result set:

fetch relative -1 stores_scrollcrsr stor_id stor_name
------------------------- 7066 Barnum's

After generating the cursor result set, in a fetch statement for a nonscrollable cursor, SAP ASE moves the
cursor position one row in the result set. It retrieves the data from the result set and stores the current
position, allowing additional fetches until SAP ASE reaches the end of the result set.

The next example illustrates a nonscrollable cursor. After declaring and opening the authors_crsr cursor,
you can fetch the first row of its result set as follows:

fetch authors_crsr

au_id au_lname au_fname ----------- ------------------- ---------------
341-22-1782 Smith Meander
 (1 row affected)

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 571

Each subsequent fetch retrieves the next row from the cursor result set. For example:

fetch authors_crsr

au_id au_lname au_fname ----------- ------------------- ---------------
527-72-3246 Greene Morningstar
 (1 row affected)

After you fetch all the rows, the cursor points to the last row of the result set. If you fetch again, SAP ASE
returns a warning through the <@@sqlstatus> or <@@fetch_status> global variables, indicating that there
is no more data. The cursor position remains unchanged.

If you are using nonscrollable cursors, you cannot fetch a row that has already been fetched. Close and reopen
the cursor to generate the cursor result set again, and start fetching again from the beginning.

Related Information

Check Cursor Status [page 572]

20.9.2 into Clause Usage

The into clause specifies that SAP ASE returns column data into the specified variables.

The <fetch_target_list> must consist of previously declared Transact-SQL parameters or local variables.

For example, after declaring the <@name>, <@city>, and <@state> variables, you can fetch rows from the
pubs_crsr cursor as follows:

fetch pubs_crsr into @name, @city, @state

You can also fetch only the columns of the first row from the result set. To place the fetch columns in a list,
enter:

fetch first from <cursor_name> into <fetch_target_list>

20.9.3 Check Cursor Status

SAP ASE returns a status value after each fetch. You can access the value through the global variables
<@@sqlstatus>, <@@fetch_status>, or <@@cursor_rows>. <@@fetch_status> and <@@cursor_rows>
are supported only in SAP ASE version 15.0 and later.

This table lists <@@sqlstatus> values and their meanings:

572 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

Value Meaning

0 Successful completion of the fetch statement.

1 The fetch statement resulted in an error.

2 There is no more data in the result set. This warning can occur if the current cursor position is on the
last row in the result set and the client submits a fetch statement for that cursor.

This table lists <@@fetch_status> values and meanings:

Value Meaning

0 fetch operation successful.

-1 fetch operation unsuccessful.

-2 Value reserved for future use.

The following example determines the <@@sqlstatus> for the currently open authors_crsr cursor:

select @@sqlstatus

--------- 0
 (1 row affected)

The following example determines the <@@fetch_status> for the currently open authors_crsr cursor:

select @@fetch_status

--------- 0
 (1 row affected)

Only a fetch statement can set <@@sqlstatus> and <@@fetch_status>. Other statements have no effect
on <@@sqlstatus>.

<@@cursor_rows> indicates the number of rows in the cursor result set that were last opened and fetched.

Value Meaning

-1 Indicates one of the following:

● The cursor is dynamic; since a dynamic cursor reflects all changes, the number of rows that qualify
for the cursor is constantly changing. You can never definitively state that all qualified rows are re
trieved.

● The cursor is semisensitive and scrollable, but the scrolling worktable is not yet populated. The num
ber of rows that qualify for the result set is unknown.

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 573

Value Meaning

0 No cursors have been opened, no rows are qualified from the last opened cursor, or the last opened cursor
is closed or deallocated.

n The last opened or fetched cursor result set has been fully populated; the value returned (n) is the total
number of rows in the cursor result set.

20.9.4 Get Multiple Rows With Each Fetch

You can use the set cursor rows command to change the number of rows that are returned by fetch.
However, this option does not affect a fetch containing an into clause.

The syntax for set cursor rows is:

set cursor rows <number> for <cursor_name>

<number> specifies the number of rows for the cursor. The <number> can be a numeric literal with no decimal
point, or a local variable of type integer. The default setting is 1 for each cursor you declare. You can set the
cursor rows option for any cursor, whether it is open or closed.

For example, you can change the number of rows fetched for the authors_crsr cursor:

set cursor rows 3 for authors_crsr

After you set the number of cursor rows, each fetch of authors_crsr returns three rows:

fetch authors_crsr

au_id au_lname au_fname ----------- ------------------- ---------------
648-92-1872 Blotchet-Halls Reginald
712-45-1867 del Castillo Innes
722-51-5424 DeFrance Michel
 (3 rows affected)

The cursor is positioned on the last row fetched (the author Michel DeFrance in the example).

Fetching several rows at a time works especially well for client applications. If you fetch more than one row,
Open Client or Embedded SQL buffers the rows sent to the client application. The client still sees row-by-row
access, but each fetch results in fewer calls to SAP ASE, which improves performance.

574 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

20.9.5 Check the Number of Rows Fetched

Use the <@@rowcount> global variable to monitor the number of rows of the cursor result set returned to the
client up to the last fetch. This variable displays the total number of rows seen by the cursor at any one time.

In a nonscrollable cursor, once all the rows are read from a cursor result set, <@@rowcount> represents the
total number of rows in that result set. The total number of rows represents the maximum value of
<@@cursor_rows> in the last fetched cursor.

The following example determines the <@@rowcount> for the currently open authors_crsr cursor:

select @@rowcount ----------

 5 (1 row affected)

In a scrollable cursor, there is no maximum value for <@@rowcount>.The value continues to increment with
each fetch operation, regardless of the direction of the fetch.

The following example shows the <@@rowcount> value for authors_scrollcrsr, a scrollable,
insensitive cursor. Assume there are five rows in the result set. After the cursor is open, the initial value of
<@@rowcount> is 0: all rows of the result set are fetched from the base table and saved to the worktable. All
the rows in the following fetch example are accessed from the worktable.

fetch last authors_scrollcrsr @@rowcount = 1

fetch first authors_scrollcrsr @@rowcount = 2

fetch next authors_scrollcrsr @@rowcount = 3

fetch relative 2 authors_scrollcrsr @@rowcount = 4

fetch absolute 3 authors_scrollcrs @@rowcount = 5

fetch absolute -2 authors_scrollcrsr @@rowcount = 6

fetch first authors_scrollcrsr @@rowcount = 7

fetch absolute 0 authors_scrollcrsr @@rowcount =7 (nodatareturned)

fetch absolute 2 authors_scrollcrsr @@rowcount = 8

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 575

20.10 Update and Delete Rows Using Cursors

If the cursor is updatable, use the update or delete statement to update or delete rows.

SAP ASE determines whether the cursor is updatable by checking the select statement that defines the
cursor. You can also explicitly define a cursor as updatable, using the for update clause of the declare
cursor statement.

Related Information

Make Cursors Updatable [page 563]

20.10.1 Update Cursor Result Set Rows

You can use the where current of clause of the update statement to update the row at the current cursor
position. Any update to the cursor result set also affects the base table row from which the cursor row is
derived.

The syntax for update...where current of is:

update [[<database>.]<owner>.] {<table_name> | <view_name>} set [[[<database>.]<owner>.] {<table_name>. | <view_name>.}] <column_name1> = {<expression1> | NULL | (<select_statement>)} [, <column_name2> = {<expression2> | NULL | (<select_statement>)}]... where current of <cursor_name>

The set clause specifies the cursor’s result set column name and assigns the new value. When more than one
column name and value pair is listed, separate them with commas.

The <table_name> or <view_name> must be the table or view specified in the first from clause of the
select statement that defines the cursor. If that from clause references more than one table or view (using a
join), you can specify only the table or view actually being updated.

For example, you can update the row that the pubs_crsr cursor currently points to:

update publishers set city = "Pasadena",
 state = "CA" where current of pubs_crsr

After the update, the cursor position remains unchanged. You can continue to update the row at that cursor
position, as long as another SQL statement does not move the position of the cursor.

SAP ASE allows you to update columns that are not specified in the list of columns of the cursor’s
<select_statement>, but are part of the tables specified in that statement. However, when you specify a
<column_name_list> with for update, you can update only the columns in that list.

576 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

20.10.2 Delete Cursor Result Set Rows

Using the where current of clause of the delete statement, you can delete the row at the current cursor
position.

When you delete a row from the cursor’s result set, the row is deleted from the underlying database table. You
can delete only one row at a time using the cursor.

The syntax for delete...where current of is:

delete [from] [[<database>.]<owner>.] {<table_name >| <view_name>} where current of <cursor_name>

The <table_name> or <view_name> must be the table or view specified in the first from clause of the
select statement that defines the cursor.

For example, delete the row that the authors_crsr cursor currently points to by entering:

delete from authors where current of authors_crsr

The from keyword is optional.

Note
You cannot delete a row from a cursor defined by a select statement containing a join, even if the cursor is
updatable.

After you delete a row from a cursor, SAP ASE positions the cursor before the row following the deleted row in
the cursor result set. You must still use fetch to access that row. If the deleted row is the last row in the
cursor result set, SAP ASE positions the cursor after the last row of the result set.

For example, after deleting the current row in the example (the author Michel DeFrance), you can fetch the
next three authors in the cursor result set (assuming that cursor rows is still set to 3):

fetch authors_crsr

au_id au_lname au_fname ----------- ------------------- ---------------
807-91-6654 Panteley Sylvia
899-46-2035 Ringer Anne
998-72-3567 Ringer Albert
 (3 rows affected)

You can delete a row from the base table without referring to a cursor. The cursor result set changes as
changes are made to the base table.

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 577

20.11 Close and Deallocate Cursors

When you are finished with the result set of a cursor, you can close it.

The syntax is:

close <cursor_name>

Closing a cursor does not change its definition. If you reopen a cursor, SAP ASE creates a new cursor result set
using the same query as before. For example:

close authors_crsr open authors_crsr

You can then fetch from authors_crsr, starting from the beginning of its cursor result set. Any conditions
associated with that cursor (such as the number of rows fetched, defined by set cursor rows) remain in
effect.

To discard a cursor, deallocate it using:

deallocate cursor <cursor_name>

Note
In SAP ASE 15.0 and later, the word cursor is optional.

Deallocating a cursor frees any resources associated with it, including the cursor name. You cannot reuse a
cursor name until you deallocate it. If you deallocate an open cursor, SAP ASE automatically closes it.
Terminating a client connection to a server also closes and deallocates any open cursors.

20.12 Cursor Examples

Examples of scrollable and forward-only cursors are provided.

Forward-Only (Default) Cursors

select author = au_fname + " " + au_lname, au_id from authors

The results of the query are:

author au_id ------------------------- -----------
Johnson White 172-32-1176
Marjorie Green 213-46-8915
Cheryl Carson 238-95-7766

578 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

Michael O’Leary 267-41-2394
Dick Straight 274-80-9391
Meander Smith 341-22-1782
Abraham Bennet 409-56-7008
Ann Dull 427-17-2319
Burt Gringlesby 472-27-2349
Chastity Locksley 486-29-1786
Morningstar Greene 527-72-3246
Reginald Blotchet Halls 648-92-1872
Akiko Yokomoto 672-71-3249
Innes del Castillo 712-45-1867
Michel DeFrance 722-51-5454
Dirk Stringer 724-08-9931
Stearns MacFeather 724-80-9391
Livia Karsen 756-30-7391
Sylvia Panteley 807-91-6654
Sheryl Hunter 846-92-7186
Heather McBadden 893-72-1158
Anne Ringer 899-46-2035
Albert Ringer 998-72-3567
 (23 rows affected)

To use a cursor with the query above:

1. Declare the cursor.
This declare cursor statement defines a cursor using the select statement shown above:

declare newauthors_crsr cursor for select author = au_fname + " " + au_lname, au_id
from authors for update

2. Open the cursor:

open newauthors_crsr

3. Fetch rows using the cursor:

fetch newauthors_crsr

author au_id ------------------------- -----------
Johnson White 172-32-1176
 (1 row affected)

You can fetch more than one row at a time by specifying the number of rows with the set cursor rows
command:

set cursor rows 5 for newauthors_crsr go fetch newauthors_crsr

author au_id ------------------------- -----------
Marjorie Green 213-46-8915
Cheryl Carson 238-95-7766
Michael O’Leary 267-41-2394
Dick Straight 274-80-9391
Meander Smith 341-22-1782
 (5 rows affected)

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 579

Each subsequent fetch returns the next five rows:

fetch newauthors_crsr

author au_id ------------------------- -----------
Abraham Bennet 409-56-7008
Ann Dull 427-17-2319
Burt Gringlesby 472-27-2349
Chastity Locksley 486-29-1786
Morningstar Greene 527-72-3246
 (5 rows affected)

The cursor is now positioned at author Morningstar Greene, the last row of the current fetch.
4. To change the first name of Greene, enter:

update authors set au_fname = "Voilet" where current of newauthors_crsr

The cursor remains at Ms. Greene’s record until the next fetch.
5. When you are finished with the cursor, close it:

close newauthors_crsr

If you open the cursor again, SAP ASE re-runs the query and places the cursor before the first row in the
result set. The cursor is still set to return five rows with each fetch.

6. To remove the cursor, use:

deallocate cursor newauthors_crsr

You cannot reuse a cursor name until you deallocate it.

Insensitive Scrollable Cursors

When you declare and open an insensitive cursor, a worktable is created and fully populated with the cursor
result set. Locks on the base table are released, and only the worktable is used for fetching.

To declare cursor CI as an insensitive cursor, enter:

declare CI insensitive scroll cursor for select emp_id, fname, lname
from emp_tb
where emp_id > 2002000 open CI

To change the name “Sam” to “Joe,” enter:

..... update emp_tab set fname = "Joe" where fname = "Sam"

580 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

Now four “Sam” rows in the base table emp_tab disappear, replaced by four “Joe” rows.

fetch absolute 2 CI

The cursor reads the second row from the cursor result set, and returns Row 2, “2002020, Sam, Clarac.”

This next command inserts one more qualified row (that is, a row that meets the query condition in declare
cursor) into table emp_tab, but the row membership is fixed in a cursor, so the added row is invisible to
cursor CI. Enter:

insert into emp_tab values (2002101, "Sophie", "Chen", .., ..., ...)

The following fetch command scrolls the cursor to the end of the worktable, and reads the last row in the
result set, returning the row value “2002100, Sam, West.” Again, because the cursor is insensitive, the new
row inserted in emp_tab is invisible in cursor CI’s result set.

fetch last CI

Semisensitive Scrollable Cursors

Semisensitive scrollable cursors are like insensitive cursors in that they use a worktable to hold the result set
for scrolling purposes.

But in semi_sensitive mode, the cursor’s worktable materializes as the rows are fetched, rather than when
you open the cursor. The membership of the result set is fixed only after all the rows have been fetched once.

To declare cursor CSI semisensitive and scrollable, enter:

declare CSI semi_sensitive scroll cursor for select emp_id, fname, lname
from emp_tab
where emp_id > 2002000 open CSI

Because the cursor is semisensitive, none of the rows are copied to the worktable when you open the cursor.
To fetch the first record, enter:

fetch first CSI

The cursor reads the first row from emp_tab and returns 2002010, Mari, Cazalis. This row is copied to the
worktable. Fetch the next row by entering:

fetch next CSI

The cursor reads the second row from emp_tab and returns 2002020, Sam, Clarac. This row is copied to the
worktable. To replace the name “Sam” with the name “Joe,” enter:

...... update emp_tab set fname = "Joe" where fname = "Sam"

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 581

The four “Sam” rows in the base table emp_tab disappear, and four “Joe” rows appear instead. To fetch only
the second row, enter:

fetch absolute 2 CSI

The cursor reads the second row from the result set and returns employee ID 2002020, but the value of the
returned row is “Sam,” not “Joe.” Because the cursor is semisensitive, this row was copied into the worktable
before the row was updated, and the data change made by the update statement is invisible to the cursor,
since the row returned comes from the result set scrolling worktable.

To fetch the fourth row, enter:

fetch absolute 4 CSI

The cursor reads the fourth row from the result set. Since Row 4, (2002040, Sam, Burke) was fetched after
“Sam” was updated to “Joe,” the returned employee ID 2002040 is Joe, Burke. The third and fourth rows are
now copied to the worktable.

To add a new row, enter:

insert into emp_tab values (2002101, "Sophie", "Chen", .., ..., ...)

One more qualified row is added in the result set. This row is visible in the following fetch statement, because
the cursor is semisensitive and because we have not yet fetched the last row. Fetch the updated version by
entering:

fetch last CSI

The fetch statement reads 2002101, Sophie, Chen in the result set.

After using fetch with the last option, you have copied all the qualified rows of the cursor CSI to the
worktable. Locking on the base table, emp_tab, is released, and the result set of cursor CSI is fixed. Any
further data changes in emp_tab do not affect the result set of CSI.

Note
Locking schema and transaction isolation level also affect cursor visibility. The above example is based on
the default isolation level, level 1.

Table for Scrollable Cursors

select emp_id, fname, lname from emp_tab where emp_id > 2002000

The base table, emp_tab, is a datarows-locking table with a clustered index on the <emp_id> field. “Row
position” is an imaginary column, in which the values represent the position of each row in the result set. The
result set in this table is used in the examples in the following sections, which illustrate both insensitive and
semisensitive cursors.

582 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

Row Position emp_id fname lname

1 2002010 Mari Cazalis

2 2002020 Sam Clarac

3 2002030 Bill Darby

4 2002040 Sam Burke

5 2002050 Mary Armand

6 2002060 Mickey Phelan

7 2002070 Sam Fife

8 2002080 Wanda Wolfe

9 2002090 Nina Howe

10 2002100 Sam West

20.13 Cursors in Stored Procedures

Cursors are particularly useful in stored procedures. They allow you to use only one query to accomplish a task
that would otherwise require several queries. However, all cursor operations must execute within a single
procedure.

A stored procedure cannot open, fetch, or close a cursor that was not declared in the procedure. Cursors are
undefined outside the scope of the stored procedure.

For example, the stored procedure au_sales checks the sales table to see if any books by a particular
author have sold well. It uses a cursor to examine each row, and then prints the information. If you did not use
a cursor, you would need several select statements to accomplish the same task. Outside stored
procedures, you cannot include other statements with declare cursor in the same batch.

create procedure au_sales (@author_id id) as

/* declare local variables used for fetch */
declare @title_id tid
declare @title varchar(80)
declare @ytd_sales int
declare @msg varchar(120)

/* declare the cursor to get each book written
 by given author */
declare author_sales cursor for
select ta.title_id, t.title, t.total_sales
from titleauthor ta, titles t
where ta.title_id = t.title_id
and ta.au_id = @author_id

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 583

open author_sales
fetch author_sales
 into @title_id, @title, @ytd_sales
if (@@sqlstatus = 2)
begin
 print "We do not sell books by this author."
 close author_sales
 return
end

/* if cursor result set is not empty, then process
 each row of information */
while (@@sqlstatus = 0)
begin
 if (@ytd_sales = NULL)
 begin
 select @msg = @title +
 " -- Had no sales this year."
 print @msg
 end
 else if (@ytd_sales < 500)
 begin
 select @msg = @title +
 " -- Had poor sales this year."
 print @msg
 end
 else if (@ytd_sales < 1000)
 begin
 select @msg = @title +
 " -- Had mediocre sales this year."
 print @msg
 end
 else
 begin
 select @msg = @title +
 " -- Had good sales this year."
 print @msg
 end

 fetch author_sales into @title_id, @title,
 @ytd_sales end

For example:

au_sales "172-32-1176"

Prolonged Data Deprivation: Four Case Studies -- Had good sales this year. (return status = 0)

Related Information

Cursor Scope [page 561]
Stored Procedures [page 504]

584 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

20.14 Cursors and Locking

Cursor-locking methods are similar to other locking methods for SAP ASE. In general, statements that read
data (such as select or readtext) use shared locks on each data page to avoid reading changed data from
an uncommitted transaction. Update statements use exclusive locks on each page they change.

If you run select for update within a cursor context, the cursor open and fetch statements must be
within the context of a transaction.

To reduce deadlocks and improve concurrency, SAP ASE often precedes an exclusive lock with an update
lock, which indicates that the client intends to change data on the page.

For updatable cursors, SAP ASE uses update locks by default when scanning tables or views referenced with
the for update clause of declare cursor. If the for update clause is included, but the list is empty, all
tables and views referenced in the from clause of the <select_statement> receive update locks by default.
If the for update clause is not included, the referenced tables and views receive shared locks. You can use
shared locks instead of update locks by adding the shared keyword to the from clause after each table name
for which you prefer a shared lock.

In insensitive cursors, the base table lock is released after the worktable is fully populated. In semisensitive
scrollable cursors, the base table lock is released after the last row of the result set has been fetched once.

Note
SAP ASE releases an update lock when the cursor position moves off the data page. Since an application
buffers rows for client cursors, the corresponding server cursor may be positioned on a different data row
and page than the client cursor. In this case, a second client could update the row that represents the
current cursor position of the first client, even if the first client used the for update option.

For more information on select for update, see the Reference Manual:Commands.

Any exclusive locks acquired by a cursor in a transaction are held until the end of that transaction. This also
applies to shared or update locks when you use the holdlock keyword or the set isolation level 3
option. However, if you do not set the close on endtran option, the cursor remains open past the end of the
transaction, and its current page lock remains in effect. It can also continue to acquire locks as it fetches
additional rows.

See the Performance and Tuning Series: Locking and Concurrency Control.

Related Information

select for update [page 236]

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 585

20.14.1 Cursor-Locking Options

Specifying the holdlock or shared options (of the select statement) when you define an updatable cursor
have certain effects.

● If you omit both options, you can read data only on the currently fetched pages. Other users cannot
update your currently fetched pages, through a cursor or otherwise. Other users can declare a cursor on
the same tables you use for your cursor, but they cannot get an update lock on your currently fetched
pages.

● If you specify the shared option, you can read data on the currently fetched pages only. Other users
cannot update your currently fetched pages, through a cursor or otherwise.

● If you specify the holdlock option, you can read data on all pages fetched (in a current transaction) or
only the pages currently fetched (if not in a transaction). Other users cannot update your currently
fetched pages or pages fetched in your current transaction, through a cursor or otherwise. Other users
can declare a cursor on the same tables you use for your cursor, but they cannot get an update lock on
your currently fetched pages or the pages fetched in your current transaction.

● If you specify both options, you can read data on all pages fetched (in a current transaction) or only the
pages currently fetched (if not in a transaction). Other users cannot update your currently fetched pages,
through a cursor or otherwise.

20.15 Transaction Support for Updatable Cursors

When select for update is set, SAP ASE supports fetch operations on open cursors after the transaction
has been committed.

When you open a cursor, SAP ASE uses different locking mechanisms based on the transaction mode:

● Chained mode – SAP ASE implicitly starts a transaction and uses exclusive locks for fetched rows. If you
commit a transaction after a fetch, a subsequent fetch command starts a new transaction. SAP ASE
continues to use exclusive locks for fetched rows in the new transaction.

● Unchained mode – SAP ASE uses exclusive locks only if you execute an explicit begin tran statement
before opening the cursor. Otherwise, SAP ASE acquires update row locks on fetched rows and displays a
warning that exclusive locks are not acquired for subsequently fetched rows.

When you execute a commit between two fetch commands, or between closing and reopening a cursor, SAP
ASE releases all exclusive locks. For subsequent fetch commands, SAP ASE acquires locks based on the
transaction mode:

● Chained mode – SAP ASE acquires exclusive row locks on fetched rows. SAP ASE may also acquire
update row locks in certain non-optimized conditions.

● Unchained mode – SAP ASE acquires update row locks on fetched rows. If the fetch commands are
preceded by begin tran, SAP ASE acquires exclusive row locks.

If update row locks are acquired, SAP ASE releases them only when:

● The cursor is closed – at isolation levels 2 and 3.
● The cursor moves to the next row – at isolation level 1.

586 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

Related Information

Use select for update in Cursors and DML [page 237]

20.16 Get Information About Cursors

Use sp_cursorinfo to find information about a cursor’s name, its current status, and its result columns.

This example displays information about authors_crsr:

sp_cursorinfo 0, authors_crsr

Cursor name 'authors_crsr' is declared at nesting level '0'. The cursor is declared as NON-SCROLLABLE cursor.
The cursor id is 851969.
The cursor has been successfully opened 1 times.
The cursor was compiled at isolation level 1.
The cursor is currently scanning at a nonzero isolation level.
The cursor is positioned on a row.
There have been 4 rows read, 0 rows updated and 0 rows deleted through this
cursor.
The cursor will remain open when a transaction is committed or rolled back.
The number of rows returned for each FETCH is 1.
The cursor is updatable.
This cursor is using 3432 bytes of memory.
There are 3 columns returned by this cursor.
The result columns are:
Name = 'au_id', Table = 'authors', Type = VARCHAR, Length = 11 (updatable)
Name = 'au_lname', Table = 'authors', Type = VARCHAR, Length = 40 (updatable)
Name = 'au_fname', Table = 'authors', Type = VARCHAR, Length = 20 (updatable)
Showplan output for the cursor:
QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using Serial Mode
 STEP 1
 The type of query is DECLARE CURSOR.
 1 operator(s) under root
 |ROOT:EMIT Operator (VA = 1)
 |
 | |SCAN Operator (VA = 0)
 | | FROM TABLE
 | | authors
 | | Using Clustered Index.
 | | Index : auidind
 | | Forward Scan.
 | | Positioning at start of table.
 | | Using I/O Size 2 Kbytes for data pages. | | With LRU Buffer Replacement Strategy for data pages.

This example displays information about scrollable cursors:

sp_cursorinfo 0, authors_scrollcrsr Cursor name ’authors_scrollcrsr’ is declared at nesting level ’0’.
The cursor is declared as SEMI_SENSITIVE SCROLLABLE cursor.
The cursor id is 786434.
The cursor has been successfully opened 1 times.
The cursor was compiled at isolation level 1.
The cursor is currently scanning at a nonzero isolation level.
The cursor is positioned on a row.

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 587

There have been 1 rows read, 0 rows updated and 0 rows deleted through this
cursor.
The cursor will remain open when a transaction is committed or rolled back.
The number of rows returned for each FETCH is 1.
The cursor is read only.
This cursor is using 19892 bytes of memory.
There are 2 columns returned by this cursor.
The result columns are:
Name = ’au_fname’, Table = ’authors’, Type =VARCHAR, Length = 20 (not updatable) Name = ’au_lname’, Table = ’authors’, Type = VARCHAR, Length = 40 (not updatable)

You can also check the status of a cursor using the <@@sqlstatus>, <@@fetch_status>,
<@@cursor_rows>, and <@@rowcount> global variables.

See the Reference Manual: Procedures.

Related Information

Check Cursor Status [page 572]
Check the Number of Rows Fetched [page 575]

20.17 Browse Mode Versus Cursors

Browse mode lets you search through a table and update its values one row at a time. It is used in front-end
applications that use DB-Library and a host programming language.

Browse mode provides compatibility with Open Server applications and older Open Client libraries. However,
because cursors provide the same functionality in a more portable and flexible manner, SAP discourages
browse mode use in more recent Client-Library applications (versions 10.0.x and later). Additionally, browse
mode is SAP-specific, and therefore not suited to heterogeneous environments.

Normally, use cursors to update data when you want to change table values row by row. Client-Library
applications can use Client-Library cursors to implement some browse-mode features, such as updating a
table while fetching rows from it. However, cursors may cause locking contention in the tables being selected.

For more information on browse mode, see the dbqual function in the Open Client/Server documentation.

Browse-Mode Restrictions

You cannot use the for browse clause in statements that use the union operator, or in cursor declarations.

You cannot use the keyword holdlock in a select statement that includes the for browse option.

The keyword distinct in the select statement is ignored in browse mode.

588 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

Browse a Table

To browse a table in a front-end application, append the for browse keywords to the end of the select
statement.

For example:

 <Start of> select <statement in an Open Client application> . .
for browse <Completion of the Open Client application routine>

You can browse a table in a front-end application if its rows have been timestamped.

Add a timestamp Column to a New Table

When you create a new table for browsing, include a column named timestamp in the table definition. This
column is automatically assigned the timestamp datatype.

For example:

create table newtable(col1 int, timestamp, col3 char(7))

When you insert or update a row, SAP ASE identifies the event by automatically assigning a unique varbinary
value to the timestamp column.

Add a timestamp Column to an Existing Table

To prepare an existing table for browsing, use alter table to add a column named timestamp.

For example:

alter table oldtable add timestamp

A timestamp column with a null value is added to each existing row. To generate a timestamp, update each
row without specifying new column values.

For example:

update oldtable set col1 = col1

Transact-SQL Users Guide
Cursors: Accessing Data P U B L I C 589

Comparing timestamp Values

Use the tsequal system function to compare timestamps when you are using browse mode in a front-end
application.

For example, the following statement updates a row in publishers that has been browsed. It compares the
timestamp column in the browsed version of the row with the hexadecimal timestamp in the stored version. If
the two timestamps are not equal, you receive an error message, and the row is not updated.

update publishers set city = "Springfield"
where pub_id = "0736" and tsequal(timestamp,0x0001000000002ea8)

Do not use the tsequal function in the where clause as a search argument. When you use tsequal, the rest
of the where clause should uniquely match a single row. Use the tsequal function only in insert and
update statements. If you use a timestamp column as a search clause, compare it like a regular varbinary
column, that is,< timestamp1 = timestamp2>.

590 P U B L I C
Transact-SQL Users Guide
Cursors: Accessing Data

21 Triggers: Enforce Referential Integrity

You can use triggers to perform a number of automatic actions, such as cascading changes through related
tables, enforcing column restrictions, comparing the results of data modifications, and maintaining the
referential integrity of data across a database.

Triggers are automatic no matter what caused the data modification—a clerk’s data entry or an application
action. A trigger is specific to one or more data modification operations (update, insert, and delete), and is
executed once for each SQL statement.

For example, to prevent users from removing any publishing companies from the publishers table, you
could use:

create trigger del_pub on publishers
for delete
as
begin
 rollback transaction
 print "You cannot delete any publishers!" end

The next time someone tries to remove a row from the publishers table, the del_pub trigger cancels the
deletion, rolls back the transaction, and prints a message.

A trigger “fires” only after the data modification statement has completed and SAP ASE has checked for any
datatype, rule, or integrity constraint violation. The trigger and the statement that fires it are treated as a
single transaction that can be rolled back from within the trigger. If SAP ASE detects a severe error, the entire
transaction is rolled back.

Use triggers to:

● Cascade changes through related tables in the database. For example, a delete trigger on the title_id
column of the titles table can delete matching rows in other tables, using the title_id column as a
unique key to locating rows in titleauthor and roysched.

● Disallow, or roll back, changes that would violate referential integrity, canceling the attempted data
modification transaction. Such a trigger might go into effect when you try to insert a foreign key that does
not match its primary key. For example, you could create an insert trigger on titleauthor that rolled
back an insert if the new titleauthor.title_id value did not have a matching value in
titles.title_id.

● Enforce restrictions that are much more complex than those that are defined with rules. Unlike rules,
triggers can reference columns or database objects. For example, a trigger can roll back updates that
attempt to increase a book’s price by more than 1 percent of the advance.

● Perform simple “what if” analyses. For example, a trigger can compare the state of a table before and after
a data modification and take action based on that comparison.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 591

21.1 Use Triggers Versus Integrity Constraints

As an alternative to using triggers, you can use the referential integrity constraint of the create table
statement to enforce referential integrity across tables in the database.

However, referential integrity constraints cannot:

● Cascade changes through related tables in the database
● Enforce complex restrictions by referencing other columns or database objects
● Perform “what if” analyses

Also, referential integrity constraints do not roll back the current transaction as a result of enforcing data
integrity. With triggers, you can either roll back or continue the transaction, depending on how you handle
referential integrity.

If your application requires one of the above tasks, use a trigger. Otherwise, use a referential integrity
constraint to enforce data integrity. SAP ASE checks referential integrity constraints before it checks triggers
so that a data modification statement that violates the constraint does not also fire the trigger.

Related Information

Transactions: Maintain Data Consistency and Recovery [page 640]
Databases and Tables [page 50]

21.2 Create Triggers

A trigger is a database object. When you create a trigger, you specify the table and the data modification
commands that should fire, or activate, the trigger. Then, you specify any actions the trigger is to take.

For example, this trigger prints a message every time anyone tries to insert, delete, or update data in the
titles table:

create trigger t1 on titles
for insert, update, delete
as print "Now modify the titleauthor table the same way."

Note
Unless you specify the existence of multiple triggers, each new trigger for the same operation—insert,
update or delete—on a table or column overwrites the previous one without warning, and old triggers are
dropped automatically.

592 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

21.2.1 create trigger Syntax

The create clause creates and names the trigger. A trigger’s name must conform to the rules for identifiers.

The on clause gives the name of the table that activates the trigger. This table is sometimes called the trigger
table.

A trigger is created in the current database, although it can reference objects in other databases. The owner
name that qualifies the trigger name must be the same as the one in the table. Only a table owner can create a
trigger on a table. If the table owner is given with the table name in the create trigger clause or the on
clause, it must also be specified in the other clause.

The for clause specifies which data modification commands on the trigger table activate the trigger. In the
earlier example, an insert, update, or delete to titles makes the message print.

The SQL statements specify trigger conditions and trigger actions. Trigger conditions specify additional
criteria that determine whether insert, delete, or update causes the trigger actions to be carried out. You
can group multiple trigger actions in an if clause with begin and end.

An if update clause tests for an insert or update to a specified column. For updates, the if update clause
evaluates to true when the column name is included in the set clause of an update statement, even if the
update does not change the value of the column. Do not use the if update clause with delete. You can
specify more than one column, and you can use more than one if update clause in a create trigger
statement. Since you specify the table name in the on clause, do not use the table name in front of the column
name with if update. See the Reference Manual: Commands.

These statements are not allowed in triggers:

● All create commands, including create database, create table, create index, create
procedure, create default, create rule, create trigger, and create view

● All drop commands
● alter table and alter database
● truncate table
● grant and revoke
● update statistics
● reconfigure
● load database and load transaction
● disk init, disk mirror, disk refit, disk reinit, disk remirror, disk unmirror
● select into

21.3 Use Triggers to Maintain Referential Integrity

Triggers maintain referential integrity, which assures that vital data in your database—such as the unique
identifier for a given piece of data—remains accurate and can be used consistently as other data in the
database changes. Referential integrity is coordinated through the use of primary and foreign keys.

The primary key is a column or combination of columns with values that uniquely identify a row. The value
cannot be null and must have a unique index. A table with a primary key is eligible for joins with foreign keys in

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 593

other tables. Think of the primary-key table as the master table in a master-detail relationship. There can be
many such master-detail groups in a database.

You can use sp_primarykey to mark a primary key for use with sp_helpjoins to add it to the syskeys
table.

For example, the title_id column is the primary key of titles. It uniquely identifies the books in titles
and joins with title_id in titleauthor, salesdetail, and roysched. The titles table is the master
table in relation to titleauthor, salesdetail, and roysched.

The foreign key is a column, or combination of columns, match the primary key. A foreign key does not have to
be unique. It is often in a many-to-one relationship to a primary key. Foreign-key values should be copies of the
primary-key values. That means no value in the foreign key should exist unless the same value exists in the
primary key. A foreign key may be null; if any part of a composite foreign key is null, the entire foreign key must
be null. Tables with foreign keys are often called detail tables or dependent tables to the master table.

You can use sp_foreignkey to mark foreign keys in your database. This flags them for use with
sp_helpjoins and other procedures that reference the syskeys table. The title_id columns in
titleauthor, salesdetail, and roysched are foreign keys; the tables are detail tables. In most cases, you
can enforce referential integrity between tables using referential constraints (constraints that ensure the data
inserted into a particular column has matching values in another table), because the maximum number of
references allowed for a single table is 200. If a table exceeds that limit, or has special referential integrity
needs, use referential integrity triggers.

Referential integrity triggers keep the values of foreign keys in sync with those in primary keys. When a data
modification affects a key column, triggers compare the new column values to related keys by using
temporary worktables called trigger test tables. When you write your triggers, base your comparisons on the
data that is temporarily stored in the trigger test tables.

21.3.1 Test Data Modifications Against the Trigger Test
Tables

SAP ASE uses two special tables in trigger statements: the deleted table and the inserted table. These are
temporary tables used in trigger tests. When you write triggers, you can use these tables to test the effects of
a data modification and to set conditions for trigger actions.

You cannot directly alter the data in the trigger test tables, but you can use the tables in select statements to
detect the effects of an insert, update, or delete.

● The deleted table stores copies of the affected rows during delete and update statements. During the
execution of a delete or update statement, rows are removed from the trigger table and transferred to
the deleted table. The deleted and trigger tables ordinarily have no rows in common.

● The inserted table stores copies of the affected rows during insert and update statements. During an
insert or an update, new rows are added to the inserted and trigger tables at the same time. The rows
in inserted are copies of the new rows in the trigger table. The following trigger fragment uses the
inserted table to test for changes to the titles table title_id column:

if (select count(*) from titles, inserted
 where titles.title_id = inserted.title_id) != @@rowcount

594 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

Note
Both inserted and deleted tables appear as views in the transaction log, but they are fake tables in syslogs.

An update is, effectively, a delete followed by an insert; the old rows are copied to the deleted table first;
then the new rows are copied to the trigger table and to the inserted table. The following illustration shows
the condition of the trigger test tables during an insert, a delete, and an update:

When setting trigger conditions, use the trigger test tables that are appropriate for the data modification. It is
not an error to reference deleted while testing an insert or inserted while testing a delete; however,
those trigger test tables do not contain any rows.

Note
A given trigger fires only once per query. If trigger actions depend on the number of rows affected by a data
modification, use tests, such as an examination of <@@rowcount> for multirow data modifications, and take
appropriate actions.

The following trigger examples accommodate multirow data modifications where necessary. The
<@@rowcount> variable, which stores the “number of rows affected” by the most recent data modification
operation, tests for a multirow insert, delete, or update. If any other select statement precedes the test
on <@@rowcount> within the trigger, use local variables to store the value for later examination. All Transact-
SQL statements that do not return values reset <@@rowcount> to 0.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 595

21.3.2 Insert Trigger Example

When you insert a new foreign-key row, make sure the foreign key matches a primary key. The trigger should
check for joins between the inserted rows (using the inserted table) and the rows in the primary-key table,
and then roll back any inserts of foreign keys that do not match a key in the primary-key table.

The following trigger compares the title_id values from the inserted table with those from the titles
table. It assumes that you are making an entry for the foreign key and that you are not inserting a null value. If
the join fails, the transaction is rolled back.

create trigger forinsertrig1 on salesdetail
for insert
as
if (select count(*)
 from titles, inserted
 where titles.title_id = inserted.title_id) !=
 @@rowcount
/* Cancel the insert and print a message.*/
 begin
 rollback transaction
 print "No, the title_id does not exist in
 titles."
 end
/* Otherwise, allow it. */
else print "Added! All title_id’s exist in titles."

<@@rowcount> refers to the number of rows added to the salesdetail table. This is also the number of
rows added to the inserted table. The trigger joins titles and inserted to determine whether all the
title_ids added to salesdetail exist in the titles table. If the number of joined rows, which is
determined by the select count(*) query, differs from <@@rowcount>, then one or more of the inserts is
incorrect, and the transaction is canceled.

This trigger prints one message if the insert is rolled back and a different one if it is accepted. To test for the
first condition, try this insert statement:

insert salesdetail values ("7066", "234517", "TC9999", 70, 45)

To test for the second condition, enter:

insert salesdetail values ("7896", "234518", "TC3218", 75, 80)

21.3.3 Delete Trigger Examples

When you delete a primary-key row, also delete corresponding foreign-key rows in dependent tables. This
preserves referential integrity by ensuring that detail rows are removed when their master row is deleted.

If you do not delete the corresponding rows in the dependent tables, you may end up with a database with
detail rows that cannot be retrieved or identified. To properly delete the dependent foreign-key rows, use a
trigger that performs a cascading delete.

596 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

Cascading Delete Example

When a delete statement on titles is executed, one or more rows are removed from the titles table and
are added to deleted.

A trigger can check the dependent tables—titleauthor, salesdetail, and roysched—to see if they have
any rows with a title_id that matches the title_ids removed from titles and is now stored in the
deleted table. If the trigger finds any such rows, it removes them.

create trigger delcascadetrig on titles
for delete
as
delete titleauthor
from titleauthor, deleted
where titleauthor.title_id = deleted.title_id
/* Remove titleauthor rows that match deleted
** (titles) rows.*/
delete salesdetail
from salesdetail, deleted
where salesdetail.title_id = deleted.title_id
/* Remove salesdetail rows that match deleted
** (titles) rows.*/
delete roysched
from roysched, deleted
where roysched.title_id = deleted.title_id
/* Remove roysched rows that match deleted ** (titles) rows.*/

Restricted Delete Examples

In practice, you may want to keep some of the detail rows, either for historical purposes (to check how many
sales were made on discontinued titles while they were active) or because transactions on the detail rows are
not yet complete.

A well-written trigger should take these factors into consideration.

Preventing Primary Key Deletions:

The deltitle trigger supplied with pubs2 prevents the deletion of a primary key if there are any detail rows
for that key in the salesdetail table. This trigger preserves the ability to retrieve rows from salesdetail:

create trigger deltitle on titles
for delete
as
if (select count(*)
 from deleted, salesdetail
 where salesdetail.title_id =
 deleted.title_id) > 0
 begin
 rollback transaction
 print "You cannot delete a title with sales." end

In this trigger, the row or rows deleted from titles are tested by being joined with the salesdetail table. If
a join is found, the transaction is canceled.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 597

Similarly, the following restricted delete prevents deletes if the primary table, titles, has dependent children
in titleauthor. Instead of counting the rows from deleted and titleauthor, it checks to see if title_id
was deleted. This method is more efficient for performance reasons because it checks for the existence of a
particular row rather than going through the entire table and counting all the rows.

Recording Errors That Occur:

The next example uses raiserror for error message 35003. raiserror sets a system flag to record that the
error occurred. Before trying this example, add error message 35003 to the sysusermessages system table:

sp_addmessage 35003, "restrict_dtrig - delete failed: row exists in titleauthor
for this title_id."

The trigger is:

create trigger restrict_dtrig on titles
for delete as
if exists (select * from titleauthor, deleted where
 titleauthor.title_id = deleted.title_id)
 begin
 rollback transaction
 raiserror 35003
 return end

To test this trigger, try this delete statement:

delete titles where title_id = "PS2091"

21.3.4 Update Trigger Examples

A primary key is the unique identifier for its row and for foreign-key rows in other tables. Generally, you should
not allow updates to primary keys. A change or an update to a foreign key by itself is probably an error. A
foreign key is a copy of the primary key. Never design the two to be independent.

This example cascades an update from the primary table titles to the dependent tables titleauthor and
roysched.

create trigger cascade_utrig on titles
for update as
if update(title_id)
begin
 update titleauthor
 set title_id = inserted.title_id
 from titleauthor, deleted, inserted
 where deleted.title_id = titleauthor.title_id
 update roysched
 set title_id = inserted.title_id
 from roysched, deleted, inserted
 where deleted.title_id = roysched.title_id
 update salesdetail
 set title_id = inserted.title_id
 from salesdetail, deleted, inserted
 where deleted.title_id = salesdetail.title_id

598 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

end

To test this trigger, suppose that the book Secrets of Silicon Valley was reclassified to a psychology book from
popular_comp. The following query updates the title_id PC8888 to PS8888 in titleauthor, roysched,
and titles.

update titles set title_id = "PS8888" where title_id = "PC8888"

Restricted Update Triggers

An attempt to update a primary key should be taken very seriously. In this case, protect referential integrity by
rolling back the update unless specified conditions are met.

SAP suggests that you prohibit any editing changes to a primary key, for example, by revoking all permissions
on that column. However, to prohibit updates only under certain circumstances, use a trigger.

Restricted Update Trigger Using Date Functions:

The following trigger prevents updates to titles.title_id on the weekend. The if update clause in
stopupdatetrig allows you to focus on a particular column, titles.title_id. Modifications to the data in
that column cause the trigger fire. Changes to the data in other columns do not. When this trigger detects an
update that violates the trigger conditions, it cancels the update and prints a message. To test this, substitute
a different day of the week for “Saturday” or “Sunday.”

create trigger stopupdatetrig on titles
for update
as
/* If an attempt is made to change titles.title_id
** on Saturday or Sunday, cancel the update. */
if update (title_id)
 and datename(dw, getdate())
 in ("Saturday", "Sunday")
 begin
 rollback transaction
 print "We do not allow changes to "
 print "primary keys on the weekend." end

Restricted Update Triggers With Multiple Actions:

You can specify multiple trigger actions on more than one column using if update. The following example
modifies stopupdatetrig to include additional trigger actions for updates to titles.price or
titles.advance. The example prevents updates to the primary key on weekends, and prevents updates to
the price or advance of a title, unless the total revenue amount for that title surpasses its advance amount. You
can use the same trigger name because the modified trigger replaces the old trigger when you create it again.

create trigger stopupdatetrig on titles
for update
as
if update (title_id)
 and datename(dw, getdate())
 in ("Saturday", "Sunday")

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 599

 begin
 rollback transaction
 print "We do not allow changes to"
 print "primary keys on the weekend!"
 end
if update (price) or update (advance)
 if exists (select * from inserted
 where (inserted.price * inserted.total_sales)
 < inserted.advance)
 begin
 rollback transaction
 print "We do not allow changes to price or"
 print "advance for a title until its total"
 print "revenue exceeds its latest advance." end

The next example, created on titles, prevents update if any of the following conditions is true:

● The user tries to change a value in the primary key title_id in titles
● The dependent key pub_id is not found in publishers
● The target column does not exist or is null

Before you run this example, make sure the following error messages exist in sysusermessages:

sp_addmessage 35004, "titles_utrg - Update Failed: update of primary keys %1! is
not allowed." sp_addmessage 35005, "titles_utrg - Update Failed: %1! not found in authors."

The trigger is as follows:

create trigger title_utrg on titles
for update as
begin
 declare @num_updated int,
 @col1_var varchar(20),
 @col2_var varchar(20)
/* Determine how many rows were updated. */
select @num_updated = @@rowcount
 if @num_updated = 0
 return
/* Ensure that title_id in titles is not changed. */
if update(title_id)
 begin
 rollback transaction
 select @col1_var = title_id from inserted
 raiserror 35004 , @col1_var
 return
 end
 /* Make sure dependencies to the publishers table are accounted for. */
 if update(pub_id)
 begin
 if (select count(*) from inserted, publishers
 where inserted.pub_id = publishers.pub_id
 and inserted.pub_id is not null) != @num_updated
 begin
 rollback transaction
 select @col1_var = pub_id from inserted
 raiserror 35005, @col1_var
 return
 end
 end
/* If the column is null, raise error 24004 and rollback the
** trigger. If the column is not null, update the roysched table
** restricting the update. */

600 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

 if update(price)
 begin
 if exists (select count(*) from inserted
 where price = null)
 begin
 rollback trigger with
 raiserror 24004 "Update failed : Price cannot be null. "
 end
 else
 begin
 update roysched
 set lorange = 0,
 hirange = price * 1000
 from inserted
 where roysched.title_id = inserted.title_id
 end
 end end

To test for the first error message, 35004 (failure to update the primary keys), enter:

update titles set title_id = "BU7777" where title_id = "BU2075"

To test for the second error message, 35005 (update failed, object not found):

update titles set pub_id = "7777" where pub_id = "0877"

To test for the third error, which generates message 24004 (update failed, object is null):

update titles set price = 10.00 where title_id = "PC8888"

This query fails because the price column in titles is null. If it were not null, it would have updated the price
for title PC8888 and performed the necessary recalculations for the roysched table. Error 24004 is not in
sysusermessages but it is valid in this case. It demonstrates the “rollback trigger with raiserror” section of
the code.

Update a Foreign Key

To allow updates of a foreign key, protect integrity by creating a trigger that checks updates against the
master table and rolls them back if they do not match the primary key.

In the following example, the trigger tests for two possible sources of failure: either the title_id is not in the
salesdetail table or it is not in the titles table.

This example uses nested if...else statements. The first if statement is true when the value in the where
clause of the update statement does not match a value in salesdetail, that is, the inserted table will not
contain any rows, and the select returns a null value. If this test is passed, the next if statement ascertains
whether the new row or rows in the inserted table join with any title_id in the titles table. If any row

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 601

does not join, the transaction is rolled back, and an error message prints. If the join succeeds, a different
message prints.

create trigger forupdatetrig on salesdetail
for update
as
declare @row int
/* Save value of rowcount. */
select @row = @@rowcount
if update (title_id)
 begin
 if (select distinct inserted.title_id
 from inserted) is null
 begin
 rollback transaction
 print "No, the old title_id must be in"
 print "salesdetail."
 end
 else
 if (select count(*)
 from titles, inserted
 where titles.title_id =
 inserted.title_id) != @row
 begin
 rollback transaction
 print "No, the new title_id is not in"
 print "titles."
 end
 else
 print "salesdetail table updated" end

21.4 Multirow Considerations

Multirow considerations are particularly important when the function of a trigger is to recalculate summary
values, or provide ongoing tallies.

Triggers used to maintain summary values should contain group by clauses or subqueries that perform
implicit grouping. This creates summary values when more than one row is being inserted, updated, or
deleted. Since a group by clause imposes extra overhead, the following examples are written to test whether
<@@rowcount> = 1, meaning that only one row in the trigger table was affected. If <@@rowcount> = 1, the
trigger actions take effect without a group by clause.

21.4.1 Insert Trigger Example Using Multiple Rows

Use a insert trigger to update a column everytime a row is added.

This insert trigger example updates the total_sales column in the titles table every time a new
salesdetail row is added.

602 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

The trigger fires whenever you record a sale by adding a row to the salesdetail table. It updates the
total_sales column in the titles table so that total_sales is equal to its previous value plus the value
added to salesdetail.qty. This keeps the totals up to date for inserts into salesdetail.qty.

create trigger intrig on salesdetail
for insert as
 /* check value of @@rowcount */
if @@rowcount = 1
 update titles
 set total_sales = total_sales + qty
 from inserted
 where titles.title_id = inserted.title_id
else
 /* when @@rowcount is greater than 1,
 use a group by clause */
 update titles
 set total_sales =
 total_sales + (select sum(qty)
 from inserted
 group by inserted.title_id having titles.title_id = inserted.title_id)

21.4.2 Delete Trigger Example Using Multiple Rows

Use a delete trigger to update a column when rows are deleted.

This delete trigger example updates the total_sales column in the titles table every time one or more
salesdetail rows are deleted.

create trigger deltrig on salesdetail
for delete
as
 /* check value of @@rowcount */
if @@rowcount = 1
 update titles
 set total_sales = total_sales - qty
 from deleted
 where titles.title_id = deleted.title_id
else
 /* when rowcount is greater than 1,
 use a group by clause */
 update titles
 set total_sales =
 total_sales - (select sum(qty)
 from deleted
 group by deleted.title_id having titles.title_id = deleted.title_id)

This trigger goes into effect whenever a row is deleted from the salesdetail table. It updates the
total_sales column in the titles table so that total_sales is equal to its previous value minus the value
subtracted from salesdetail.qty.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 603

21.4.3 Update Trigger Example Using Multiple Rows

Use a trigger to update a column everytime a field in a row is updated.

This update trigger example updates the total_sales column in the titles table every time the qty field in
a salesdetail row is updated (an update is an insert followed by a delete). This trigger references both the
inserted and the deleted trigger test tables.

create trigger updtrig on salesdetail
for update
as
if update (qty)
begin
 /* check value of @@rowcount */
 if @@rowcount = 1
 update titles
 set total_sales = total_sales +
 inserted.qty - deleted.qty
 from inserted, deleted
 where titles.title_id = inserted.title_id
 and inserted.title_id = deleted.title_id
 else
 /* when rowcount is greater than 1,
 use a group by clause */
 begin
 update titles
 set total_sales = total_sales +
 (select sum(qty)
 from inserted
 group by inserted.title_id
 having titles.title_id =
 inserted.title_id)
 update titles
 set total_sales = total_sales -
 (select sum(qty)
 from deleted
 group by deleted.title_id
 having titles.title_id =
 deleted.title_id)
 end end

21.4.4 Conditional Insert Trigger Example Using Multiple
Rows

You do not have to roll back all data modifications simply because some of them are unacceptable. Using a
correlated subquery in a trigger can force the trigger to examine the modified rows one by one.

The trigger can then take different actions on different rows.

The following trigger example assumes the existence of a table called junesales. Here is its create
statement:

create table junesales (stor_id char(4) not null,
ord_num varchar(20) not null,
title_id tid not null,

604 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

qty smallint not null, discount float not null)

Insert four rows in the junesales table, to test the conditional trigger. Two of the junesales rows have
title_ids that do not match any of those already in the titles table.

insert junesales values ("7066", "BA27619", "PS1372", 75, 40) insert junesales values ("7066", "BA27619", "BU7832", 100, 40)
insert junesales values ("7067", "NB-1.242", "PSxxxx", 50, 40) insert junesales values ("7131", "PSyyyy", "PSyyyy", 50, 40)

When you insert data from junesales into salesdetail, the statement looks like this:

insert salesdetail select * from junesales

The trigger conditionalinsert analyzes the insert row by row and deletes the rows that do not have a
title_id in titles:

create trigger conditionalinsert on salesdetail
for insert as
if
(select count(*) from titles, inserted
where titles.title_id = inserted.title_id)
 != @@rowcount
begin
 delete salesdetail from salesdetail, inserted
 where salesdetail.title_id = inserted.title_id
 and inserted.title_id not in
 (select title_id from titles)
 print "Only records with matching title_ids
 added." end

The trigger deletes the unwanted rows. This ability to delete rows that have just been inserted relies on the
order in which processing occurs when triggers are fired. First, the rows are inserted into the table and the
inserted table; then, the trigger fires.

Related Information

Correlated Subqueries [page 284]

21.5 Roll Back Triggers

You can roll back triggers using either the rollback trigger statement or the rollback transaction
statement (if the trigger is fired as part of a transaction). However, rollback trigger rolls back only the
effect of the trigger and the statement that caused the trigger to fire; rollback transaction rolls back the
entire transaction.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 605

For example:

begin tran insert into publishers (pub_id) values ("9999")
insert into publishers (pub_id) values ("9998") commit tran

If the second insert statement causes a trigger on publishers to issue a rollback trigger, only that
insert is affected; the first insert is not rolled back. If that trigger issues a rollback transaction
instead, both insert statements are rolled back as part of the transaction.

The syntax for rollback trigger is:

rollback trigger [with raiserror_statement]

<raiserror_statement> prints a user-defined error message and sets a system flag to record that an error
condition has occurred. This provides the ability to raise an error to the client when the rollback trigger is
executed, so that the transaction state in the error reflects the rollback. For example:

rollback trigger with raiserror 25002 "title_id does not exist in titles table."

The following example of an insert trigger performs a similar task to the trigger forinsertrig1. However,
this trigger uses a rollback trigger instead of a rollback transaction to raise an error when it rolls
back the insertion but not the transaction.

create trigger forinsertrig2 on salesdetail
for insert
as
if (select count(*) from titles, inserted
 where titles.title_id = inserted.title_id) !=
 @@rowcount
 rollback trigger with raiserror 25003
 "Trigger rollback: salesdetail row not added because a title_id does not exist in titles."

When the rollback trigger is executed, SAP ASE aborts the currently executing command and halts
execution of the rest of the trigger. If the trigger that issues the rollback trigger is nested within other
triggers, SAP ASE rolls back all the work done in these triggers up to and including the update that caused the
first trigger to fire.

When triggers that include rollback transaction statements fired from a batch, they abort the entire
batch. In the following example, if the insert statement fires a trigger that includes a rollback
transaction (such as forinsertrig1), the delete statement is not executed, since the batch is aborted:

insert salesdetail values ("7777", "JR123", "PS9999", 75, 40) delete salesdetail where stor_id = "7067"

If triggers that include rollback transaction statements are fired from within a user-defined transaction,
the rollback transaction rolls back the entire batch. In the following example, if the insert statement
fires a trigger that includes a rollback transaction, the update statement is also rolled back:

begin tran

606 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

update stores set payterms = "Net 30"
 where stor_id = "8042"
insert salesdetail values ("7777", "JR123",
 "PS9999", 75, 40) commit tran

SAP ASE ignores a rollback trigger executed outside of a trigger and does not issue a raiserror
associated with the statement. However, a rollback trigger executed outside a trigger but inside a
transaction generates an error that causes SAP ASE to roll back the transaction and abort the current
statement batch.

Related Information

Transactions: Maintain Data Consistency and Recovery [page 640]
Batches and Control-of-Flow Language [page 439]
Insert Trigger Example [page 596]
Transactions: Maintain Data Consistency and Recovery [page 640]

21.6 Global Login Triggers

Use sp_logintrigger to set a global login trigger that is executed at each user login. To take user-specific
actions, use alter login or create login to set a user-specific login trigger.

See the Reference Manual: Commnands.

21.7 Nesting Triggers

Triggers can nest to a depth of 16 levels. The current nesting level is stored in the< @@nestlevel> global
variable.

Nesting is enabled at installation. A system administrator can use the allow nested triggers
configuration parameter to turn trigger nesting on and off.

If nested triggers are enabled, a trigger that changes a table on which there is another trigger fires the second
trigger, which can in turn fire a third trigger, and so forth. If any trigger in the chain sets off an infinite loop, the
nesting level is exceeded and the trigger aborts. You can use nested triggers to perform useful housekeeping
functions such as storing a backup copy of rows affected by a previous trigger.

For example, you can create a trigger on titleauthor that saves a backup copy of titleauthor rows that
was deleted by the delcascadetrig trigger. With the delcascadetrig trigger in effect, deleting the
title_id “PS2091” from titles also deletes any corresponding rows from titleauthor. To save the data,
you can create a delete trigger on titleauthor that saves the deleted data in another table, del_save:

create trigger savedel

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 607

 on titleauthor
for delete
as
insert del_save select * from deleted

SAP suggests that you use nested triggers in an order-dependent sequence. Use separate triggers to cascade
data modifications.

Note
When you put triggers into a transaction, a failure at any level of a set of nested triggers cancels the
transaction and rolls back all data modifications. Use print or raiserror statements in your triggers to
determine where failures occur.

A rollback transaction in a trigger at any nesting level rolls back the effects of each trigger and cancels
the entire transaction. A rollback trigger affects only the nested triggers and the data modification
statement that caused the initial trigger to fire.

21.7.1 Trigger Self-Recursion

By default, a trigger does not recursively call itself. That is, an update trigger does not call itself in response to
a second update to the same table within the trigger. If an update trigger on one column of a table results in an
update to another column, the update trigger fires only once.

However, you can turn on the self_recursion option of the set command to allow triggers to call
themselves recursively. The allow nested triggers configuration variable must also be enabled for self-
recursion to occur.

The self_recursion setting remains in effect only for the duration of a current client session. If the option is
set as part of a trigger, its effect is limited by the scope of the trigger that sets it. If the trigger that sets
self_recursion on returns or causes another trigger to fire, this option reverts to off. Once a trigger turns
on the self_recursion option, it can repeatedly loop, if its own actions cause it to fire again, but it cannot
exceed the limit of 16 nesting levels.

For example, assume that the following new_budget table exists in pubs2:

select * from new_budget

unit parent_unit budget --------------- --------------- -------
one_department one_division 10
one_division company_wide 100
company_wide NULL 1000
 (3 rows affected)

You can create a trigger that recursively updates new_budget whenever its budget column is changed, as
follows:

create trigger budget_change on new_budget
for update as

608 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

if exists (select * from inserted
 where parent_unit is not null)
begin
 set self_recursion on
 update new_budget
 set new_budget.budget = new_budget.budget +
 inserted.budget - deleted.budget
 from inserted, deleted, new_budget
 where new_budget.unit = inserted.parent_unit
 and new_budget.unit = deleted.parent_unit end

If you update new_budget.budget by increasing the budget of unit one_department by 3, SAP ASE
behaves as follows (assuming that nested triggers are enabled):

1. Increasing one_department from 10 to 13 fires the budget_change trigger.
2. The trigger updates the budget of the parent of one_department (in this case, one_division) from 100

to 103, which fires the trigger again.
3. The trigger updates the parent of one_division (in this case company_wide) from 1000 to 1003, which

causes the trigger to fire for the third time.
4. The trigger attempts to update the parent of company_wide, but since none exists (the value is “NULL”),

the last update never occurs and the trigger is not fired, ending the self-recursion. You can query
new_budget to see the final results, as follows:

select * from new_budget

unit parent_unit budget --------------- --------------- -------
one_department one_division 13
one_division company_wide 103
company_wide NULL 1003
 (3 rows affected)

A trigger can also be recursively executed in other ways. A trigger calls a stored procedure that performs
actions that cause the trigger to fire again (it is reactivated only if nested triggers are enabled). Unless
conditions within the trigger limit the number of recursions, the nesting level can overflow.

For example, if an update trigger calls a stored procedure that performs an update, the trigger and stored
procedure execute only once if nested triggers is set to off. If nested triggers is set to on, and the
number of updates exceeds 16 by some condition in the trigger or procedure, the loop continues until the
trigger or procedure exceeds the 16-level maximum nesting value.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 609

21.8 Rules Associated with Triggers

In addition to anticipating the effects of a multirow data modification, trigger rollbacks, and trigger nesting,
there are other factors to consider when you write triggers, such as permissions, restrictions, and
performance.

In additional to the rules associated with triggers, consider these situations when you create triggers:

● Suppose you have an insert or update trigger that calls a stored procedure, which in turn updates the
base table. If the nested triggers configuration parameter is set to true, the trigger enters an infinite
loop. Before executing an insert or update trigger, set sp_configure “nested triggers” to false.

● When you execute drop table, any triggers that are dependent on that table are also dropped. To
preserve any such triggers, use sp_rename to change their names before dropping the table.

● Use sp_depends to see a report on the tables and views referred to in a trigger.
● Use sp_rename to rename a trigger.
● A trigger fires only once per query. If the query is repeated in a loop, the trigger fires as many times as the

query is repeated.

21.8.1 Triggers and Permissions

A trigger is defined on a table. Only the table owner has create trigger and drop trigger permissions for
that table; these permissions cannot be transferred to others.

SAP ASE accepts a trigger definition that attempts actions for which you do not have permission. The
existence of such a trigger aborts any attempt to modify the trigger table because incorrect permissions cause
the trigger to fire and fail. The transaction is canceled. You must rectify the permissions or drop the trigger.

For example, Jose owns salesdetail and creates a trigger on it. The trigger is designed to update
titles.total_sales when salesdetail.qty is updated. However, Mary is the owner of titles, and has
not granted Jose permission on titles. When Jose tries to update salesdetail, SAP ASE detects not only
the trigger, but also Jose’s lack of permissions on titles, and rolls back the update transaction. Jose must
either get update permission on titles.total_sales from Mary or drop the trigger on salesdetail.

21.8.2 Trigger Restrictions

SAP ASE imposes certain limitations on triggers.

● A table can have a maximum of three triggers: one update trigger, one insert trigger, and one delete
trigger.

● Each trigger can apply to only one table. However, a single trigger can incorporate all three user actions:
update, insert, and delete.

● You cannot create a trigger on a view or on a session-specific temporary table, though triggers can
reference views or temporary tables.

● The writetext statement does not activate insert or update triggers.

610 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

● Although a truncate table statement is, similar to a delete without a where clause, because it
removes all rows, it cannot fire a trigger, because individual row deletions are not logged.

● You cannot create a trigger or build an index or a view on a temporary object (@object).
● You cannot create triggers on system tables. If you try to create a trigger on a system table, SAP ASE

returns an error message and cancels the trigger.
● You cannot use triggers that select from a text column or an image column in a table that has the same

trigger inserts or deletes.
● If Component Integration Services is enabled, triggers have limited usefulness on proxy tables because

you cannot examine the rows being inserted, updated, or deleted (via the inserted and deleted tables).
You can create, then invoke, a trigger on a proxy table. However, deleted or inserted data is not written to
the transaction log for proxy tables because the insert is passed to the remote server. Therefore, the
inserted and deleted tables, which are actually views to the transaction log, contain no data for proxy
tables.

21.8.3 Implicit and Explicit Null Values

The if update(<column_name>) clause is true for an insert statement whenever the column is assigned a
value in the select list or in the values clause. An explicit null or a default assigns a value to a column, and thus
activates the trigger. An implicit null does not.

For example, suppose you create this table:

create table junk (a int null, b int not null)

then write this trigger:

create trigger junktrig on junk
for insert
as
if update(a) and update(b)
 print "FIRING"
 /*"if update" is true for both columns.
 The trigger is activated.*/
insert junk (a, b) values (1, 2)
 /*"if update" is true for both columns.
 The trigger is activated.*/
insert junk values (1, 2)
 /*Explicit NULL:
 "if update" is true for both columns.
 The trigger is activated.*/
insert junk values (NULL, 2)
 /* If default exists on column a,
 "if update" is true for either column.
 The trigger is activated.*/
insert junk (b) values (2)
 /* If no default exists on column a,
 "if update" is not true for column a.
 The trigger is not activated.*/ insert junk (b) values (2)

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 611

The same results are produced using only this clause:

if update(a)

To create a trigger that disallows the insertion of implicit nulls, you can use:

if update(a) or update(b)

SQL statements in the trigger can then test to see if <a> or is null.

21.8.4 Triggers and Performance

In terms of performance, trigger overhead is usually very low. The time involved in running a trigger is spent
mostly in referencing other tables, which may be either in memory or on the database device.

The deleted and inserted trigger test tables are always in active memory. The location of other tables
referenced by the trigger determines the amount of time the operation takes.

21.8.5 set Commands in Triggers

You can use the set command inside a trigger. The set option you invoke remains in effect during execution
of the trigger. Then the trigger reverts to its former setting.

21.8.6 Renaming and triggers

If you change the name of an object referenced by a trigger, you must drop, then re-create the trigger so that
its source text reflects the new name of the object being referenced.

Use sp_depends to get a report of the objects referenced by a trigger. The safest course of action is to not
rename any tables or views that are referenced by a trigger.

21.9 Disable Triggers

To disable triggers during bulk insert, update, or delete operations, use the disable trigger option of
the alter table command.

You can use this option either to disable all triggers associated with the table, or to specify a particular trigger
to disable. However, any triggers you disable are fired after the copy is complete. The insert, update, and
delete commands normally fire any trigger they encounter, which increases the time needed to perform the
operation.

612 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

bcp, to maintain maximum speed for loading data, does not fire rules and triggers.To find any rows that violate
rules and triggers, copy the data into the table and run queries or stored procedures that test the rule or
trigger conditions.

alter table... disable trigger uses this syntax:

alter table [<database_name>.[<owner_name>].]<table_name> {enable | disable } trigger [<trigger_name>]

where <table_name> is the name of the table for which you are disabling triggers, and <trigger_name> is
the name of the trigger you are disabling. For example, to disable the del_pub trigger in the pubs2 database:

alter table pubs2 disable del_pubs

If you do not specify a trigger, alter table disables all the triggers defined in the table.

Use alter table... enable trigger to reenable the triggers after the load database is complete. To
reenable the del_pub trigger, issue:

alter table pubs2 enable del_pubs

Note
You can use the disable trigger feature only if you are the table owner or database administrator. If a
trigger includes any insert, update, or delete statements, these statements will not run while the trigger
is disabled, which may affect the referential integrity of a table.

21.10 Drop Triggers

You can remove a trigger by dropping it or by dropping the trigger table with which it is associated.

The drop trigger syntax is:

drop trigger [<owner>.]<trigger_name> [, [owner.]<trigger_name>]...

When you drop a table, SAP ASE drops any triggers associated with it. drop trigger permission defaults to
the trigger table owner cannot be transferred.

21.11 Multiple Triggers

You can create up to 50 different triggers on a table for each command (insert, update, and delete), as
well as specify the order in which the triggers are fired after statement execution by using the order
parameter in the create trigger command. You can create multiple triggers without an order clause.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 613

The syntax is:

create [or replace] trigger [<owner>.]<trigger_name> on [<owner>.]<table_name> for {insert | update | delete} [order <integer>] as <sql_statements>

order <integer> specifies a partial or full ordering of trigger firing:

● Full ordering occurs when you create all the triggers using the order clause.
● Partial ordering occurs if you do not specify the order clause on some of the triggers. Triggers without the

order clause implicitly take order number 0 and do not have a defined order, except that they fire after
those triggers created using order.

Note
You can only use the order <integer> clause with for {insert | update | delete}; you cannot
use it with instead of {insert | update | delete} triggers.

If you use a duplicate number for order, SAP ASE reports an error. order numbers need not be consecutive;
in fact, nonconsecutive numbers might be preferable, as they allow you to insert new triggers into the middle
of an order.

Use sp_helptrigger to list:

● All triggers created on the table specified by <tablename>
● The insert, update, or delete command that provided the triggering action
● The trigger's order number

21.11.1 Changing the Order of When a Trigger Is Fired

To change the order in which a trigger is fired, use the or replace option in the create trigger command,
using the same trigger name, action, and trigger body as the original trigger, but specifying a new order
number.

21.11.2 Order of Triggers in Merge Statements

The merge statement fires triggers in a specific order.

The merge statement fires triggers on the target table in this order:

1. insert
2. update
3. delete

This means that even if the order number for an update statement is lower than the order number for an
insert, the trigger for the insert statement fires first.

614 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

Multiple triggers for the same operation, however, are ordered. That is, all the triggers for insert are fired in
order number first, followed by all the triggers, in order, for update, and so on.

Example
In this example, the dbo creates these triggers on the GlobalSales table:

● trigger1 for delete with order 1
● trigger2 for delete with order 4
● trigger3 for insert with order 1
● trigger4 for insert with order 5

A merge statement merges data into GlobalSales. If the merge includes both insert and delete operations
on GlobalSales, SAP ASE fires the triggers in this order after execution:

● trigger3
● trigger4
● trigger1
● trigger2

21.11.3 Transactional Behavior with Multiple Triggers

A rollback transaction executed in a trigger of the insert, update, or delete statement that fired the trigger,
along with any work performed by the trigger to be rolled back.

For multiple triggers, a rollback transaction from one trigger also rolls back the work of other triggers already
fired and withholds firing any remaining triggers for the current insert, update or delete command.

21.11.4 Disabling and Reenabling Triggers

You can disable and reenable multiple triggers using the alter table command.

Use the alter table command to disable or reenable multiple triggers individually:

To disable or reenable the trigger, use:

alter table <table_name> {disable | enable} trigger <trigger_name>

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 615

21.12 Get Information About Triggers

As database objects, triggers are listed in sysobjects by name. The type column of sysobjects identifies
triggers with the abbreviation “TR”.

This query finds the triggers that exist in a database:

select * from sysobjects where type = "TR"

In versions of SAP ASE earlier than 16.0, sysobjects saved the following:

● deltrig column for delete triggers
● instrig column for insert triggers
● updtrig column for update triggers

In SAP ASE 16.0, the first trigger created on a table for delete, insert, and update operations, where the
trigger is created without the order clause (or order 0) is associated with the table in one of the above
columns in sysobjects.

The second and subsequent triggers created for a given action are associated with the table through a row in
syscontraints. In addition, any trigger with order 1 or greater always uses sysconstraints for the
table/trigger association.

The sysobjects row for the dependent table uses bits in the sysstat2 field to indicate that a trigger is
disabled. In versions earlier than SAP ASE 16.0, there could be no more than one insert, delete, or upgrade
trigger, which used these three bits:

● disable_instrig 0x001000000
● disable_deltrig 0x002000000
● disable_updtrig 0x004000000

These bits exist in SAP ASE 16.0 and are used when a table's trigger ID is stored in sysobjects, as described
above.

The <@@trigger_name> global variable returns the name of the trigger that is currently executing.

You can place the following in the body of a trigger or in the body of a stored procedure that is called (at any
level of nesting) from a trigger:

select @@<trigger_name>

If nested triggers are fired, @@<trigger_name> holds the name of the most recently fired trigger.

The source text for each trigger is stored in syscomments. Execution plans for triggers are stored in
sysprocedures. The system procedures described in the following sections provide information from the
system tables about triggers.

616 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

21.12.1 sp_help

Get a report on a trigger using sp_help.

For example, you can get information on deltitle using:

sp_help deltitle

Name Owner Type ----------- ------- -----------
deltitle dbo trigger
Data_located_on_segment When_created
----------------------- -----------------
not applicable Jul 10 1997 3:56PM (return status = 0)

You can also use sp_help to report the status of a disabled or enabled trigger:

1> sp_help trig_insert 2> go
Name Owner
Type

trig_insert dbo
trigger
(1 row affected)
data_located_on_segment When_created

not applicable Aug 30 1998 11:40PM
Trigger enabled (return status = 0)

21.12.2 sp_helptext

To display the source text of a trigger, execute sp_helptext.

sp_helptext deltitle

Lines of Text ---------------
 1
text

create trigger deltitle
on titles
for delete
as
if (select count(*) from deleted, salesdetail
where salesdetail.title_id = deleted.title_id) >0
begin
 rollback transaction
 print "You can’t delete a title with sales." end

If the source text of a trigger was encrypted using sp_hidetext, SAP ASE displays a message advising you
that the text is hidden. See the Reference Manual: Procedures.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 617

If the system security officer has reset the allow select on syscomments.text column parameter with
sp_configure (as required to run SAP ASE in the evaluated configuration), you must be the creator of the
trigger or a system administrator to view the source text of a trigger through sp_helptext. See, Introduction
to Security, in the Security Administration Guide.

21.12.3 sp_depends

sp_depends lists the triggers that reference an object, or all the tables or views that the trigger affects.

This example shows how to use sp_depends to get a list of all the objects referenced by the trigger
deltitle:

sp_depends deltitle

Things the object references in the current database. object type updated selected
---------------- ---------- ------- --------
dbo.salesdetail user table no no
dbo.titles user table no no (return status = 0)

This statement lists all the objects that reference the salesdetail table:

sp_depends salesdetail

Things inside the current database that reference the object. object type
--------------------------- ----------------
dbo.deltitle trigger
dbo.history_proc stored procedure
dbo.insert_salesdetail_proc stored procedure
dbo.totalsales_trig trigger (return status = 0)

21.13 instead of Triggers

instead of triggers are special stored procedures that override the default action of a triggering statement
(insert, update, and delete), and perform user-defined actions.

The instead of trigger, like the for trigger, executes each time a data modification statement executes on a
specific view. A for trigger fires after an insert/update/delete statement on a table, and is sometimes
called an after trigger. A single instead of trigger can apply to one specific triggering action:

instead of update

It can also apply to multiple actions, in which the same trigger executes all the actions listed:

instead of insert,update,delete

618 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

Like for triggers, instead of triggers use the logical inserted and deleted tables to store modified records
while the trigger is active. Each column in these tables maps directly to a column in the base view referenced in
the trigger. For example, if a view named V1 contains columns named C1, C2, C3, and C4, the inserted and
deleted tables contain the values for all four columns, even if the trigger modifies only columns C1 and C3.
SAP ASE automatically creates and manages the inserted and deleted tables as memory-resident objects.

instead of triggers allow views to support updates, and allow implementation of code logic that requires
rejecting parts of a batch, while allowing other parts to succeed.

An instead of trigger is fired only once per data modification statement. A complex query containing a
while loop may repeat an update or insert statement many times, firing the instead of trigger each
time.

21.13.1 Inserted and Deleted Logical Tables

Deleted and inserted tables are logical (conceptual) tables. An inserted table is a pseudo-table containing rows
with the inserted values of an insert statement, and a deleted table is a pseudo-table containing rows with
the updated values (after image) of an update statement.

The schema of the inserted and deleted tables is identical to that of the view for which the instead of trigger
is defined; that is, the view on which a user action is attempted. The difference between these tables and the
view is that all the columns of inserted and deleted tables are nullable, even when the corresponding column of
the view is not. For example, if the view has a column of datatype char, and an insert statement provides a
char value to be inserted, the inserted table has a datatype varchar for the corresponding column, and the
input value is converted to varchar. However, trailing blanks are not truncated from the value when the value
is added to the inserted table.

When you specify a value of a datatype different from that of the column into which you are inserting it, the
value is internally converted to the column datatype. If the conversion succeeds, the converted value is
inserted into the table, but if the conversion fails, the statement is aborted. In this example, if a view selects an
integer column from a table:

CREATE VIEW v1 AS SELECT intcol FROM t1

The following insert statement causes the instead of trigger on v1 to execute, because the value, 1.0, can
be successfully converted to the integer value, 1:

INSERT INTO v1 VALUES (1.0)

However, this next statement causes an exception to be raised, and is aborted before the instead of trigger
can execute:

INSERT INTO v1 VALUES (1.1)

The deleted and inserted tables can be examined by the trigger, to determine whether or how trigger action
should be carried out, but the tables themselves cannot be altered by trigger action.

The deleted table is used with delete and update; the inserted table, with insert and update.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 619

Note
instead of triggers create the inserted and deleted tables as in-memory tables or worktables. for
triggers generate the rows of inserted and deleted tables on the fly, by reading the transactional log,
syslogs.

LOB Datatypes

Values for columns in inserted or deleted tables that are large object (LOB) datatypes are stored in memory,
and can lead to significant memory usage if there are many rows in these tables, and the rows contain large
LOB values.

21.13.2 Triggers and Transactions

Both rollback trigger and rollback transaction are used for instead of triggers. rollback
trigger rolls back the work done in any and all nested instead of triggers fired by the triggering statement.
rollback transaction rolls back the work done in the entire transaction, up to the most recent
savepoint.

21.13.3 Nesting

Like for triggers, you can nest instead of triggers to 16 levels. The current nesting level is stored in
<@@nestlevel>.

A system administrator can use the configuration parameter allow nested triggers to turn trigger
nesting on and off; by default nesting if on. If nested triggers are enabled, a trigger that changes a table
containing another trigger executes the second trigger, which in turn can execute another trigger, and so forth,
producing an infinite loop. In this case, processing ends when the nesting level is exceeded, and the trigger
aborts. A rollback transaction in a trigger at any nesting level rolls back the effects of each trigger, and cancels
the entire transaction. A rollback trigger affects only the nested triggers and the data modification statement
that caused the initial trigger to execute.

You can interleave nesting instead of and for triggers. For example, an update statement on a view with
an instead of update trigger causes the trigger to execute. If the trigger contains a SQL statement
updating a table with a for trigger defined on it, that trigger fires. The for trigger may contain a SQL
statement that updates another view with an instead of trigger that then executes, and so forth.

620 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

21.13.4 Recursion

instead of and for triggers have different recursive behaviors.

for triggers support recursion, while instead of triggers do not. If an instead of trigger references the
same view on which the trigger was fired, the trigger is not called recursively. Rather, the triggering statement
applies directly to the view; in other words, the statement is resolved as modifications against the base tables
underlying the view. In this case, the view definition must meet all restrictions for an updatable view. If the view
is not updatable, an error is raised.

For example, if a trigger is defined as an instead of update trigger for a view, the update statement
executed against the same view within the instead of trigger does not cause the trigger to execute again.
The update exercised by the trigger is processed against the view, as though the view did not have an instead
of trigger. The columns changed by the update must be resolved to a single base table.

21.13.5 instead of insert Triggers

You can define instead of insert triggers on a view to replace the standard action of the insert
statement. Usually, this trigger is defined on a view to insert data into one or more base tables.

Columns in the view select list can be nullable or not nullable. If a view column does not allow nulls, a SQL
statement that inserts rows into the view must provide a value for the column. In addition to valid non-null
values, an explicit value of null is also accepted for a non-nullable column of the view. view columns allow nulls
if the expression defining the view column includes such items as:

● References to any base table column that allows nulls
● Arithmetic operators
● References to functions
● CASE with a nullable subexpression
● NULLIF

sp_help reports which view columns allow nulls.

An insert statement that references a view with an instead of insert trigger must supply values for
every view column that does not allow nulls. This includes view columns that reference columns in the base
table for which input values cannot be specified, such as:

● Computed columns in the base table
● Identity columns in the base table for which identity insert is OFF

If the instead of insert trigger contains an insert statement against the base table using data in the
inserted table, the insert statement must ignore the values for these types of columns by not including them
in the select list of the statement. The insert statement against the view can generate dummy values for
these columns, but the insert statement in the instead of insert trigger ignores those values and SAP
ASE supplies the correct values.

An insert statement must specify a value for a view column that maps to an identity or computed column in
a base table. However, it can supply a placeholder value.

The insert statement in the instead of trigger that inserts the values into the base table is written to
ignore the supplied value.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 621

For example, these statements create a table, view, and trigger that illustrate the process:

CREATE TABLE BaseTable (PrimaryKey int IDENTITY
Color varchar (10) NOT NULL,
Material varchar (10) NOT NULL,
TranTime timestamp
)

--Create a view that contains all columns from the base table.
CREATE VIEW InsteadView
AS SELECT PrimaryKey, Color, Material, TranTime
FROM BaseTable

Create an INSTEAD OF INSERT trigger on the view.
CREATE TRIGGER InsteadTrigger on InsteadView
INSTEAD OF INSERT
AS
BEGIN --Build an INSERT statement ignoring

 --inserted.PrimaryKey and --inserted.TranTime.
INSERT INTO BaseTable
 SELECT Color, Material
 FROM inserted END

An insert statement that refers directly to BaseTable cannot supply a value for the PrimaryKey and
TranTime columns. For example:

--A correct INSERT statement that skips the PrimaryKey --and TranTime columns.
INSERT INTO BaseTable (Color, Material)
 VALUES ('Red', 'Cloth')
--View the results of the INSERT statement.
SELECT PrimaryKey, Color, Material, TranTime
FROM BaseTable
--An incorrect statement that tries to supply a value
--for the PrimaryKey and TranTime columns.
INSERT INTO BaseTable
 VALUES (2, 'Green', 'Wood', 0x0102)
INSERT statements that refer to InsteadView, however,
 must supply a value for PrimaryKey:
--A correct INSERT statement supplying a dummy value for
--the PrimaryKey column. A value for TranTime is not
--required because it is a nullable column.
INSERT INTO InsteadView (PrimaryKey, Color, Material)
 VALUES (999, 'Blue', 'Plastic')
--View the results of the INSERT statement.
SELECT PrimaryKey, Color, Material, TranTime FROM InsteadView

The inserted table passed to InsteadTrigger is built with a non-nullable PrimaryKey column; therefore,
the insert statement referencing the view must supply a value for this column. The value 999 is passed in to
InsteadTrigger, but the insert statement in InsteadTrigger does not select inserted.PrimaryKey,
and therefore, the value is ignored. The row actually inserted into BaseTable has 2 in PrimaryKey and an
SAP ASE-generated timestamp value in TranTime.

If a not null column with a default definition is referenced in a view with an instead of insert trigger,
any insert statement that references the view must supply a value for the column. This value is required to
build the inserted table passed to the trigger. A convention is required for a value that signals the trigger that

622 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

the default value should be used. A possible convention is to supply an explicit null value for the not null
column in the insert statement. The instead of insert trigger can ignore the explicit null when inserting
into the table upon which the view is defined, causing the default value to be inserted into the table. For
example:

--Create a base table with a not null column that has --a default
CREATE TABLE td1 (coll int DEFAULT 9 NOT NULL, col2 int)
--Create a view that contains all of the columns of
--the base table.
CREATE VIEW vtd1 as select * from td1
--create an instead of trigger on the view
CREATE TRIGGER vtd1insert on vtd1 INSTEAD OF INSERT AS
BEGIN
 --Build an INSERT statement that inserts all rows
 --from the inserted table that have a NOT NULL value
 --for col1.
 INSERT INTO td1 (col1,col2) SELECT * FROM inserted
 WHERE col != null
 --Build an INSERT statement that inserts just the
 --value of col2 from inserted for those rows that
 --have NULL as the value for col1 in inserted. In
 --this case, the default value of col1 will be
 --inserted.
 INSERT INTO td1 (col2) SELECT col2 FROM inserted
 WHERE col1 = null END

The deleted table in an instead of insert trigger is always empty.

21.13.6 instead of update Trigger

Usually, the instead of update trigger is defined on a view, to modify data in one or more base tables.

In update statements that reference views with instead of update triggers, any subset of the columns in
the view can appear in the set clause of the update statement, whether the columns in the subset are non-
nullable columns or not.

Even view columns that can not be updated (those referencing columns in the base table for which input
values cannot be specified) can appear in the set clause of the update statement. Columns you cannot update
include:

● Computed columns in the base table
● Identity columns in the base table, for which identity insert is set to off
● Base table columns of the timestamp datatype

Usually, when an update statement that references a table attempts to set the value of a computed,
identity, or timestamp column, an error is generated, because SAP ASE must generate the values for these
columns. However, if the update statement references a view with an instead of update trigger, the logic
defined in the trigger can bypass these columns and avoid the error. To do so, the instead of update
trigger cannot update the values for the corresponding columns in the base table. To do this, exclude the
columns in the set clause of the update statement from the definition of the trigger.

This solution works because an instead of update trigger does not need to process data from the inserted
columns that are not updatable. The inserted table contains the values of columns not specified in the set

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 623

clause as they existed before the update statement was issued. The trigger can use an if update (column)
clause to test whether a specific column has been updated.

instead of update triggers should use values supplied for computed, identity, or timestamp columns
only in where clause search conditions. The logic that an instead of update trigger on a view uses to
process updated values for computed, identity, timestamp, or default columns is the same as the logic
applied to inserted values for these column types.

The inserted and deleted tables each contain a row for every row that qualifies to be updated, in an update
statement on a view with an instead of update trigger. The rows of the inserted table contain the values of
the columns after the update operation, and the rows of the deleted table contain the values of the columns
before the update operation.

21.13.7 instead of delete Trigger

instead of delete triggers can replace the standard action of a delete statement. Usually, an instead
of delete trigger is defined on a view to modify data in base tables.

delete statements do not specify modifications to existing data values, only the rows to be deleted. A delete
table is a pseudotable containing rows with the deleted values of a delete statement, or the preupdated
values (before image) of an update statement.The deleted table sent to an instead of delete trigger
contains an image of the rows as they existed before the delete statement was issued. The format of the
deleted table is based on the format of the select list defined for the view, with the exception that all not
null columns be converted to nullable columns.

The inserted table passed to a delete trigger is always empty.

21.13.8 Searched and Positioned update and delete

You can search or position update and delete statements.

A searched delete contains an optional predicate expression in the where clause, that qualifies the rows to
be deleted. A searched update contains an optional predicate expression in the where clause, that qualifies
the rows to be updated.An example of a searched delete statement is:

DELETE myview WHERE myview.col1 > 5

This statement is executed by examining all the rows of myview, and applying the predicate (myview.col1 >
5) specified in the where clause to determine which rows should be deleted.

Joins are not allowed in searched update and delete statements. To use the rows of another table to find the
qualifying rows of the view, use a subquery. For example, this statement is not allowed:

DELETE myview FROM myview, mytab where myview.col1 = mytab.col1

624 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

But the equivalent statement, using a subquery, is allowed:

DELETE myview WHERE col1 in (SELECT col1 FROM mytab)

Positioned update and delete statements are executed only on the result set of a cursor, and affect only a
single row. For example:

DECLARE mycursor CURSOR FOR SELECT * FROM myview OPEN mycursor FETCH mycursor

DELETE myview WHERE CURRENT OF mycursor

The positioned delete statement deletes only the row of myview on which mycursor is currently positioned.

If an instead of trigger exists on a view, it always executes for a qualifying searched delete or update
statement; that is, a statement without joins. For an instead of trigger to execute on a positioned delete or
update statement, the following two conditions must be met:

● The instead of trigger exists when the cursor is declared; that is, when the command declare
cursor is executed.

● The select statement that defines the cursor can access only the view; for example, the select
statement contains no joins, but it can access any subset of the view columns.

The instead of trigger also executes when positioned delete or update statements are executed against
scrollable cursors. However, instead of triggers do not fire in one case, when using a client cursor and the
command set cursor rows.

Client Cursors

A client cursor is declared and fetched in an application using the Open Client library functions for cursor
processing. The Open Client library functions can retrieve multiple rows from SAP ASE in a single fetch
command, and buffer these rows, returning one row at a time to the application on subsequent fetch
commands, without having to retrieve any more rows from SAP ASE until the buffered rows are all read. By
default, SAP ASE returns a single row to the Open Client library functions for each fetch command it
receives. However, the command set cursor rows can change the number of rows SAP ASE returns.

Positioned update and delete statements for client cursors, for which set cursor rows is not used to
increase the number of rows returned per fetch, cause an instead of trigger to execute. However, if set
cursor rows increases the number of rows returned per fetch command, an instead of trigger executes
only if the cursor is not marked read-only during the internal processing of declare cursor. For example:

--Create a view that is read-only (without an instead --of trigger) because it uses DISTINCT.
CREATE VIEW myview AS
SELECT DISTINCT (col1) FROM tab1
--Create an INSTEAD OF DELETE trigger on the view.
CREATE TRIGGER mydeltrig ON myview
INSTEAD OF DELETE
AS
BEGIN
 DELETE tab1 WHERE col1 in (SELECT col1 FROM deleted)
END

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 625

Declare a cursor to read the rows of the view
DECLARE cursor1 CURSOR FOR SELECT * FROM myview
OPEN cursor1
FETCH cursor1
--The following positioned DELETE statement will
--cause the INSTEAD OF TRIGGER, mydeltrig, to fire.
DELETE myview WHERE CURRENT OF cursor1
--Change the number of rows returned by ASE for
--each FETCH.
SET CURSOR ROWS 10 FOR cursor1
FETCH cursor1
--The following positioned DELETE will generate an
--exception with error 7732: "The UPDATE/DELETE WHERE
--CURRENT OF failed for cursor 'cursor1' because
--the cursor is read-only." DELETE myview WHERE CURRENT OF cursor1

Using set cursor rows creates a disconnect between the position of the cursor in SAP ASE and in the
application: SAP ASE is positioned on the last row of the 10 rows returned, but the application can be
positioned on any one of the 10 rows, since the Open Client library functions buffer the rows and scroll through
them without sending information to SAP ASE. Because SAP ASE cannot determine the position of cursor1
when the positioned delete statement is sent by the application, the Open Client library functions also
send the values of a subset of the columns of the row where cursor1 is positioned in the application. These
values are used to convert the positioned delete into a searched delete statement. This means that if
the value of col1 is 5 in the current row of cursor1, a clause such as 'where col1 = 5' is used by SAP
ASE to find the row.

When a positioned delete is converted to a searched delete, the cursor must be updatable, just as for
cursors on tables and on views without instead of triggers. In the example above, the select statement
that defines cursor1 is replaced by the select statement that defines myview:

DECLARE cursor1 CURSOR FOR SELECT * FROM myview

becomes:

DECLARE cursor1 CURSOR FOR SELECT DISTINCT (col1) FROM tab1

Because of the distinct option in the select list, cursor1 is not updatable; in other words, it is read-only.
This leads to the 7732 error when the positioned delete is processed.

If the cursor that results from replacing the view by its defining select statement is updatable, the instead
of trigger fires, whether set cursor rows is used or not. Using set cursor rows does not prevent an
instead of trigger from firing in other types of cursors SAP ASE supports.

21.13.9 Get Information About instead of Triggers
Information about instead of triggers is stored as it is for for triggers.

● The definition query tree for a trigger is stored in sysprocedures.
● Each trigger has an identification number (object ID), stored in a new row in sysobjects. The object ID of

the view to which the trigger applies is stored in the deltrig, instrig, and updtrig columns of the
sysobjects row for the trigger. The object ID of the trigger is stored in the deltrig, instrig, or
putrid columns in the sysobjects row of the view to which the trigger applies.

626 P U B L I C
Transact-SQL Users Guide

Triggers: Enforce Referential Integrity

● Use sp_helptext to display the text of a trigger stored in syscomments. If the system security officer
has reset the column parameter allow select on syscomments.text with sp_configure, you must
be the creator of the trigger or a system administrator to view the text of the trigger through
sp_helptext.

● Use sp_help to obtain a report on a trigger. sp_help reports instead of trigger as the
<object_type> of an instead of trigger.

● Use sp_depends to report on the views referenced by an instead of trigger. sp_depends
<view_name> reports the trigger name and its type as instead of trigger.

Transact-SQL Users Guide
Triggers: Enforce Referential Integrity P U B L I C 627

22 In-Row Off-Row LOB

SAP ASE supports the storage of in-row LOB columns for text, image, and unitext datatypes when they are
small, and subject to available space in the page.

When a LOB expands in size or its space is used for other in-row columns (such as those used for varchar
and varbinary datatypes), SAP ASE seamlessly migrates the in-row LOB data to off-row storage,
automatically replacing the data with an in-row text pointer.

You can use:

● create table to specify in-row storage of LOB columns
● alter table to perform modifications of how LOB columns are stored
● create or alter database commands to manage database-wide in-row lengths for LOB columns

When you map Component Integration Services (CIS) proxy tables to remote SAP ASE tables that contain in-
row LOB columns, you must define the LOB columns in the proxy tables as off-row LOBs. All data
transmissions occur as off-row LOB column data.

In versions earlier than 15.7, SAP ASE always stored large object (LOB) columns (such as text, image,
unitext, and XML) off-row, using a text pointer (txtptr) to identify the start page ID value, and storing the
pointer in the data row. This includs serialized Java classes, which are stored in-row only if they are shorter
than a fixed maximum length.

22.1 In-Row LOB Columns Compression

If you define the LOB column for compression, the LOB compression extends to the data portion of the in-row
LOBs when the LOB data is moved off-row, and the log data size exceeds the logical page size.

If you set up a table for row- or page-level compression, any in-row LOB columns (or their metadata) are not
compressed.

As with off-row LOB columns, the data for different in-row LOB columns may be compressed by different LOB
compression levels when the LOB data is moved off-row, however, SAP ASE does not compress the text
pointer field for off-row LOB columns.

If you set the compression level for all LOB columns in a table using the with lob_compression clause,
make sure you use the "not compressed" column-level clause to define individual in-row or other LOB
columns you do not want to compress.

628 P U B L I C
Transact-SQL Users Guide

In-Row Off-Row LOB

22.2 Migrate Off-Row LOB Data to In-Row Storage

Some data definition language (DDL) and utility operations that work on an entire table copy all table data by
rewriting the data row to match that of the target schema.

There are several ways to convert LOBs to use in-row storage:

● update set <column> = <column>
● alter table schema changes such as add not null, modify datatype or nullability, or drop column

– row contents and layout are reorganized to accommodate the schema change. The entire row is rebuilt.
alter table ... partition by changes the partitioning schema by distributing the data rows to
different partitions. Rows are reformatted as part of the data copy. This operation, however, does not
change the table schema.

● reorg rebuild – causes rows to be rebuilt as part of the data movement.
● bcp bulk copy utility – supports tables that use in-row LOB columns.

You can migrate existing data using any of these methods, reducing space usage for the text pages and
moving to in-row LOB storage.

Related Information

In-Row LOB Columns and Bulk Copy [page 629]

22.2.1 In-Row LOB Columns and Bulk Copy

The SAP ASE bcp utility supports tables that use in-row LOB columns, storing LOB columns in-row as long as
the off-row data fits your defined in-row size, and the resulting row meets the page-size limitation.

In addition, bcp in handles character-set conversions for the text datatype when stored as in-row LOB in
the same way the utility handles char and varchar datatype conversions.

This means that when server-side character-set conversion is active, SAP ASE rejects in-row LOB data if the
required space after conversion differs from the original length. When this occurs, you see:

BCP insert operation is disabled when data size is changing between client and server character sets.
Please use BCP's -Y option to invoke client-side conversion.

For this reason, SAP recommends you use the bcp -Y option to force SAP ASE to perform character-set
conversions on the client instead of on the server. Ensuring that the character data for both the client and
server have the same length.

Transact-SQL Users Guide
In-Row Off-Row LOB P U B L I C 629

22.2.2 Methods for Migrating Existing Data

Since the results are all very similar, the migration method you choose depends on your situation and
preference.

Each example creates a copy of the original table, mymsgs, using select into. The in-row length of the
description column of the copied table is then altered. The method being illustrated is used to migrate the
off-row LOB to in-row storage. Space usage is compared between the original table and the modified copy to
show that LOB storage decreases substantially.

Set Up the mymsgs Example Table

This example creates the mymsgs table from the pubs2 database, specifying text rather than varchar for
the description column in preparation for migrating the column’s contents from off-row to in-row storage.

1> use pubs2 2> go
1> exec sp_drop_object mymsgs, 'table'
2> go
1> create table mymsgs (
 error int not null
 , severity smallint not null
 , dlevel smallint not null
 , description text
 , langid smallint null
 , sqlstate varchar (5) null
) lock datarows
2> go
1> insert mymsgs select * from master..sysmessages 2> go

(9564 rows affected)

1> exec sp_spaceusage display, 'table', mymsgs 2> go

All the page counts in the result set are in the unit 'KB'. OwnerName TableName IndId NumRows UsedPages RsvdPages ExtentUtil ExpRsvdPages
PctBloatUsedPages PctBloatRsvdPages
--------- --------- ----- ------- --------- --------- ---------- ------------
dbo mymsgs 0 9564.0 372.0 384.0 96.87 320.0
 16.25 20.00

dbo mymsgs 255 NULL 19132.0 19140.0 99.95 19136.0 00 0.02

1> use pubs2 1>
2> dump tran pubs2 with no_log
1>
2> /* Drop the spaceusage stats table before each run */ 3> exec sp_drop_object spaceusage_object, 'table'

Dropping table spaceusage_object

630 P U B L I C
Transact-SQL Users Guide

In-Row Off-Row LOB

(return status = 0)

1> 2> exec sp_spaceusage archive, 'table', mymsgs

Data was successfully archived into table 'pubs2.dbo.spaceusage_object'. (return status = 0)

Migrate Using Update Statement

This example uses update set <column> = <column> to migrate off-row LOBs to in-row storage.

The select into command first creates a copy of mymsgs, including its off-row data, into
mymsgs_test_upd, moving the off-row data in-row in the process. You can then move the update command
to relocate off-row LOBs to in-row storage:

1> exec sp_drop_object mymsgs_test_upd, 'table' Dropping table mymsgs_test_upd
(return status = 0)
1>
2> select * into mymsgs_test_upd from mymsgs
(9564 rows affected)
1>
2> exec sp_spaceusage display, 'table', mymsgs_test_upd
All the page counts in the result set are in the unit 'KB'.
 OwnerName TableName IndId NumRows UsedPages RsvdPages ExtentUtil ExpRsvdPages
 PctBloatUsedPages PctBloatRsvdPages
 --------- --------------- ----- ------- --------- --------- ----------

dbo mymsgs_test_upd 0 9564.0 318.0 320.0 99.37 272.
0
 22.31 17.65
dbo mymsgs_test_upd 255 NULL 19132.0 19136.0 99.97 19136.
0
 0.00 0.00
(1 row affected) (return status = 0)

The space usage of the mymsgs_test_upd is nearly the same as that of the mymsgs table. The off-row LOB
consumes about 19KB of storage.

) 1> alter table mymsgs_test_upd modify description in row (300)
1> sp_spaceusage
2> go
2> update mymsgs_test_upd set description = description
(9564 rows affected)
1>
2> exec sp_spaceusage display, 'table', mymsgs_test_upd
All the page counts in the result set are in the unit 'KB'.
 OwnerName TableName IndId NumRows UsedPages RsvdPages ExtentUtil ExpRsvdPag
es
 PctBloatUsedPages PctBloatRsvdPages
 --------- --------------- ----- ------- --------- --------- ----------

dbo mymsgs_test_upd 0 9564.0 1246.0 1258.0
 99.04 272.0

Transact-SQL Users Guide
In-Row Off-Row LOB P U B L I C 631

 379.23 362.50
dbo mymsgs_test_upd 255 NULL 6.0 32.0 18.75 16
.0
 0.00 100.00
(1 row affected)
(return status = 0)
1>
2> exec sp_spaceusage archive, 'table', mymsgs_test_upd
Data was successfully archived into table 'pubs2.dbo.spaceusage_object'. (return status = 0)

The size of RsvdPages for the data layer, indid=0, has changed; what used to be 320KB, is now 1258KB,
while the reserved pages for the LOB column, indid=255, has decreased from 19136KB to around 32KB,
showing that the off-row storage changed to in-row.

Note
If you have a very large table (for example, over a million rows), executing an update statement may take a
very long time. If you use a where clause to select fewer rows at a time, make sure you use a key index to
identify all the rows in the table to ensure that you do not miss any rows during the conversion.

Use reorg rebuild

This example uses reorg rebuild to rebuild rows as part of the data movement, rebuilding
mymsgs_test_reorg so that it is capable of storing in-row LOBs.

1> exec sp_drop_object mymsgs_test_reorg, 'table' Dropping table mymsgs_test_reorg
(return status = 0)
1>
2> select * into mymsgs_test_reorg from mymsgs
(9564 rows affected)
1> alter table mymsgs_test_reorg modify description in row (300)
1>
2> REORG REBUILD mymsgs_test_reorg
Beginning REORG REBUILD of table 'mymsgs_test_reorg'.
(9564 rows affected)
REORG REBUILD of table 'mymsgs_test_reorg' completed.
1>
2> exec sp_spaceusage display, 'table', mymsgs_test_reorg
All the page counts in the result set are in the unit 'KB'.
 OwnerName TableName IndId NumRows UsedPages RsvdPages ExtentUtil ExpRsvdPag
es

 PctBloatUsedPages PctBloatRsvdPages
 --------- --------------- ----- ------- --------- --------- ----------

dbo mymsgs_test_reorg 0 9564.0 1230.0 1242.0 99.03 272
.0
 373.08 356.62
dbo mymsgs_test_reorg 255 NULL 6.0 32.0 18.75 16
.0
 0.00 0.00
(1 row affected)
(return status = 0)
1>
2> exec sp_spaceusage archive, 'table', mymsgs_test_reorg
Data was successfully archived into table 'pubs2.dbo.spaceusage_object'.

632 P U B L I C
Transact-SQL Users Guide

In-Row Off-Row LOB

 (return status = 0)

Migrate Using alter table with Data Copy

This example uses alter table, dropping a column to add it back as a new column so that the row content,
while essentially unchanged, modifies the description column.

The example shows how you can move LOB columns to in-row storage as a side-effect of an alter table
schema change operation that might require a data copy (such as drop column, add not null column, and
so on):

1> exec sp_drop_object mymsgs_test_alttab, 'table' Dropping table mymsgs_test_alttab
(return status = 0)
1>
2> select * into mymsgs_test_alttab from mymsgs
(9564 rows affected)
1> alter table mymsgs_test_alttab modify description in row (300)
1>
2> alter table mymsgs_test_alttab
3> DROP dlevel
4> ADD newdlevel int default 0 not null
(9564 rows affected)
1>
2> exec sp_spaceusage display, 'table', mymsgs_test_alttab
Warning: Some output column values in the result set may be incorrect. Running
'update statistics' may help correct them.
All the page counts in the result set are in the unit 'KB'.

OwnerName TableName IndId NumRows UsedPages RsvdPages ExtentUtil ExpRsvdPage
s
 PctBloatUsedPages PctBloatRsvdPages
 --------- --------------- ----- ------- --------- --------- ----------

dbo mymsgs_test_alttab 0 9564.0 1252.0 1258.0 99.52 1728
.0
 -27.46 -27.20
dbo mymsgs_test_alttab 255 NULL 6.0 32.0 18.75 16
.0
 0.00 100.00
(1 row affected)
(return status = 0)
1>
2> exec sp_spaceusage archive, 'table', mymsgs_test_alttab
Warning: Some output column values in the result set may be incorrect. Running
'update
statistics' may help correct them.
Data was successfully archived into table 'pubs2.dbo.spaceusage_object'. (return status = 0)

This is the summary report, showing the space usage information for the tables used in the examples, and the
significant decrease in space used. While the size of RsvdPages was 19140KB in the original mymsgs table for
the LOB columns (indid=255), this space has decreased by over 95 percent in all three sample tables:

1> exec sp_spaceusage report, 'table', 'mymsgs%', 'OwnerName, TableName, IndId, NumRows, RsvdPages, UsedPages, ExtentUtil'
All the page counts in the result set are in the unit 'KB'.
 OwnerName TableName IndId NumRows RsvdPages UsedPages ExtentUtil
 --------- ------------------ ----- ------- --------- --------- ----------

Transact-SQL Users Guide
In-Row Off-Row LOB P U B L I C 633

 dbo mymsgs 0 9564.0 318.0 318.0 100.00
 dbo mymsgs 255 NULL 19140.0 19132.0 99.95
 dbo mymsgs_test_alttab 0 9564.0 1258.0 1252.0 99.52
 dbo mymsgs_test_alttab 255 NULL 32.0 6.0 18.75
 dbo mymsgs_test_reorg 0 9564.0 1242.0 1230.0 99.03
 dbo mymsgs_test_reorg 255 NULL 32.0 6.0 18.75
 dbo mymsgs_test_upd 0 9564.0 1258.0 1246.0 99.04
 dbo mymsgs_test_upd 255 NULL 32.0 6.0 18.75
(1 row affected) (return status = 0)

22.2.2.1 Set Up the mymsgs Example Table

An example that creates the mymsgs table from the pubs2 database, specifying text rather than varchar for
the description column in preparation for migrating the column’s contents from off-row to in-row storage.

1> use pubs2 2> go
1> exec sp_drop_object mymsgs, 'table'
2> go
1> create table mymsgs (
 error int not null
 , severity smallint not null
 , dlevel smallint not null
 , description text
 , langid smallint null
 , sqlstate varchar (5) null
) lock datarows
2> go
1> insert mymsgs select * from master..sysmessages 2> go

(9564 rows affected)

1> exec sp_spaceusage display, 'table', mymsgs 2> go

All the page counts in the result set are in the unit 'KB'. OwnerName TableName IndId NumRows UsedPages RsvdPages ExtentUtil ExpRsvdPages
PctBloatUsedPages PctBloatRsvdPages
 --------- --------- ----- ------- --------- --------- ---------- ------------
 dbo mymsgs 0 9564.0 372.0 384.0 96.87 320.0
 16.25 20.00
 dbo mymsgs 255 NULL 19132.0 19140.0 99.95 19136.0 00 0.02

1> use pubs2 1>
2> dump tran pubs2 with no_log
1>
2> /* Drop the spaceusage stats table before each run */ 3> exec sp_drop_object spaceusage_object, 'table'

Dropping table spaceusage_object (return status = 0)

1>

634 P U B L I C
Transact-SQL Users Guide

In-Row Off-Row LOB

 2> exec sp_spaceusage archive, 'table', mymsgs

Data was successfully archived into table 'pubs2.dbo.spaceusage_object'. (return status = 0)

22.2.2.2 Migrate Using Update Statement

An example using update set <column> = <column> to migrate off-row LOBs to in-row storage.

The select into command first creates a copy of mymsgs, including its off-row data, into
mymsgs_test_upd, moving the off-row data in-row in the process. You can then move the update command
to relocate off-row LOBs to in-row storage:

1> exec sp_drop_object mymsgs_test_upd, 'table' Dropping table mymsgs_test_upd
(return status = 0)
1>
2> select * into mymsgs_test_upd from mymsgs
(9564 rows affected)
1>
2> exec sp_spaceusage display, 'table', mymsgs_test_upd
All the page counts in the result set are in the unit 'KB'.
 OwnerName TableName IndId NumRows UsedPages RsvdPages ExtentUtil ExpRsvdPag
es
 PctBloatUsedPages PctBloatRsvdPages
 --------- --------------- ----- ------- --------- --------- ----------

 ----------------- -----------------
dbo mymsgs_test_upd 0 9564.0 318.0 320.0 99.37 272.
0
 22.31 17.65
dbo mymsgs_test_upd 255 NULL 19132.0 19136.0 99.97 19136.
0
 0.00 0.00
(1 row affected) (return status = 0)

The space usage of the mymsgs_test_upd is nearly the same as that of the mymsgs table. The off-row LOB
consumes about 19KB of storage.

) 1> alter table mymsgs_test_upd modify description in row (300)
1> sp_spaceusage
2> go
2> update mymsgs_test_upd set description = description
(9564 rows affected)
1>
2> exec sp_spaceusage display, 'table', mymsgs_test_upd
All the page counts in the result set are in the unit 'KB'.
 OwnerName TableName IndId NumRows UsedPages RsvdPages ExtentUtil ExpRsvdPag
es
 PctBloatUsedPages PctBloatRsvdPages
 --------- --------------- ----- ------- --------- --------- ----------

 ----------------- -----------------
dbo mymsgs_test_upd 0 9564.0 1246.0 1258.0
 99.04 272.0
 379.23 362.50
dbo mymsgs_test_upd 255 NULL 6.0 32.0 18.75 16
.0

Transact-SQL Users Guide
In-Row Off-Row LOB P U B L I C 635

 0.00 100.00
(1 row affected)
(return status = 0)
1>
2> exec sp_spaceusage archive, 'table', mymsgs_test_upd
Data was successfully archived into table 'pubs2.dbo.spaceusage_object'. (return status = 0)

The size of RsvdPages for the data layer, indid=0, has changed; what used to be 320KB, is now 1258KB,
while the reserved pages for the LOB column, indid=255, has decreased from 19136KB to around 32KB,
showing that the off-row storage changed to in-row.

Note
If you have a very large table (for example, over a million rows), executing an update statement may take a
very long time. If you use a where clause to select fewer rows at a time, make sure you use a key index to
identify all the rows in the table to ensure that you do not miss any rows during the conversion.

22.2.2.3 Use reorg rebuild

An example using reorg rebuild to rebuild rows as part of the data movement, rebuilding
mymsgs_test_reorg so that it is capable of storing in-row LOBs.

1> exec sp_drop_object mymsgs_test_reorg, 'table' Dropping table mymsgs_test_reorg
(return status = 0)
1>
2> select * into mymsgs_test_reorg from mymsgs
(9564 rows affected)
1> alter table mymsgs_test_reorg modify description in row (300)
1>
2> REORG REBUILD mymsgs_test_reorg
Beginning REORG REBUILD of table 'mymsgs_test_reorg'.
(9564 rows affected)
REORG REBUILD of table 'mymsgs_test_reorg' completed.
1>
2> exec sp_spaceusage display, 'table', mymsgs_test_reorg
All the page counts in the result set are in the unit 'KB'.
 OwnerName TableName IndId NumRows UsedPages RsvdPages ExtentUtil ExpRsvdPag
es
 PctBloatUsedPages PctBloatRsvdPages
 --------- --------------- ----- ------- --------- --------- ----------

 ----------------- -----------------
dbo mymsgs_test_reorg 0 9564.0 1230.0 1242.0 99.03 272
.0
 373.08 356.62
dbo mymsgs_test_reorg 255 NULL 6.0 32.0 18.75 16
.0
 0.00 0.00
(1 row affected)
(return status = 0)
1>
2> exec sp_spaceusage archive, 'table', mymsgs_test_reorg
Data was successfully archived into table 'pubs2.dbo.spaceusage_object'. (return status = 0)

636 P U B L I C
Transact-SQL Users Guide

In-Row Off-Row LOB

22.2.2.4 Migrate Using alter table with Data Copy

An example using alter table, dropping a column to add it back as a new column so that the row content,
while essentially unchanged, modifies the description column.

The example shows how you can move LOB columns to in-row storage as a side-effect of an alter table
schema change operation that might require a data copy (such as drop column, add not null column, and
so on):

1> exec sp_drop_object mymsgs_test_alttab, 'table' Dropping table mymsgs_test_alttab
(return status = 0)
1>
2> select * into mymsgs_test_alttab from mymsgs
(9564 rows affected)
1> alter table mymsgs_test_alttab modify description in row (300)
1>
2> alter table mymsgs_test_alttab
3> DROP dlevel
4> ADD newdlevel int default 0 not null
(9564 rows affected)
1>
2> exec sp_spaceusage display, 'table', mymsgs_test_alttab
Warning: Some output column values in the result set may be incorrect. Running
'update statistics' may help correct them.
All the page counts in the result set are in the unit 'KB'.
 OwnerName TableName IndId NumRows UsedPages RsvdPages ExtentUtil ExpRsvdPag
es
 PctBloatUsedPages PctBloatRsvdPages
 --------- --------------- ----- ------- --------- --------- ----------

 ----------------- -----------------
dbo mymsgs_test_alttab 0 9564.0 1252.0 1258.0 99.52 1728
.0
 -27.46 -27.20
dbo mymsgs_test_alttab 255 NULL 6.0 32.0 18.75 16
.0
 0.00 100.00
(1 row affected)
(return status = 0)
1>
2> exec sp_spaceusage archive, 'table', mymsgs_test_alttab
Warning: Some output column values in the result set may be incorrect. Running
'update
statistics' may help correct them.
Data was successfully archived into table 'pubs2.dbo.spaceusage_object'. (return status = 0)

This is the summary report, showing the space usage information for the tables used in the examples, and the
significant decrease in space used. While the size of RsvdPages was 19140KB in the original mymsgs table for
the LOB columns (indid=255), this space has decreased by over 95 percent in all three sample tables:

1> exec sp_spaceusage report, 'table', 'mymsgs%', 'OwnerName, TableName, IndId, NumRows, RsvdPages, UsedPages, ExtentUtil'
All the page counts in the result set are in the unit 'KB'.
 OwnerName TableName IndId NumRows RsvdPages UsedPages ExtentUtil
 --------- ------------------ ----- ------- --------- --------- ----------
 dbo mymsgs 0 9564.0 318.0 318.0 100.00
 dbo mymsgs 255 NULL 19140.0 19132.0 99.95
 dbo mymsgs_test_alttab 0 9564.0 1258.0 1252.0 99.52
 dbo mymsgs_test_alttab 255 NULL 32.0 6.0 18.75
 dbo mymsgs_test_reorg 0 9564.0 1242.0 1230.0 99.03
 dbo mymsgs_test_reorg 255 NULL 32.0 6.0 18.75

Transact-SQL Users Guide
In-Row Off-Row LOB P U B L I C 637

 dbo mymsgs_test_upd 0 9564.0 1258.0 1246.0 99.04
 dbo mymsgs_test_upd 255 NULL 32.0 6.0 18.75
(1 row affected) (return status = 0)

22.2.3 Guidelines for Selecting the In-Row LOB Length

The choice of the in-row LOB length affects the storage space used for the data pages, LOB pages, and the
number of rows that can fit on a data page.

● Specifying an in-row LOB length greater than the logical page size is ineffective, as only LOB values that
are smaller than a page size are considered for in-row storage. Conversely, specifying a very small in-row
LOB value may move very few LOB columns in-row, and not yield the potential savings in LOB storage
space.

● A typical in-row LOB length is somewhere between the range of the minimum data length of a LOB column
and the logical page size. A large in-row length value may fill an entire data page with just one row, so a
practical useful value lies close to the average data length of the off-row LOB column where the length is
less than a page size.

● The choice of the in-row LOB length can also potentially affect scan performance for queries that return
large numbers of rows, and that do not reference LOB columns. If very few rows fit on the data page due to
large in-row LOB values, then the number of data pages scanned might be very big, thereby slowing query
responses.
Examine the data lengths in your tables to estimate the in-row LOB length so that more than just one or
two rows fit on the page. Balance performance impacts against the reduced LOB storage.

22.2.4 Identifying In-Row LOB Length Selection

Identify in-row LOB length selection to estimate the different amounts of LOB storage savings.

Procedure

1. Identify the minimum, maximum and average data row size for the table with LOBs being stored off-row:

1> select i.minlen, t.datarowsize, i.maxlen 2> from sysindexes i, systabstats t
3> where i.id = object_id('DYNPSOURCE')
4> and i.indid in (0, 1)
5> and i.id = t.id 6> go

 minlen datarowsize maxlen ------ --------------------------- ------ 9 105.000000 201

2. Compute the mininum, average, and maximum data lengths for the off-row column of interest:

1> select datalength(FIELDINFO) as fieldinfo_len into

638 P U B L I C
Transact-SQL Users Guide

In-Row Off-Row LOB

 #dynpsource_FIELDINFO
2> from DYNPSOURCE
3> where datalength(FIELDINFO) < @@maxpagesize 4> go

(65771 rows affected)

1> select minlen = min(fieldinfo_len), avglen = avg(fieldinfo_len), maxlen = max(fieldinfo_len)
2> from #dynpsource_FIELDINFO 3> go

 minlen avglen maxlen ----------- ----------- ----------- 536 7608 16080

Out of a total of about 190,000 rows in the DYPNSOURCE table, approximately 65000 of them had the off-
row LOB column DYPNSOURCE such that its data length was well within the logical page size of 16K.

By choosing an in-row LOB length that lies between the minlen or avglen in the above output, different
numbers of off-row LOBs can be brought in-row, thereby providing different amounts of LOB storage
savings.

22.3 Downgrading Tables Containing In-Row LOB Columns

You cannot downgrade an SAP ASE server that has any tables that are defined with an in-row LOB column,
regardless of whether the table actually contains any data in that column.

If you must downgrade such an SAP ASE server, copy all data out (bcp out), then copy it back in (bcp in) on
the affected tables.

Transact-SQL Users Guide
In-Row Off-Row LOB P U B L I C 639

23 Transactions: Maintain Data Consistency
and Recovery

A transaction treats a set of Transact-SQL statements as a unit. Either all statements in the group are
executed or no statements are executed.

SAP ASE automatically manages all data modification commands, including single-step change requests, as
transactions. By default, each insert, update, and delete statement is considered a single transaction.

However, consider the following scenario: Lee must make a series of data retrievals and modifications to the
authors, titles, and titleauthors tables. As she is doing so, Lil begins to update the titles table. Lil’s
updates may cause inconsistent results with the work that Lee is doing. To prevent this from happening, Lee
can group her statements into a single transaction, which locks Lil out of the portions of the tables that Lee is
working on. This allows Lee to complete her work based on accurate data. After she completes her table
updates, Lil’s updates can take place.

Use these commands to create transactions:

● begin transaction – marks the beginning of the transaction block. The syntax is:

begin {transaction | tran} [<transaction_name>]

<transaction_name> is the name assigned to the transaction, which must conform to the rules for
identifiers. Use transaction names only on the outermost pair of nested begin/commit or begin/
rollback statements.

● save transaction – marks a savepoint within a transaction:

save {transaction | tran} <savepoint_name>

<savepoint_name> is the name assigned to the savepoint, which must conform to the rules for
identifiers.

● commit – commits the entire transaction:

commit [transaction | tran | work] [<transaction_name>]

● rollback – rolls a transaction back to a savepoint or to the beginning of a transaction:

rollback [transaction | tran | work] [<transaction_name >|< savepoint_name>]

For example, Lee wants to change the royalty split for two authors of The Gourmet Microwave. Since the
database would be inconsistent between the two updates, they must be grouped into a transaction, as shown
in the following example:

begin transaction royalty_change
update titleauthor
set royaltyper = 65
from titleauthor, titles
where royaltyper = 75
and titleauthor.title_id = titles.title_id

640 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

and title = "The Gourmet Microwave"

update titleauthor
set royaltyper = 35
from titleauthor, titles
where royaltyper = 25
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

save transaction percentchanged

/* After updating the royaltyper entries for
** the two authors, insert the savepoint
** percentchanged, then determine how a 10%
** increase in the book’s price would affect
** the authors’ royalty earnings. */

update titles
set price = price * 1.1
where title = "The Gourmet Microwave"

select (price * total_sales) * royaltyper
from titles, titleauthor
where title = "The Gourmet Microwave"
and titles.title_id = titleauthor.title_id

/* The transaction is rolled back to the savepoint
** with the rollback transaction command. */

rollback transaction percentchanged
 commit transaction

Transactions allow SAP ASE to guarantee:

● Consistency – simultaneous queries and change requests cannot collide with each other, and users never
see or operate on data that is partially through a change.

● Recovery – in case of system failure, database recovery is complete and automatic.

To support SQL-standards-compliant transactions, SAP ASE allows you to select the mode and isolation level
for your transactions. Applications that require transactions to be compliant with SQL standards should set
those options at the beginning of every session.

23.1 Transactions and Consistency

In a multiuser environment, SAP ASE must prevent simultaneous queries and data modification requests from
interfering with each other. If the data being processed by a query can be changed by another user’s update,
the results of the query may be ambiguous.

SAP ASE automatically sets the appropriate level of locking for each transaction. You can make shared locks
more restrictive on a query-by-query basis by including the holdlock keyword in a select statement.

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 641

23.2 Transactions and Recovery

A transaction is both a unit of work and a unit of recovery. Because SAP ASE handles single-step change
requests as transactions, the database can be recovered completely in case of failure.

The SAP ASE recovery time is measured in minutes and seconds. You can specify the maximum acceptable
recovery time.

Note
Grouping large numbers of Transact-SQL commands into one long-running transaction may affect recovery
time. If SAP ASE fails before the transaction commits, recovery takes longer, because SAP ASE must undo
the transaction.

If you are using a remote database with Component Integration Services, there are a few differences in the
way transactions are handled. See the Component Integration Services User’s Guide.

If you have purchased and installed SAP ASE DTM features, transactions that update data in multiple servers
can also benefit from transactional consistency. See Using SAP ASE Distributed Transaction Features.

Related Information

Backup and Recovery of Transactions [page 667]

23.3 Transaction Usage

The begin transaction and commit transaction commands tell SAP ASE to process any number of
individual commands as a single unit. rollback transaction undoes the transaction, either back to its
beginning, or back to a savepoint. Use save transaction to define a savepoint inside a transaction.

In addition to grouping SQL statements to behave as a single unit, transactions improve performance, since
system overhead is incurred once per transaction, rather than once for each individual command.

Any user can define a transaction. No permission is required for any of the transaction commands.

23.3.1 Allow Data Definition Commands in Transactions

You can use certain data definition language commands, such as create table, grant, and alter table,
in transactions by setting the ddl in tran database option to true.

If ddl in tran is true in the model database, you can issue the commands inside transactions in all
databases created after ddl in tran was set to true in model. To check the current settings of ddl in
tran, use sp_helpdb.

642 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

Caution
Use data definition commands with caution. The only scenario in which using data definition language
commands inside transactions is justified is in create schema. Data definition language commands hold
locks on system tables such as sysobjects. If you use data definition language commands inside
transactions, keep the transactions short.

Avoid using data definition language commands on tempdb within transactions; doing so can slow
performance to a halt. Always leave ddl in tran set to false in tempdb.

To set ddl in tran to true, enter:

sp_dboption <database_name>,"ddl in tran", true

Then execute the checkpoint command in that database.

The first parameter specifies the name of the database in which to set the option. You must be using the
master database to execute sp_dboption. Any user can execute sp_dboption with no parameters to
display the current option settings. To set options, however, you must be either a system administrator or the
database owner.

These commands are allowed inside a transaction only if the ddl in tran option to sp_dboption is set to
true:

● create default
● create index
● create procedure
● create rule
● create schema
● create table
● create trigger
● create view
● drop default
● drop index
● drop procedure
● drop rule
● drop table
● drop trigger
● drop view
● grant
● revoke

You cannot use system procedures that change the master database or create temporary tables inside
transactions.

Do not use these commands inside a transaction:

● alter database
● alter table...partition
● alter table...unpartition

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 643

● create database
● disk init
● dump database
● dump transaction
● drop database
● load transaction
● load database
● reconfigure
● select into
● update statistics
● truncate table

23.3.2 System Procedures That Are Not Allowed in
Transactions

You cannot use certain system procedures within transactions.

● sp_helpdb, sp_helpdevice, sp_helpindex, sp_helpjoins, sp_helpserver, sp_lookup, and
sp_spaceused (because they create temporary tables)

● sp_configure
● System procedures that change the master database

23.3.3 Begin and Commit Transactions

The begin transaction and commit transaction commands can enclose any number of SQL statements
and stored procedures.

The syntax for both statements is:

begin {transaction | tran} [<transaction_name>]

commit {transaction | tran | work} [<transaction_name>]

where <transaction_name> is the name assigned to the transaction, which must conform to the rules for
identifiers.

The keywords transaction, tran, and work (in commit transaction) are synonymous; you can use them
interchangeably. However, transaction and tran are Transact-SQL extensions; only work is compliant with
SQL-standards.

For example:

begin tran <statement> <procedure> <statement>

644 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

 commit tran

commit transaction does not affect SAP ASE if the transaction is not currently active.

An example showing how you might specify a transaction:

begin transaction royalty_change /* A user sets out to change the royalty split */
/* for the two authors of The Gourmet Microwave. */
/* Since the database would be inconsistent */
/* between the two updates, they must be grouped */
/* into a transaction. */
update titleauthor
set royaltyper = 65
from titleauthor, titles
where royaltyper = 75
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"
update titleauthor
set royaltyper = 35
from titleauthor, titles
where royaltyper = 25
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"
save transaction percent_changed
/* After updating the royaltyper entries for */
/* the two authors, the user inserts the */
/* savepoint "percent_changed," and then checks */
/* to see how a 10 percent increase in the */
/* price would affect the authors’ royalty */
/* earnings. */
update titles
set price = price * 1.1
where title = "The Gourmet Microwave"
select (price * royalty * total_sales) * royaltyper
from titles, titleauthor, roysched
where title = "The Gourmet Microwave"
and titles.title_id = titleauthor.title_id
and titles.title_id = roysched.title_id
rollback transaction percent_changed
/* The transaction rolls back to the savepoint */
/* with the rollback transaction command. */
/* Without a savepoint, it would roll back to */
/* the begin transaction. */ commit transaction

23.3.4 Roll Back and Save Transactions

If you must cancel a transaction before it commits—either because of some failure or because of a change by
the user—you must undo all of its completed statements or procedures.

You can cancel or roll back a transaction with the rollback transaction command any time before commit
transaction has been given. Using savepoints, you can cancel either an entire transaction or part of it.
However, you cannot cancel a transaction after it has been committed.

The syntax of rollback transaction is:

rollback {transaction | tran | work} [<transaction_name> | <savepoint_name>]

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 645

A savepoint is a marker that a user puts inside a transaction to indicate a point to which it can be rolled back.
You can commit only certain portions of a batch by rolling back the undesired portion to a savepoint before
committing the entire batch.

Insert a savepoint by placing a save transaction command in the transaction:

save {transaction | tran} <savepoint_name>

The savepoint name must conform to the rules for identifiers.

If no <savepoint_name> or <transaction_name> is given with rollback transaction, the transaction is
rolled back to the first begin transaction in a batch.

Here is how you can use the save transaction and rollback transaction commands:

begin tran

 <statements> Group A

 save tran mytran

 <statements> Group B

 rollback tran mytran Rolls back group B

 <statements> Group C

 commit tran Commits groups A and C

Until you issue a commit transaction, SAP ASE considers all subsequent statements to be part of the
transaction, unless it encounters another begin transaction statement. At that point, SAP ASE considers
all subsequent statements to be part of the new, nested transaction.

rollback transaction or save transaction does not affect SAP ASE and does not return an error
message if the transaction is not currently active.

You can also use save transaction to create transactions in stored procedures or triggers in such a way
that they can be rolled back without affecting batches or other procedures. For example:

create proc myproc as begin tran
save tran mytran <statements> if ...
 begin
 rollback tran mytran
 /*
 ** Rolls back to savepoint.
 */
 commit tran
 /*
 ** This commit needed; rollback to a savepoint
 ** does not cancel a transaction.
 */
 end
else
commit tran
 /*

646 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

 ** Matches begin tran; either commits
 ** transaction (if not nested) or
 ** decrements nesting level. */

Unless you are rolling back to a savepoint, use transaction names only on the outermost pair of begin/
commit or begin/rollback statements.

Caution
Transaction names are ignored, or can cause errors, when used in nested transaction statements. If you are
using transactions in stored procedures or triggers that could be called from within other transactions, do
not use transaction names.

Related Information

Nested Transactions [page 649]

23.3.5 Transaction States

The global variable <@@transtate> keeps track of the current state of a transaction. SAP ASE determines
what state to return by keeping track of any transaction changes after a statement executes.

@@trans
tate
Value

Meaning

0 Transaction in progress. A transaction is in effect; the previous statement executed successfully.

1 Transaction succeeded. The transaction completed and committed its changes.

2 Statement aborted. The previous statement was aborted; no effect on the transaction.

3 Transaction aborted. The transaction aborted and rolled back any changes.

SAP ASE does not clear <@@transtate> after every statement. In a transaction, you can use
<@@transtate> after a statement (such as an insert) to determine whether it was successful or aborted,
and to determine its effect on the transaction. The following example checks <@@transtate> during a
transaction (after a successful insert) and after the transaction commits:

begin transaction

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 647

insert into publishers (pub_id) values ("9999")

(1 row affected)

select @@transtate

---------- 0
 (1 row affected)

commit transaction select @@transtate

---------- 1
 (1 row affected)

The next example checks <@@transtate> after an unsuccessful insert (due to a rule violation) and after the
transaction rolls back:

begin transaction insert into publishers (pub_id) values ("7777")

Msg 552, Level 16, State 1: A column insert or update conflicts with a rule bound to the column. The command
is aborted. The conflict occured in database ’pubs2’, table ’publishers’,
rule ’pub_idrule’, column ’pub_id’.

select @@transtate

---------- 2
 (1 row affected)

rollback transaction select @@transtate

---------- 3
 (1 row affected)

SAP ASE changes <@@transtate> only in response to an action taken by a transaction. Syntax and compile
errors do not affect the value of <@@transtate>.

648 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

23.3.6 Nested Transactions

You can nest transactions within other transactions. When you nest begin transaction and commit
transaction statements, the outermost pair actually begin and commit the transaction. The inner pairs only
track the nesting level.

SAP ASE does not commit the transaction until the commit transaction that matches the outermost
begin transaction is issued. Normally, this transaction “nesting” occurs as stored procedures or triggers
that contain begin/commit pairs call each other.

The <@@trancount> global variable keeps track of the current nesting level for transactions. An initial implicit
or explicit begin transaction sets <@@trancount> to 1. Each subsequent begin transaction
increments <@@trancount>, and a commit transaction decrements it. Firing a trigger also increments
<@@trancount>, and the transaction begins with the statement that causes the trigger to fire. Nested
transactions are not committed unless <@@trancount> equals 0.

For example, the following nested groups of statements are not committed by SAP ASE until the final commit
transaction:

begin tran select @@trancount
 /* @@trancount = 1 */
 begin tran
 select @@trancount
 /* @@trancount = 2 */
 begin tran
 select @@trancount
 /* @@trancount = 3 */
 commit tran
 commit tran
commit tran
select @@trancount /* @@ trancount = 0 */

When you nest a rollback transaction statement without including a transaction or savepoint name, it
rolls back to the outermost begin transaction statement and cancels the transaction.

23.3.7 Example of a Transaction

An example showing how you might specify a transaction.

begin transaction royalty_change /* A user sets out to change the royalty split */
/* for the two authors of The Gourmet Microwave. */
/* Since the database would be inconsistent */
/* between the two updates, they must be grouped */
/* into a transaction. */
update titleauthor
set royaltyper = 65
from titleauthor, titles
where royaltyper = 75
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"
update titleauthor
set royaltyper = 35

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 649

from titleauthor, titles
where royaltyper = 25
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"
save transaction percent_changed
/* After updating the royaltyper entries for */
/* the two authors, the user inserts the */
/* savepoint "percent_changed," and then checks */
/* to see how a 10 percent increase in the */
/* price would affect the authors’ royalty */
/* earnings. */
update titles
set price = price * 1.1
where title = "The Gourmet Microwave"
select (price * royalty * total_sales) * royaltyper
from titles, titleauthor, roysched
where title = "The Gourmet Microwave"
and titles.title_id = titleauthor.title_id
and titles.title_id = roysched.title_id
rollback transaction percent_changed
/* The transaction rolls back to the savepoint */
/* with the rollback transaction command. */
/* Without a savepoint, it would roll back to */
/* the begin transaction. */ commit transaction

23.4 Transaction Mode and Isolation Level

SAP ASE provides certain options that support transactions that must be compliant with SQL standards.

● The transaction mode lets you set whether transactions begin with or without an implicit begin
transaction statement.

● The isolation level refers to the degree to which data can be accessed by other users during a transaction.

Set these options at the beginning of every session that requires SQL-standards-compliant transactions.

23.4.1 Choose a Transaction Mode

SAP ASE supports chained and unchained transaction modes. You can set either mode using the chained
option of the set command.

The transaction modes supported are:

● chained mode implicitly begins a transaction before any data-retrieval or modification statement: delete,
insert, open, fetch, select, and update. You must still explicitly end the transaction with commit
transaction or rollback transaction.

● The default mode, called unchained mode or Transact-SQL mode, requires explicit begin transaction
statements paired with commit transaction or rollback transaction statements to complete the
transaction.

Do not mix these transaction modes in your applications. The behavior of stored procedures and triggers can
vary, depending on the mode, and you may require special action to run a procedure in one mode that was
created in the other.

650 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

The SQL standards require every SQL data-retrieval and data-modification statement to occur inside a
transaction, using chained mode. A transaction automatically starts with the first data-retrieval or data-
modification statement after the start of a session or after the previous transaction commits or aborts. This is
the chained transaction mode.

You can set this mode for your current session by turning on the chained option of the set statement:

However, you cannot execute the set chained command within a transaction. To return to the unchained
transaction mode, set the chained option to off.

The following group of statements produce different results, depending on which mode you use:

insert into publishers values ("9906", null, null, null)
begin transaction
delete from publishers where pub_id = "9906" rollback transaction

In unchained transaction mode, rollback affects only the delete statement, so publishers still contains
the inserted row. In chained mode, the insert statement implicitly begins a transaction, and the rollback
affects all statements up to the beginning of that transaction, including the insert.

All application programs and ad hoc user queries should address the correct transaction mode. The
transaction mode you use depends on whether or not a particular query or application requires compliance to
the SQL standards. Applications that use chained transactions (for example, the Embedded SQL precompiler)
should set chained mode at the beginning of each session.

23.4.1.1 Transaction Modes and Nested Transactions

Although chained mode implicitly begins transactions with data-retrieval or modification statements, you can
nest transactions only by explicitly using begin transaction statements.

Once the first transaction implicitly begins, further data-retrieval or modification statements no longer begin
transactions until after the first transaction commits or aborts. For example, in the following query, the first
commit transaction commits all changes in chained mode; the second commit is unnecessary:

insert into publishers values ("9907", null, null, null)
 insert into publishers
 values ("9908", null, null, null)
 commit transaction commit transaction

Note
In chained mode, a data-retrieval or modification statement begins a transaction whether or not it executes
successfully. Even a select that does not access a table begins a transaction.

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 651

23.4.1.2 Find the Status of the Current Transaction Mode

The global variable <@@tranchained> to determine SAP ASE’s current transaction mode. select
<@@tranchained> returns 0 for unchained mode or 1 for chained mode.

23.4.2 Choose an Isolation Level

The ANSI SQL standard defines four levels of isolation for transactions. Each isolation level specifies the kinds
of actions that are not permitted while concurrent transactions are executing. Higher levels include the
restrictions imposed by the lower levels.

● Level 0 – ensures that data written by one transaction represents the actual data. Level 0 prevents other
transactions from changing data that has already been modified (through an insert, delete, update,
and so on) by an uncommitted transaction. The other transactions are blocked from modifying that data
until the transaction commits. However, other transactions can still read the uncommitted data, which
results in dirty reads.

● Level 1 – prevents dirty reads. Such reads occur when one transaction modifies a row, and a second
transaction reads that row before the first transaction commits the change. If the first transaction rolls
back the change, the information read by the second transaction becomes invalid. Level 1 is the default
isolation level supported by SAP ASE.

● Level 2 – prevents nonrepeatable reads, which occur when one transaction reads a row and a second
transaction modifies that row. If the second transaction commits its change, subsequent reads by the first
transaction yield different results than the original read.
SAP ASE supports level 2 for data-only-locked tables. It is not supported for allpages-locked tables.

● Level 3 – ensures that data read by one transaction is valid until the end of that transaction, preventing
phantom rows. SAP ASE supports this level through the holdlock keyword of the select statement,
which applies a read-lock on the specified data. Phantom rows occur when one transaction reads a set of
rows that satisfy a search condition, and then a second transaction modifies the data (through an insert,
delete, update, and so on). If the first transaction repeats the read with the same search conditions, it
obtains a different set of rows.

You can set the isolation level for your session by using the transaction isolation level option of the
set command. You can enforce the isolation level for only a single query as opposed to using the at
isolation clause of the select statement. For example:

set transaction isolation level 0

652 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

23.4.2.1 Default Isolation Levels for SAP ASE and ANSI SQL

By default, the SAP ASE transaction isolation level is 1. The ANSI SQL standard requires level 3 to be the
default isolation for all transactions. This prevents dirty reads, nonrepeatable reads, and phantom rows.

To enforce this default level of isolation, Transact-SQL provides the transaction isolation level 3
option of the set statement. This option instructs SAP ASE to apply a holdlock to all select operations in a
transaction. For example:

set transaction isolation level 3

Applications that use transaction isolation level 3 should set that isolation level at the beginning of
each session. However, setting transaction isolation level 3 causes SAP ASE to hold any read locks
for the duration of the transaction. If you also use the chained transaction mode, that isolation level remains in
effect for any data-retrieval or modification statement that implicitly begins a transaction. In both cases, this
can lead to concurrency problems for some applications, since more locks may be held for longer periods of
time.

To return your session to the SAP ASE default isolation level:

set transaction isolation level 1

23.4.2.2 Dirty Reads

Applications that are not impacted by dirty reads may have better concurrency and reduced deadlocks when
accessing the same data if you set transaction isolation level 0 at the beginning of each session.

An example is an application that finds the momentary average balance for all savings accounts stored in a
table. Since it requires only a snapshot of the current average balance, which probably changes frequently in
an active table, the application should query the table using isolation level 0. Other applications that require
data consistency, such as deposits and withdrawals to specific accounts in the table, should avoid using
isolation level 0.

Scans at isolation level 0 do not acquire any read locks, so they do not block other transactions from writing to
the same data, and vice versa. However, even if you set your isolation level to 0, utilities (like dbcc) and data
modification statements (like update) still acquire read locks for their scans, because they must maintain the
database integrity by ensuring that the correct data has been read before modifying it.

Because scans at isolation level 0 do not acquire any read locks, the result set of a level 0 scan may change
while the scan is in progress. If the scan position is lost due to changes in the underlying table, a unique index
is required to restart the scan. In the absence of a unique index, the scan may be aborted.

By default, a unique index is required for a level 0 scan on a table that does not reside in a read-only database.
You can override this requirement by forcing SAP ASE to choose a nonunique index or a table scan, as follows:

select * from <table_name> (index <table_name>)

Activity on the underlying table may abort the scan before completion.

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 653

23.4.2.3 Repeatable Reads

A transaction performing repeatable reads locks all rows or pages read during the transaction. After one query
in the transaction has read rows, no other transaction can update or delete the rows until the repeatable-reads
transaction completes.

Repeatable-reads transactions do not provide phantom protection by performing range locking, as serializable
transactions do. Other transactions can insert values that can be read by the repeatable-reads transaction and
can update rows so that they match the search criteria of the repeatable-reads transaction.

A transaction performing repeatable reads locks all rows or pages read during the transaction. After one query
in the transaction has read rows, no other transaction can update or delete the rows until the repeatable reads
transaction completes. However, repeatable-reads transactions do not provide phantom protection by
performing range locking, as serializable transactions do. Other transactions can insert values that can be
read by the repeatable-reads transaction and can update rows so that they match the search criteria of the
repeatable-reads transaction.

Note
Transaction isolation level 2 is supported only in data-only-locked tables. If you use transaction isolation
level 2 (repeatable reads) on allpages-locked tables, isolation level 3 (serializable reads) is also enforced.

To enforce repeatable reads at a session level, use:

set transaction isolation level 2

or:

set transaction isolation level repeatable read

To enforce transaction isolation level 2 from a query, use:

select title_id, price, advance from titles at isolation 2

or:

select title_id, price, advance from titles at isolation repeatable read

Transaction isolation level 2 is supported only at the transaction level. You cannot use the at isolation
clause in a select or readtext statement to set the isolation level of a query to 2.

Related Information

Change the Isolation Level for a Query [page 655]

654 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

23.4.2.4 Find the Status of the Current Isolation Level

The global variable <@@isolation> contains the current isolation level of your Transact-SQL session.
Querying <@@isolation> returns the value of the active level (0, 1, or 3).

For example:

select @@isolation

-------- 1

23.4.2.5 Change the Isolation Level for a Query

Change the isolation level for a query by using the at isolation clause with the select or readtext
statements.

The at isolation clause supports isolation levels 0, 1, and 3. It does not support isolation level 2. The read
uncommitted, read committed, and serializable options support these isolation levels:

at isolation Option Isolation Level

read uncommited 0

read committed 1

serializable 3

For example, the following two statements query the same table at isolation levels 0 and 3, respectively:

select * from titles
at isolation read uncommitted
select *
from titles at isolation serializable

The at isolation clause is valid only for single select and readtext queries or in the declare cursor
statement. SAP ASE returns a syntax error if you use at isolation:

● With a query using the into clause
● Within a subquery
● With a query in the create view statement
● With a query in the insert statement
● With a query using the for browse clause

If there is a union operator in the query, you must specify the at isolation clause after the last select.

The SQL-92 standard defines read uncommitted, read committed, and serializable as options for at
isolation and set transaction isolation level. A Transact-SQL extension also allows you to

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 655

specify 0, 1, or 3, but not 2, for at isolation. To simplify the discussion of isolation levels, the at
isolation examples in this manual do not use this extension.

You can also enforce isolation level 3 using the holdlock keyword of the select statement. However, you
cannot specify noholdlock or shared in a query that also specifies at isolation read uncommitted. (If
you specify holdlock and isolation level 0 in a query, SAP ASE issues a warning and ignores the at
isolation clause.) When you use different ways to set an isolation level, the holdlock keyword takes
precedence over the at isolation clause (except for isolation level 0), and at isolation takes
precedence over the session level defined by set transaction isolation level.

See the Performance and Tuning Series: Locking and Concurrency Control.

23.4.2.6 Isolation Level Precedences

Precedence rules apply to different methods of defining isolation levels.

1. The holdlock, noholdlock, and shared keywords take precedence over the at isolation clause and
set transaction isolation level option, except in the case of isolation level 0. For example:

/* This query executes at isolation level 3 */ select *
 from titles holdlock
 at isolation read committed
create view authors_nolock
 as select * from authors noholdlock
set transaction isolation level 3
/* This query executes at isolation level 1 */ select * from authors_nolock

2. The at isolation clause takes precedence over the set transaction isolation level option.
For example:

set transaction isolation level 2 /* executes at isolation level 0 */
select * from publishers at isolation read uncommitted

You cannot use the read uncommitted option of at isolation in the same query as the holdlock,
noholdlock, and shared keywords.

3. The transaction isolation level 0 option of the set command takes precedence over the
holdlock, noholdlock, and shared keywords. For example:

set transaction isolation level 0 /* executes at isolation level 0 */
select * from titles holdlock

SAP ASE issues a warning before executing the above query.

656 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

23.4.2.7 Cursors and Isolation Levels
SAP ASE provides three isolation levels for cursors.

● Level 0 – SAP ASE uses no locks on base table pages that contain a row representing a current cursor
position. Cursors acquire no read locks for their scans, so they do not block other applications from
accessing the same data. However, cursors operating at this isolation level are not updatable, and they
require a unique index on the base table to ensure the accuracy of their scans.

● Level 1 – SAP ASE uses a shared or update lock on base table pages that contain a row representing a
current cursor position. The page remains locked until the current cursor position moves off the page (as a
result of fetch statements), or the cursor is closed. If an index is used to search the base table rows, it
also applies shared or update locks to the corresponding index pages. This is the default locking behavior
for SAP ASE.

● Level 3 – SAP ASE uses a shared or update lock on any base table pages that have been read in a
transaction on behalf of the cursor. In addition, the locks are held until the transaction ends, as opposed to
being released when the data page is no longer needed. The holdlock keyword applies this locking level
to the base tables, as specified by the query on the tables or views.

Isolation level 2 is not supported for cursors.

Besides using holdlock for isolation level 3, you can use set transaction isolation level to specify
any of the four isolation levels for your session. When you use set transaction isolation level, any
cursor you open uses the specified isolation level, unless the transaction isolation level is set at 2. In this case,
the cursor uses isolation level 3. You can also use the select statement’s at isolation clause to specify
isolation level 0, 1, or 3 for a specific cursor. For example:

declare commit_crsr cursor for select *
from titles at isolation read committed

This statement makes the cursor operate at isolation level 1, regardless of the isolation level of the transaction
or session. If you declare a cursor at isolation level 0 (read uncommitted), SAP ASE also defines the cursor
as read-only. You cannot specify the for update clause along with at isolation read uncommitted in a
declare cursor statement.

SAP ASE determines a cursor’s isolation level when you open the cursor (not when you declare it), based on
the following:

● If the cursor was declared with the at isolation clause, that isolation level overrides the transaction
isolation level in which it is opened.

● If the cursor was not declared with at isolation, the cursor uses the isolation level in which it is opened.
If you close the cursor and reopen it later, the cursor acquires the current isolation level of the transaction.

SAP ASE compiles the cursor’s query when you declare it. This compilation process is different for isolation
level 0 as compared to isolation levels 1 or 3. If you declare a language or client cursor in a transaction with
isolation level 1 or 3, opening it in a transaction at isolation level 0 causes an error.

For example:

set transaction isolation level 1 declare publishers_crsr cursor
 for select *
 from publishers
open publishers_crsr /* no error */

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 657

fetch publishers_crsr
close publishers_crsr
set transaction isolation level 0 open publishers_crsr /* error */

23.4.2.8 Stored Procedures and Isolation Levels

System procedures always operate at isolation level 1, regardless of the isolation level of the transaction or
session.

User stored procedures operate at the isolation level of the transaction that executes it. If the isolation level
changes within a stored procedure, the new isolation level remains in effect only during the execution of the
stored procedure.

23.4.2.9 Triggers and Isolation Levels

Since triggers are fired by data modification statements (like insert), all triggers execute at either the
transaction’s isolation level or isolation level 1, whichever is higher.

So, if a trigger fires in a transaction at level 0, SAP ASE sets the trigger’s isolation level to 1 before executing its
first statement.

23.4.3 Compliance with SQL Standards

To get transactions that comply with SQL standards, you must set the chained and transaction
isolation level 3 options at the beginning of every application that changes the mode and isolation level
for subsequent transactions.

TIf your application uses cursors, you must also set the close on endtran option.

Related Information

Use Cursors in Transactions [page 665]

658 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

23.4.4 Use the Lock Table Command to Improve
Performance

The lock table command allows you to explicitly request a table lock for the duration of a transaction. This
is useful when an immediate table lock may reduce the overhead of acquiring a large number of row or page
locks and save locking time.

Examples of such cases are:

● A table will be scanned more than once in the same transaction, and each scan may need to acquire many
page or row locks.

● A scan will exceed a table’s lock-promotion threshold and will therefore attempt to escalate to a table lock.
If a table lock is not explicitly requested, a scan acquires page or row locks until it reaches the table’s lock
promotion threshold (see Reference Manual: Procedures), at which point it tries to acquire a table lock.

The syntax of lock table is:

lock table <table_name> in {share | exclusive} mode [wait [<no_of_seconds>] | nowait]

The wait/nowait option allows you to specify how long the command waits to acquire a table lock if it is
blocked

These considerations apply to the use of lock table:

● You can issue lock table only within a transaction.
● You cannot use lock table on system tables.
● You can first use lock table to lock a table in share mode, then use it to upgrade the lock to

exclusive mode.
● You can use separate lock table commands to lock multiple tables within the same transaction.
● Once a table lock is obtained, there is no difference between a table locked with lock table and a table

locked through lock promotion without the lock table command.

Related Information

wait/nowait Option of the Lock Table Command [page 669]

23.5 Transactions in Stored Procedures and Triggers

You can use transactions in stored procedures and triggers just as with statement batches. If a transaction in a
batch or stored procedure invokes another stored procedure or trigger containing a transaction, the second
transaction is nested into the first one.

The first explicit or implicit (using chained mode) begin transaction starts the transaction in the batch,
stored procedure, or trigger. Each subsequent begin transaction increments the nesting level. Each
subsequent commit transaction decrements the nesting level until it reaches 0. SAP ASE then commits

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 659

the entire transaction. A rollback transaction aborts the entire transaction up to the first begin
transaction regardless of the nesting level or the number of stored procedures and triggers it spans.

In stored procedures and triggers, the number of begin transaction statements must match the number
of commit transaction statements. This also applies to stored procedures that use chained mode. The
first statement that implicitly begins a transaction must also have a matching commit transaction.

rollback transaction statements in stored procedures do not affect subsequent statements in the
procedure or batch that originally called the procedure. SAP ASE executes subsequent statements in the
stored procedure or batch. However, rollback transaction statements in triggers abort the batch so
that subsequent statements are not executed.

Note
rollback statements in triggers: 1) roll back the transaction, 2) complete subsequent statements in the
trigger, and 3) abort the batch so that subsequent statements in the batch are not executed.

For example, the following batch calls the stored procedure myproc, which includes a rollback
transaction statement:

begin tran update titles set ...
insert into titles ...
execute myproc delete titles where ...

The update and insert statements are rolled back and the transaction is aborted. SAP ASE continues the
batch and executes the delete statement. However, if there is an insert trigger on a table that includes a
rollback transaction, the entire batch is aborted and the delete is not executed. For example:

begin tran update authors set ...
insert into authors ... delete authors where ...

Different transaction modes or isolation levels for stored procedures have certain requirements. Triggers are
not affected by the current transaction mode, since they are called as part of a data modification statement.

Related Information

Transaction Modes and Stored Procedures [page 663]

23.5.1 Errors and Transaction Rollbacks

Data integrity errors can affect the state of implicit or explicit transactions.

They affect it in the following ways:

660 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

● Errors with severity levels of 19 or greater:
Since these errors terminate the user connection to the server, any errors of level 19 or greater that occur
while a user transaction is in progress abort the transaction and roll back all statements to the outermost
begin transaction. SAP ASE always rolls back any uncommitted transactions at the end of a session.

● Errors in data modification commands that affect data integrity:
○ Arithmetic overflow and divide-by-zero errors (effects on transactions can be changed with the set

arithabort arith_overflow command)
○ Permissions violations
○ Rules violations
○ Duplicate key violations

Context Effects of rollback

Transaction only All data modifications since the start of the transaction are rolled back. If a transaction spans multiple
batches, rollback affects all of those batches.

Any commands issued after the rollback are executed.

Stored proce
dure only

None.

Stored proce
dure in a trans
action

All data modifications since the start of the transaction are rolled back. If a transaction spans multiple
batches, rollback affects all those batches.

Any commands issued after the rollback are executed.

Stored procedure produces error message 266: Transaction count after EXECUTE
indicates that a COMMIT or ROLLBACK TRAN is missing.

Trigger only Trigger completes, but trigger effects are rolled back.

Any remaining commands in the batch are not executed. Processing resumes at the next batch.

Trigger in a
transaction

Trigger completes, but trigger effects are rolled back.

All data modifications since the start of the transaction are rolled back. If a transaction spans multiple
batches, rollback affects all those batches.

Any remaining commands in the batch are not executed. Processing resumes at the next batch.

Nested trigger Inner trigger completes, but all trigger effects are rolled back.

Any remaining commands in the batch are not executed. Processing resumes at the next batch.

Nested trigger in
a transaction

Inner trigger completes, but all trigger effects are rolled back.

All data modifications since the start of the transaction are rolled back. If a transaction spans multiple
batches, rollback affects all those batches.

Any remaining commands in the batch are not executed. Processing resumes at the next batch.

In stored procedures and triggers, the number of begin transaction statements must match the number
of commit statements. A procedure or trigger that contains unpaired begin/commit statements produces a
warning message when it is executed. This also applies to stored procedures that use chained mode: the first
statement that implicitly begins a transaction must have a matching commit.

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 661

With duplicate key errors and rules violations, the trigger completes (unless there is also a return statement),
and statements such as print, raiserror, or remote procedure calls are performed. Then, the trigger and
the rest of the transaction are rolled back, and the rest of the batch is aborted. Remote procedure calls
executed from inside a normal SQL transaction (not using the DB-Library two-phase commit) are not rolled
back by a rollback statement.

This table summarizes how a rollback caused by a duplicate key error or a rules violation affects SAP ASE
processing in several different contexts.

Context Effects of Data Modification Errors During Transactions

Transaction only Current command is aborted. Previous commands are not rolled back, and sub
sequent commands are executed.

Transaction within a stored procedure Same as above.

Stored procedure in a transaction Same as above.

Trigger only Trigger completes, but trigger effects are rolled back.

Any remaining commands in the batch are not executed. Processing resumes at
the next batch.

Trigger in a transaction Trigger completes, but trigger effects are rolled back.

All data modifications since the start of the transaction are rolled back. If a
transaction spans multiple batches, the rollback affects all of those batches.

Any remaining commands in the batch are not executed. Processing resumes at
the next batch.

Nested trigger Inner trigger completes, but all trigger effects are rolled back.

Any remaining commands in the batch are not executed. Processing resumes at
the next batch.

Nested trigger in a transaction Inner trigger completes, but all trigger effects are rolled back.

All data modifications since the start of the transaction are rolled back. If a
transaction spans multiple batches, the rollback affects all of those batches.

Any remaining commands in the batch are not executed. Processing resumes at
the next batch.

Trigger with rollback followed by an er
ror in the transaction

Trigger effects are rolled back. All data modifications since the start of the
transaction are rolled back. If a transaction spans multiple batches, the rollback
affects all of those batches.

Trigger continues and gets duplicate key or rules error. Normally, the trigger
rolls back effects and continues, but in this case, trigger effects are not rolled
back.

After the trigger completes, any remaining commands in the batch are not exe
cuted. Processing resumes at the next batch.

662 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

23.5.2 Transaction Modes and Stored Procedures

Stored procedures written to use the unchained transaction mode may be incompatible with other
transactions using chained mode, and vice versa.

For example, here is a valid stored procedure using chained transaction mode:

create proc myproc as
insert into publishers
 values ("9996", null, null, null) commit work

A program using unchained transaction mode fails if it calls this procedure because the commit does not have
a corresponding begin. You may encounter other problems:

● Applications that start a transaction using chained mode may create impossibly long transactions or may
hold data locks for the entire length of their session, degrading SAP ASE performance.

● Applications may nest transactions at unexpected times. This can produce different results, depending on
the transaction mode.

As a rule, applications using one transaction mode should call stored procedures written to use that mode.
The exceptions to that rule are SAP system procedures (except for sp_procxmode) that can be invoked by
sessions using any transaction mode. If no transaction is active when you execute a system procedure, SAP
ASE turns off chained mode for the duration of the procedure. Before returning, it resets the mode its original
setting.

SAP ASE tags all procedures with the transaction mode (chained or unchained) of the session in which they
are created. This helps avoid problems associated with transactions that use one mode to invoke transactions
that use the other mode. A stored procedure tagged as chained is not executable in sessions using unchained
transaction mode, and vice versa.

Triggers are executable in any transaction mode. Since they are always called as part of a data modification
statement, either they are part of a chained transaction (if the session uses chained mode) or they maintain
their current transaction mode.

Caution
When using transaction modes, be aware of the effects each setting can have on your applications.

23.5.2.1 Run System Procedures in Chained Mode

SAP ASE allows some system procedures to run in sessions that use chained transaction mode.

● These system procedures can run in sessions using chained transaction mode if there are no open
transactions:
○ sp_configure
○ sp_engine
○ sp_rename

● These system procedures can run in sessions using chained transactions after you use sp_procxmode to
change the transaction mode to anymode:

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 663

○ sp_addengine
○ sp_dropengine
○ sp_showplan
○ sp_sjobcontrol
○ sp_sjobcmd
○ sp_sjobcreate

See the Reference Manual: Procedures.
● sp_sjobdrop can run in sessions using chained transaction mode, but fails if you execute it during an

open transaction.

When you execute these stored procedures, SAP ASE implicitly commits the changes performed by these
stored procedures when there are no open transactions, so you need not issue a commit or rollback.

If an open transaction exists when you issue:

● sp_rename, sp_configure, sp_engine, sp_addengine, or sp_dropengine – the procedures fail with
error 17260 because they cannot run within a transaction.

● sp_sjobcontrol, sp_sjobcmd, sp_sjobcreate, sp_sjobdrop, or sp_showplan – SAP ASE leaves
the transaction open after the procedure executes. You must explicitly issue commit or rollback for the
entire transaction.
If these procedures receive an error when they execute, they roll back only the operations performed
inside the procedure. Operations performed before the procedures executed, even if those operations
have been performed in the same transaction.

Use set chained {on | off} to set the chained mode for the session. See the Reference Manual:
Commands.

23.5.2.2 Set Transaction Modes for Stored Procedures

Use sp_procxmode to display or change the transaction mode of stored procedures.

For example, to change the transaction mode for the stored procedure byroyalty to chained, enter:

sp_procxmode byroyalty, "chained"

sp_procxmode “anymode” lets stored procedures run under either chained or unchained transaction
mode. For example:

sp_procxmode byroyalty, "anymode"

Use sp_procxmode without any parameter values to display the transaction modes for all stored procedures
in the current database:

sp_procxmode

procedure name transaction mode ------------------------- --------------------
byroyalty Any Mode
discount_proc Unchained
history_proc Unchained
insert_sales_proc Unchained

664 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

insert_salesdetail_proc Unchained
storeid_proc Unchained
storename_proc Unchained
title_proc Unchained titleid_proc Unchained

You can use sp_procxmode only in unchained transaction mode.

To change a procedure’s transaction mode, you must be a system administrator, the database owner, or the
owner of the procedure.

23.6 Use Cursors in Transactions
By default, SAP ASE does not change a cursor’s state (open or closed) when a transaction ends through a
commit or rollback. However, SQL standards associate an open cursor with its active transaction;
committing or rolling back that transaction automatically closes any open cursors associated with it.

To enforce this SQL-standards-compliant behavior, SAP ASE provides the close on endtran option of the
set command. In addition, if you set chained mode to on, SAP ASE starts a transaction when you open a
cursor and closes that cursor when the outermost transaction is committed or rolled back.

For example, by default, this sequence of statements produces an error:

open test_crsr commit tran open test_crsr

If you set either the close on endtran or chained options to on, the cursor’s state changes from open to
closed after the outermost transaction is committed. This allows the cursor to be reopened.

Note
Since client application buffer rows are returned through cursors, and allow users to scroll within those
buffers, those client applications should not scroll backward after a transaction aborts. The rows in a client
cache may become invalid because of a transaction rollback (unknown to the client) that is enforced by the
close on endtran option or the chained mode.

Any exclusive locks acquired by a cursor in a transaction are held until the end of that transaction. This also
applies to shared locks when you use the holdlock keyword, the at isolation serializable clause, or
the set isolation level 3 option.

The following rules define the behavior of updates through a cursor with regard to transactions:

● An update occuring within an explicit transaction is considered part of the transaction. If the transaction
commits, any updates included with the transaction also commit. If the transaction aborts, any updates
included with the transaction are rolled back. Updates through the same cursor that occurred outside the
aborted transaction are not affected.

● If updates through a cursor occur within an explicit (and client-specified) transaction, SAP ASE does not
commit them when the cursor is closed. It commits or rolls back pending updates only when the
transaction associated with that cursor ends.

● A transaction commit or abort has no effect on SQL cursor statements that do not manipulate result rows,
such as declare cursor, open cursor, close cursor, set cursor rows, and deallocate

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 665

cursor. For example, if the client opens a cursor within a transaction, and the transaction aborts, the
cursor remains open after the abort (unless close on endtran is set or chained mode is used).

However, if you do not set the close on endtran option, the cursor remains open past the end of the
transaction, and its current page lock remains in effect. It may also continue to acquire locks as it fetches
additional rows.

23.7 Issues to Consider When Using Transactions

There are issues to consider when using transactions in your applications.

● A rollback statement, without a transaction or savepoint name, always rolls back statements to the
outermost begin transaction (explicit or implicit) statement and cancels the transaction. If there is no
current transaction when you issue rollback, the statement has no effect.
In triggers or stored procedures, rollback statements, without transaction or savepoint names, roll back
all statements to the outermost begin transaction (explicit or implicit).

● rollback does not produce any messages to the user. If warnings are needed, use raiserror or print
statements.

● Grouping a large number of Transact-SQL commands into one long-running transaction may affect
recovery time. If SAP ASE fails during a long transaction, recovery time increases, since SAP ASE must
first undo the entire transaction.

● You can have as many databases in a user transaction as there are in your SAP ASE installation. For
example, if your SAP ASE has 25 databases, you can include 25 databases in your user transactions.

● You can independently execute a remote procedure call (RPC) from any transaction in which it is included.
In a standard transaction (one that does not use Open Client DB-Library/C two-phase commit or SAP ASE
distributed transaction management features), commands executed via an RPC by a remote server are
not rolled back with rollback and do not depend on commit to be executed.

● Transactions cannot span more than one connection between a client application and a server. For
example, a DB-Library/C application cannot group SQL statements in a transaction across multiple open
DBPROCESS connections.

● SAP ASE performs two scans of the log: the first scan looks for data page deallocation and unreserved
pages, the second scan looks for log page deallocation. These scans are an internal optimization,
transparent to users, and are performed automatically; you cannot switch the scans on or off.
With post-commit optimization, SAP ASE remembers the “next” log page (in the backward direction)
containing these log records. During the post-commit phase, SAP ASE moves to the “next” page requiring
post-commit work after processing records from a page. In a concurrent environment, where many users
log their transactions to syslogs at the same time, post-commit optimization can improve the
performance of post commit operation by avoiding reads or scans of unnecessary log pages.
The optimization does not show up in any diagnostics.

666 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

23.8 Backup and Recovery of Transactions

Every change to a database, whether it is the result of a single update statement or a grouped set of SQL
statements, is recorded in the system table syslogs. This table is called the transaction log and the
information it holds is vital for performing recovery procedures.

Some commands that change the database are not logged, such as truncate table, bulk-copy into a table
that has no indexes, select into, writetext, and dump transaction with no_log.

The transaction log records update, insert, or delete statements on a moment-to-moment basis. When a
transaction begins, a begin transaction event is recorded in the log. As each data modification statement
is received, it is recorded in the log.

The change is always recorded in the log before any change is made in the database itself. This type of log,
called a write-ahead log, ensures that the database can be recovered completely in case of a failure.

Failures can be due to hardware or media problems, system software problems, application software
problems, program-directed cancellations of transactions, or a user decision to cancel the transaction.

In case of any of these failures, the transaction log can be played back against a copy of the database restored
from a backup made with the dump commands.

To recover from a failure, transactions that were in progress but not yet committed at the time of the failure
must be undone, because a partial transaction is not an accurate change. Completed transactions must be
redone if there is no guarantee that they have been written to the database device.

If there are active, long-running transactions that are not committed when SAP ASE fails, undoing the changes
may require as much time as the transactions have been running. Such cases include transactions that do not
contain a commit transaction or rollback transaction to match a begin transaction. This
prevents SAP ASE from writing any changes and increases recovery time.

The SAP ASE dynamic dump allows the database and transaction log to be backed up while use of the
database continues. Make frequent backups of your database transaction log. The more often you back up
your data, the smaller the amount of work lost if a system failure occurs.

The owner of each database or a user with the ss_oper role is responsible for backing up the database and its
transaction log with the dump commands, though permission to execute them can be transferred to other
users. Permission to use the load commands, however, defaults to the database owner and cannot be
transferred.

Once the appropriate load commands are issued, SAP ASE handles all aspects of the recovery process. SAP
ASE also controls the checkpoint interval, which is the point at which all data pages that have been changed
are guaranteed to have been written to the database device. Users can force a checkpoint, if necessary, with
the checkpoint command.

For more information about backup and recovery, see the Reference Manual: Commands and, Developing a
Backup and Recovery Plan, in the System Administration Guide: Volume 2.

Transact-SQL Users Guide
Transactions: Maintain Data Consistency and Recovery P U B L I C 667

23.9 Using select into in Multistatement Transactions

SAP ASE allows you to use the select into command against permanent and temporary tables in
multistatement transactions (for example, in SQL batches, stored procedures, triggers, and so on).

Use the enable select into in tran configuration parameter to enable select into in a
multistatement transaction. Using select into in multistatement transactions is available in SAP ASE
versions 16.0 PL05 and later.

Enabling the enable select into in tran configuration parameter also allows you to use the create
table and drop table commands in triggers on permanent and temporary tables.

In addition, SAP ASE versions 16.0 PL05 and later does not raise error number 277 when you drop a
temporary table, either explicitly with drop table or implicitly when automatically dropping when exiting a
trigger.

enable select into in tran is part of the Application Functionality group of configuration parameters
(see System Administration Guide, Volume 1 > Setting Configuration Parameters). The default value for this
configuration parameter is 0 (off). Setting it to 1 enables select into in a multistatement transaction.

You cannot issue save transaction between creating a temporary table (including with a select into),
dropping the temporary table in a trigger, and rolling back the transaction to the save point. That is, you
cannot issue a series of commands similar to:

create table t1(ci int not null) lock datarows
create trigger tr1 on t1
for insert
as
begin
select * into #t2 from master..sysmessages
select count(*) as 'count of #t2 in trigger' from #t2
save tran savepoint_1
end
begin tran

insert t1 values (1)
count of #t2 in trigger

 10436
rollback tran savepoint_1
commit tran
select * from t1
ci

 1
(1 row affected)
insert t1 values (1)
Msg 2714, Level 16, State 3:
Procedure 'tr1', Line 6:
There is already an object named '#t2' in the database.
select * from t1
ci

 1 (1 row affected)

The server does not drop the temporary table when the session exits. Instead, the temporary table remains in
the temporary database until the server restarts.

668 P U B L I C
Transact-SQL Users Guide

Transactions: Maintain Data Consistency and Recovery

24 Locking Commands and Options

SAP ASE allows you to specify a lock wait period or use readpast locking to silently skip all incompatible locks,
without blocking, terminating, or generating a message.

Set a Time Limit on Waiting for Locks

● You can use the wait or nowait option of the lock table command to specify a time limit on waiting to
obtain a table lock.

● During a session, you can use the set lock command to specify a lock wait period for all subsequent
commands issued during the session.

● The sp_configure parameter lock wait period, used with the session-level setting set lock
wait nnn, is applicable only to user-defined tables. These settings have no influence on system tables.

● Within a stored procedure, you can use the set lock command to specify a lock wait period for all
subsequent commands issued within the stored procedure.

● You can use the lock wait period option of sp_configure to set a server-wide lock wait period.

24.1 wait/nowait Option of the Lock Table Command

Within a transaction, the lock table command allows you to request a table lock on a table without waiting
for the command to acquire enough row-level or page-level locks to escalate to a table lock.

The lock table command contains a wait/nowait option that allows you to specify the length of time the
command waits until operations in other transactions relinquish any locks they have on the target table.

The syntax for lock table is:

lock table <table_name> in {share | exclusive} mode [wait [<no_of_seconds>] | nowait]

The following command, inside a transaction, sets a wait period of 2 seconds for acquiring a table lock on the
titles table:

lock table titles in share mode wait 2

If the wait time expires before a table lock is acquired, the transaction proceeds, and row or page locking is
used exactly as it would have been without lock table, and the following informational message (error
number 12207) is generated:

Could not acquire a lock within the specified wait period. COMMAND level wait...

Transact-SQL Users Guide
Locking Commands and Options P U B L I C 669

For a code example of handling this error message during a transaction, see the Reference Manual:
Commands.

Note
If you use lock table...wait without specifying <no_of_seconds>, the command waits indefinitely for
a lock.

You can set time limits on waiting for a lock at the session level and the system level, as described in the
following sections. The wait period set with the lock table command overrides both of these

The nowait option is equivalent to the wait option with a 0-second wait: lock table either obtains a table
lock immediately or generates the informational message given above. If the lock is not acquired, the
transaction proceeds as it would have without the lock table command.

You can use the set lock command at either the session level or within a stored procedure to control the
length of time a task waits to acquire locks.

A system administrator can use the sp_configure option, lock wait period, to set a server-wide time
limit on acquiring locks.

24.2 Session-Level Lock-Wait Limit

You can use set lock wait to control the length of time that a command in a session or in a stored
procedure waits to acquire locks.

The syntax is:

set lock {wait <no_of_seconds >| nowait}

<no_of_seconds> is an integer. Thus, the following example sets a session-level time limit of 5 seconds on
waiting for locks:

set lock wait 5

With one exception, if the set lock wait period expires before a command acquires a lock, the command
fails, the transaction containing it is rolled back, and the following error message is generated:

Msg 12205, Level 17, State 2: Server ’sagan’, Line 1: Could not acquire a lock within the specified wait period. SESSION level wait
period=300 seconds, spid=12, lock type=shared page, dbid=9, objid=2080010441,
pageno=92300, rowno=0. Aborting the transaction.

The exception to this occurs when lock table in a transaction sets a longer wait period than set lock
wait. In this case, the transaction uses the lock table wait period before timing out, as described in the
preceding section.

The set lock nowait option is equivalent to the set lock wait option with a 0-second wait. If a command
other than lock table cannot obtain a requested lock immediately, the command fails, its transaction is
rolled back, and the preceding error message is generated.

670 P U B L I C
Transact-SQL Users Guide

Locking Commands and Options

If both a server-wide lock-wait limit and a session-level lock-wait limit are set, the session-level limit takes
precedence. If no session-level wait period is set, the server-level wait period is used.

24.3 Server-Wide Lock-Wait Limit

A system administrator can configure a server-wide lock-wait limit using the lock wait period
configuration parameter.

If the lock-wait period expires before a command acquires a lock, unless there is an overriding set lock
wait or lock table wait period, the command fails, the transaction containing it is rolled back, and the
following error message is generated:

Msg 12205, Level 17, State 2: Server ’wiz’, Line 1:
Could not acquire a lock within the specified wait period.
SERVER level wait period=300 seconds, spid=12, lock type=shared page, dbid=9,
objid=2080010441, pageno=92300, rowno=0. Aborting the transaction.

A time limit entered through set lock wait or lock table wait overrides a server-level lock-wait period.
Thus, for example, if the server-level wait period is 5 seconds and the session-level wait period is 10 seconds,
an update command waits 10 seconds to acquire a lock before failing and aborting its transaction.

The default server-level lock-wait period is effectively “wait forever.” To restore the default after setting a time-
limited wait, use sp_configure to set the value of lock wait period:

sp_configure "lock wait period", 0, "default"

24.4 Information on the Number of Lock-Wait Timeouts

sp_sysmon reports on the number of times tasks waiting for locks did not acquire the lock within the specified
period.

24.5 Readpast Locking for Queue Processing

Readpast locking instructs a command to silently skip all incompatible locks it encounters, without blocking,
terminating, or generating a message. It is primarily used when the rows of a table constitute a queue.

In such a case, a number of tasks may access the table to process the queued rows, which could, for example,
represent queued customers or customer orders. A given task is not concerned with processing a specific
member of the queue, but with processing any available members of the queue that meet its selection criteria.

Transact-SQL Users Guide
Locking Commands and Options P U B L I C 671

Readpast locking is an option that is available for the select and readtext commands and the data
modification commands update, delete, and writetext.

These examples illustrating readpast locking:

To skip all rows that have exclusive locks on them:

select * from titles readpast

To update only rows that are not locked by another session:

update titles set price = price * 1.1 from titles readpast

To use readpast locking on the titles table, but not on the authors or titleauthor table:

select * from titles readpast, authors, titleauthor
 where titles.title_id = titleauthor.title_id and authors.au_id = titleauthor.au_id

To delete only rows that are not locked in the stores table, but to allow the scan to block on the authors
table:

delete stores from stores readpast, authors where stores.city = authors.city

24.5.1 Incompatible Locks During readpast Queries

For select and readtext commands, incompatible locks are exclusive locks. Therefore, select and
readtext commands can access any rows or pages on which shared or update locks are held.

For delete, update, and writetext commands, any type of page or row lock is incompatible, so that:

● All rows with shared, update, or exclusive row locks are skipped in datarows-locked tables, and
● All pages with shared, update, or exclusive locks are skipped in datapages-locked tables.

All commands specifying readpast are blocked if there is an exclusive table lock, except select commands
executed at transaction isolation level 0.

24.5.2 Allpages-Locked Tables and readpast Queries

The readpast option is ignored when it is specified for an allpages-locked table.

The command operates at the isolation level specified for the command or session:

● If the isolation level is 0, dirty reads are performed, the command returns values from locked rows, and
does not block.

● If the isolation level is 1 or 3, the command blocks when pages with incompatible locks must be read.

672 P U B L I C
Transact-SQL Users Guide

Locking Commands and Options

24.5.3 Effects of Isolation Levels Select Queries with
readpast

Readpast locking will have different effects in the select command based on the transaction isolation level.

Readpast locking is designed to be used at transaction isolation level 1 or 2.

Session-Level Transaction Isolation Levels and readpast

This table that shows the effects of readpast on a table in a select command on data-only-locked tables:

Session Isolation Level Effects

0, read uncommitted (dirty
reads)

readpast is ignored, and rows containing uncommitted transactions are re
turned to the user. A warning message prints.

1, read committed Rows or pages with incompatible locks are skipped; no locks are held on the rows
or pages read.

2, repeatable read Rows or pages with incompatible locks skipped; shared locks are held on all rows
or pages that are read until the end of the statement or transaction.

3, serializable readpast is ignored, and the command executes at level 3. The command
blocks on any rows or pages with incompatible locks.

Query-Level Isolation Levels and readpast

If select commands that specify readpast also include any of the following clauses, the commands fail and
display error messages.

The commands fail when:

● The at isolation clause, specifying 0 or read uncommitted
● The at isolation clause, specifying 3 or serializable
● The holdlock keyword on the same table

If a select query that specifies readpast also specifies at isolation 2 or at isolation
repeatable read, shared locks are held on the readpast table or tables until the statement or transaction
completes.

readtext commands that include readpast and that specify at isolation read uncommitted
automatically run at isolation level 0 after issuing a warning message.

Transact-SQL Users Guide
Locking Commands and Options P U B L I C 673

24.5.4 Data Modification Commands with readpast and
Isolation Levels

If the transaction isolation level for a session is 0, the delete, update, and writetext commands that use
readpast do not issue warning messages.

● For datapages-locked tables, these commands modify all rows on all pages that are not locked with
incompatible locks.

● For datarows-locked tables, the commands affect all rows that are not locked with incompatible locks.

If the transaction isolation level for a session is 3 (serializable reads), the delete, update, and writetext
commands that use readpast automatically block when they encounter a row or page with an incompatible
lock.

At transaction isolation level 2 (serializable reads), the delete, update, and writetext commands:

● Modify all rows on all pages that are not locked with incompatible locks.
● For datarows-locked tables, the commands affect all rows that are not locked with incompatible locks.

24.5.5 text, unitext, and image columns and readpast

If a select command with the readpast option encounters a text column that has an incompatible lock on it,
readpast locking retrieves the row, but returns the text column with a value of null. No distinction is made, in
this case, between a text column containing a null value and a null value returned because the column is
locked.

If an update command with the readpast option applies to two or more text columns, and the first text
column checked has an incompatible lock on it, readpast locking skips the row. If the column does not have an
incompatible lock, the command acquires a lock and modifies the column. If any subsequent text column in
the row has an incompatible lock on it, the command blocks until it can obtain a lock and modify the column.

A delete command with the readpast option skips the row if any of the text columns in the row have an
incompatible lock.

674 P U B L I C
Transact-SQL Users Guide

Locking Commands and Options

25 The pubs2 Database

The sample database pubs2, contains the tables publishers, authors, titles, titleauthor,
salesdetail, sales, stores, roysched, discounts, blurbs, and au_pix.

The pubs2 database also lists primary and foreign keys, rules, defaults, views, triggers, and stored procedures
used to create these tables.

For information about installing pubs2, see the installation guide for your platform.

To change the sample database using create or data modification statements, you may need to get
additional permissions from a system administrator. If you do change the sample database, SAP suggests that
you return it to its original state for the sake of future users. Ask a system administrator if you need help
restoring the sample databases.

25.1 Tables in the pubs2 Database

In each of the tables in the pubs2 database, the column header specifies the column name, its datatype
(including any user-defined datatypes), and its null or not null status. The column header also specifies any
defaults, rules, triggers, and indexes that affect the column.

25.1.1 publishers Table

The publishers table contains the publisher name and ID, and the city and state in which each publisher is
located.

publishers is defined as:

create table publishers (pub_id char(4) not null,
pub_name varchar(40) not null,
city varchar(20) null, state char(2) null)

Its primary key is pub_id:

sp_primarykey publishers, pub_id

Its pub_idrule rule is defined as:

create rule pub_idrule as @pub_id in
("1389", "0736", "0877", "1622", "1756") or @pub_id like "99[0-9][0-9]"

Transact-SQL Users Guide
The pubs2 Database P U B L I C 675

25.1.2 authors Table

The authors table contains the name, telephone number, author ID, and other information about authors.

authors is defined as:

create table authors (au_id id not null,
au_lname varchar(40) not null,
au_fname varchar(20) not null,
phone char(12) not null,
address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null, postalcode char(10) null)

Its primary key is au_id:

sp_primarykey authors, au_id

Its nonclustered index for the au_lname and au_fname columns is defined as:

create nonclustered index aunmind on authors (au_lname, au_fname)

The phone column uses this default:

create default phonedflt as "UNKNOWN" sp_bindefault phonedft, "authors.phone"

The following view uses authors:

create view titleview as
select title, au_ord, au_lname,
price, total_sales, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id and titles.title_id = titleauthor.title_id

25.1.3 titles Table

The titles table contains the title id, title, type, publisher ID, price, and other information about titles.

titles is defined as:

create table titles (title_id tid not null,
title varchar(80) not null,
type char(12) not null,
pub_id char(4) null,
price money null,
advance money null,
total_sales int null,
notes varchar(200) null,

676 P U B L I C
Transact-SQL Users Guide

The pubs2 Database

pubdate datetime not null, contract bit not null)

Its primary key is title_id:

sp_primarykey titles, title_id

Its pub_id column is a foreign key to the publishers table:

sp_foreignkey titles, publishers, pub_id

Its nonclustered index for the title column is defined as:

create nonclustered index titleind on titles (title)

Its title_idrule is defined as:

create rule title_idrule as
@title_id like "BU[0-9][0-9][0-9][0-9]" or
@title_id like "[MT]C[0-9][0-9][0-9][0-9]" or
@title_id like "P[SC][0-9][0-9][0-9][0-9]" or
@title_id like "[A-Z][A-Z]xxxx" or @title_id like "[A-Z][A-Z]yyyy"

The type column uses this default:

create default typedflt as "UNDECIDED" sp_bindefault typedflt, "titles.type"

The pubdate column has this default:

create default datedflt as getdate() sp_bindefault datedflt, "titles.pubdate"

titles uses this trigger:

create trigger deltitle on titles
for delete
as
if (select count(*) from deleted, salesdetail
where salesdetail.title_id = deleted.title_id) >0
begin
 rollback transaction
 print "You can’t delete a title with sales." end

The following view uses titles:

create view titleview as
select title, au_ord, au_lname,
price, total_sales, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id and titles.title_id = titleauthor.title_id

Transact-SQL Users Guide
The pubs2 Database P U B L I C 677

25.1.4 titleauthor Table

the titleauthor table shows the author ID, title ID, and royalty of titles by percentage.

titleauthor is defined as:

create table titleauthor (au_id id not null,
title_id tid not null,
au_ord tinyint null, royaltyper int null)

Its primary keys are au_id and title_id:

sp_primarykey titleauthor, au_id, title_id

Its title_id and au_id columns are foreign keys to titles and authors:

sp_foreignkey titleauthor, titles, title_id sp_foreignkey titleauthor, authors, au_id

Its nonclustered index for the au_id column is defined as:

create nonclustered index auidind on titleauthor(au_id)

Its nonclustered index for the title_id column is defined as:

create nonclustered index titleidind on titleauthor(title_id)

The following view uses titleauthor:

create view titleview as
select title, au_ord, au_lname,
price, total_sales, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id and titles.title_id = titleauthor.title_id

The following procedure uses titleauthor:

create procedure byroyalty @percentage int as
select au_id from titleauthor where titleauthor.royaltyper = @percentage

678 P U B L I C
Transact-SQL Users Guide

The pubs2 Database

25.1.5 salesdetail Table

The salesdetail table shows the store ID, order ID, title number, quantity of sales, and discounts of sales.

salesdetail is defined as:

create table salesdetail (stor_id char(4) not null,
ord_num numeric(6,0),
title_id tid not null,
qty smallint not null, discount float not null)

Its primary keys are stor_id and ord_num:

sp_primarykey salesdetail, stor_id, ord_num

Its title_id, stor_id, and ord_num columns are foreign keys to titles and sales:

sp_foreignkey salesdetail, titles, title_id sp_foreignkey salesdetail, sales, stor_id, ord_num

Its nonclustered index for the title_id column is defined as:

create nonclustered index titleidind on salesdetail (title_id)

Its nonclustered index for the stor_id column is defined as:

create nonclustered index salesdetailind on salesdetail (stor_id)

Its title_idrule rule is defined as:

create rule title_idrule as
@title_id like "BU[0-9][0-9][0-9][0-9]" or
@title_id like "[MT]C[0-9][0-9][0-9][0-9]" or
@title_id like "P[SC][0-9][0-9][0-9][0-9]" or
@title_id like "[A-Z][A-Z]xxxx" or @title_id like "[A-Z][A-Z]yyyy"

salesdetail uses this trigger:

create trigger totalsales_trig on salesdetail for insert, update, delete
as
/* Save processing: return if there are no rows affected */
if @@rowcount = 0
 begin
 return
end
/* add all the new values */
/* use isnull: a null value in the titles table means
** "no sales yet" not "sales unknown"
*/
update titles
 set total_sales = isnull(total_sales, 0) + (select sum(qty)
 from inserted

Transact-SQL Users Guide
The pubs2 Database P U B L I C 679

 where titles.title_id = inserted.title_id)
 where title_id in (select title_id from inserted)
/* remove all values being deleted or updated */
update titles
 set total_sales = isnull(total_sales, 0) - (select sum(qty)
 from deleted
 where titles.title_id = deleted.title_id) where title_id in (select title_id from deleted)

25.1.6 sales Table

The sales table contains store IDs, order numbers, and dates of sales.

sales is defined as:

create table sales (stor_id char(4) not null,
ord_num varchar(20) not null, date datetime not null)

Its primary keys are stor_id and ord_num:

sp_primarykey sales, stor_id, ord_num

Its stor_id column is a foreign key to stores:

sp_foreignkey sales, stores, stor_id

25.1.7 stores Table

The stores table contains the names, addresses, ID numbers, and payment terms for stores.

stores is defined as:

create table stores (stor_id char(4) not null,
stor_name varchar(40) not null,
stor_address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null, payterms varchar(12) null)

Its primary key is stor_id:

sp_primarykey stores, stor_id

680 P U B L I C
Transact-SQL Users Guide

The pubs2 Database

25.1.8 roysched Table

The roysched table contains royalties, defined as a percentage of price.

roysched is defined as:

create table roysched title_id tid not null,
lorange int null,
hirange int null, royalty int null)

Its primary key is title_id:

sp_primarykey roysched, title_id

Its title_id column is a foreign key to titles:

sp_foreignkey roysched, titles, title_id

Its nonclustered index for the title_id column is defined as:

create nonclustered index titleidind on roysched (title_id)

25.1.9 discounts Table

The discounts table contains discounts in stores.

discounts is defined as:

create table discounts (discounttype varchar(40) not null,
stor_id char(4) null,
lowqty smallint null,
highqty smallint null, discount float not null)

Its primary keys are discounttype and stor_id:

sp_primarykey discounts, discounttype, stor_id

Its stor_id is a foreign key to stores:

sp_foreignkey discounts, stores, stor_id

Transact-SQL Users Guide
The pubs2 Database P U B L I C 681

25.1.10 blurbs Table

The blurbs table contains sample blurbs for books.

blurbs is defined as:

create table blurbs (au_id id not null, copy text null)

Its primary key is au_id:

sp_primarykey blurbs, au_id

Its au_id column is a foreign key to authors:

sp_foreignkey blurbs, authors, au_id

25.1.11 au_pix Table

The author_pix table contains photographs of authors in the pubs2 database.

au_pix is defined as:

create table au_pix (au_id char(11) not null,
pic image null,
format_type char(11) null,
bytesize int null,
pixwidth_hor char(14) null, pixwidth_vert char(14) null)

Its primary key is au_id:

sp_primarykey au_pix, au_id

Its au_id column is a foreign key to authors:

sp_foreignkey au_pix, authors, au_id

The pic column contains binary data. Since the image data (six pictures, two each in PICT, TIF, and
Sunraster file formats) is quite large, run the installpix2 script only to use or test the image datatype. The
image data is supplied to show how SAP stores image data. SAP does not supply any tools for displaying
image data: you must use the appropriate screen graphics tools to display the images once you have
extracted them from the database.

682 P U B L I C
Transact-SQL Users Guide

The pubs2 Database

25.2 Diagram of the pubs2 Database

The diagram of the pubs2 database shows the database relationships among the tables.

Transact-SQL Users Guide
The pubs2 Database P U B L I C 683

26 The pubs3 Database

The sample database pubs3 contains the tables publishers, authors, titles, titleauthor, salesdetail,
sales, stores, store_employees, roysched, discounts, and blurbs.

It lists the primary primary and foreign keys, rules, defaults, views, triggers, and stored procedures used to
create each table.

For information about installing pubs3, see the installation guide for your platform.

To change the sample database using create or data modification statements, you may need to get
additional permissions from a system administrator. If you do change the sample database, SAP suggests that
you return it to its original state for the sake of future users. Ask a system administrator if you need help
restoring the sample databases.

26.1 Tables in the pubs3 Database

In each of the tables in the pubs3 database, the column header specifies the column name, its datatype
(including any user-defined datatypes), its null or not null status, and how it uses referential integrity.

The column header also specifies any defaults, rules, triggers, and indexes that affect the column.

26.1.1 publishers Table

The publishers table contains the publisher ID, and name, city, and state.

publishers is defined as:

create table publishers (pub_id char(4) not null,
pub_name varchar(40) not null,
city varchar(20) null,
state char(2) null, unique nonclustered (pub_id))

Its pub_idrule rule is defined as:

create rule pub_idrule as @pub_id in
("1389", "0736", "0877", "1622", "1756") or @pub_id like "99[0-9][0-9]"

684 P U B L I C
Transact-SQL Users Guide

The pubs3 Database

26.1.2 authors Table

The authors table contains the names, phone numbers, and other information about authors.

authors is defined as:

create table authors (au_id id not null,
au_lname varchar(40) not null,
au_fname varchar(20) not null,
phone char(12) not null,
address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null, unique nonclustered (au_id))

Its nonclustered index for the au_lname and au_fname columns is defined as:

create nonclustered index aunmind on authors (au_lname, au_fname)

The phone column uses this default:

create default phonedflt as "UNKNOWN" sp_bindefault phonedft, "authors.phone"

The following view uses authors:

create view titleview as
select title, au_ord, au_lname,
price, num_sold, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id and titles.title_id = titleauthor.title_id

26.1.3 titles Table

The titles table contains the name, title ID, type, and other information about titles.

titles is defined as:

create table titles (title_id tid not null,
title varchar(80) not null,
type char(12) not null,
pub_id char(4) null
 references publishers(pub_id),
price money null,
advance numeric(12,2) null,
num_sold int null,
notes varchar(200) null,
pubdate datetime not null,
contract bit not null,

Transact-SQL Users Guide
The pubs3 Database P U B L I C 685

unique nonclustered (title_id))

Its nonclustered index for the title column is defined as:

create nonclustered index titleind on titles (title)

Its title_idrule is defined as:

create rule title_idrule as
@title_id like "BU[0-9][0-9][0-9][0-9]" or
@title_id like "[MT]C[0-9][0-9][0-9][0-9]" or
@title_id like "P[SC][0-9][0-9][0-9][0-9]" or
@title_id like "[A-Z][A-Z]xxxx" or @title_id like "[A-Z][A-Z]yyyy"

The type column uses this default:

create default typedflt as "UNDECIDED" sp_bindefault typedflt, "titles.type"

The pubdate column uses this default:

create default datedflt as getdate() sp_bindefault datedflt, "titles.pubdate"

titles uses this trigger:

create trigger deltitle on titles
for delete
as
if (select count(*) from deleted, salesdetail
where salesdetail.title_id = deleted.title_id) >0
begin
 rollback transaction
 print "You can’t delete a title with sales." end

This view uses titles:

create view titleview as
select title, au_ord, au_lname,
price, num_sold, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id and titles.title_id = titleauthor.title_id

686 P U B L I C
Transact-SQL Users Guide

The pubs3 Database

26.1.4 titleauthor Table

The titleauthor table contains the title and author IDs, royalty percentages, and other information about
titles and authors.

titleauthor is defined as:

create table titleauthor (au_id id not null
 references authors(au_id),
title_id tid not null
 references titles(title_id),
au_ord tinyint null, royaltyper int null)

Its nonclustered index for the au_id column is defined as:

create nonclustered index auidind on titleauthor(au_id)

Its nonclustered index for the title_id is:

create nonclustered index titleidind on titleauthor(title_id)

This view uses titleauthor:

create view titleview as
select title, au_ord, au_lname,
price, num_sold, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id and titles.title_id = titleauthor.title_id

This procedure uses titleauthor:

create procedure byroyalty @percentage int as
select au_id from titleauthor where titleauthor.royaltyper = @percentage

26.1.5 salesdetail Table

The salesdetail table contains the store ID, order number, and other details of sales.

salesdetail is defined as:

create table salesdetail (stor_id char(4) not null
 references sales(stor_id),
ord_num numeric(6,0)
 references sales(ord_num),
title_id tid not null
 references titles(title_id),

Transact-SQL Users Guide
The pubs3 Database P U B L I C 687

qty smallint not null, discount float not null)

Its nonclustered index for the title_id column is defined as:

create nonclustered index titleidind on salesdetail (title_id)

Its nonclustered index for the stor_id column is defined as:

create nonclustered index salesdetailind on salesdetail (stor_id)

Its title_idrule rule is defined as:

create rule title_idrule as
@title_id like "BU[0-9][0-9][0-9][0-9]" or
@title_id like "[MT]C[0-9][0-9][0-9][0-9]" or
@title_id like "P[SC][0-9][0-9][0-9][0-9]" or
@title_id like "[A-Z][A-Z]xxxx" or @title_id like "[A-Z][A-Z]yyyy"

salesdetail uses this trigger:

create trigger totalsales_trig on salesdetail for insert, update, delete
as
/* Save processing: return if there are no rows affected */
if @@rowcount = 0
 begin
 return
end
/* add all the new values */
/* use isnull: a null value in the titles table means
** "no sales yet" not "sales unknown"
*/
update titles
 set num_sold = isnull(num_sold, 0) + (select sum(qty)
 from inserted
 where titles.title_id = inserted.title_id)
 where title_id in (select title_id from inserted)
/* remove all values being deleted or updated */
update titles
 set num_sold = isnull(num_sold, 0) - (select sum(qty)
 from deleted
 where titles.title_id = deleted.title_id) where title_id in (select title_id from deleted)

26.1.6 sales Table

The sales table contains the store ID, order numbers, and dates of sales.

sales is defined as:

create table sales (stor_id char(4) not null
 references stores(stor_id),

688 P U B L I C
Transact-SQL Users Guide

The pubs3 Database

ord_num numeric(6,0) identity,
date datetime not null, unique nonclustered (ord_num))

26.1.7 stores Table

The stores table contains the store ID, store name, and other information about stores.

stores is defined as:

create table stores (stor_id char(4) not null,
stor_name varchar(40) not null,
stor_address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null,
payterms varchar(12) null, unique nonclustered (stor_id))

26.1.8 store_employees Table

The store_employees table contains the store, employer, and manager IDs, and other information about
store employees.

store_employees is defined as:

create table store_employees (stor_id char(4) null
 references stores(stor_id),
emp_id id not null,
mgr_id id null
 references store_employees(emp_id),
emp_lname varchar(40) not null,
emp_fname varchar(20) not null,
phone char(12) null,
address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode varchar(10) null, unique nonclustered (emp_id))

26.1.9 roysched Table

The roysched table contains title ID, royalty percentage, and other information about title royalties.

roysched is defined as:

create table roysched

Transact-SQL Users Guide
The pubs3 Database P U B L I C 689

 title_id tid not null
 references titles(title_id),
lorange int null,
hirange int null, royalty int null)

Its nonclustered index for the title_id column is defined as:

create nonclustered index titleidind on roysched (title_id)

26.1.10 discounts Table

The discount table contains the discount type, store ID, quantity, and percentage discount.

discounts is defined as:

create table discounts (discounttype varchar(40) not null,
stor_id char(4) null
 references stores(stor_id),
lowqty smallint null,
highqty smallint null, discount float not null)

26.1.11 blurbs Table

The blurbs table contains the author ID and blurb for books in the pubs3 database.

blurbs is defined as:

create table blurbs (au_id id not null
 references authors(au_id), copy text null)

690 P U B L I C
Transact-SQL Users Guide

The pubs3 Database

26.2 Diagram of the pubs3 Database

The diagram of the pubs3 database shows the database relationships among the tables.

Transact-SQL Users Guide
The pubs3 Database P U B L I C 691

Important Disclaimers and Legal Information

Coding Samples
Any software coding and/or code lines / strings ("Code") included in this documentation are only examples and are not intended to be used in a productive system
environment. The Code is only intended to better explain and visualize the syntax and phrasing rules of certain coding. SAP does not warrant the correctness and
completeness of the Code given herein, and SAP shall not be liable for errors or damages caused by the usage of the Code, unless damages were caused by SAP
intentionally or by SAP's gross negligence.

Accessibility
The information contained in the SAP documentation represents SAP's current view of accessibility criteria as of the date of publication; it is in no way intended to be
a binding guideline on how to ensure accessibility of software products. SAP in particular disclaims any liability in relation to this document. This disclaimer, however,
does not apply in cases of willful misconduct or gross negligence of SAP. Furthermore, this document does not result in any direct or indirect contractual obligations
of SAP.

Gender-Neutral Language
As far as possible, SAP documentation is gender neutral. Depending on the context, the reader is addressed directly with "you", or a gender-neutral noun (such as
"sales person" or "working days") is used. If when referring to members of both sexes, however, the third-person singular cannot be avoided or a gender-neutral noun
does not exist, SAP reserves the right to use the masculine form of the noun and pronoun. This is to ensure that the documentation remains comprehensible.

Internet Hyperlinks
The SAP documentation may contain hyperlinks to the Internet. These hyperlinks are intended to serve as a hint about where to find related information. SAP does
not warrant the availability and correctness of this related information or the ability of this information to serve a particular purpose. SAP shall not be liable for any
damages caused by the use of related information unless damages have been caused by SAP's gross negligence or willful misconduct. All links are categorized for
transparency (see: http://help.sap.com/disclaimer).

692 P U B L I C
Transact-SQL Users Guide

Important Disclaimers and Legal Information

http://help.sap.com/disclaimer/

Transact-SQL Users Guide
Important Disclaimers and Legal Information P U B L I C 693

go.sap.com/registration/
contact.html

© 2017 SAP SE or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any
form or for any purpose without the express permission of SAP SE
or an SAP affiliate company. The information contained herein may
be changed without prior notice.
Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP SE or an SAP affiliate company
for informational purposes only, without representation or warranty
of any kind, and SAP or its affiliated companies shall not be liable for
errors or omissions with respect to the materials. The only
warranties for SAP or SAP affiliate company products and services
are those that are set forth in the express warranty statements
accompanying such products and services, if any. Nothing herein
should be construed as constituting an additional warranty.
SAP and other SAP products and services mentioned herein as well
as their respective logos are trademarks or registered trademarks
of SAP SE (or an SAP affiliate company) in Germany and other
countries. All other product and service names mentioned are the
trademarks of their respective companies.
Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx for additional trademark information and notices.

https://go.sap.com/registration/contact.html
https://go.sap.com/registration/contact.html
http://www.sap.com/corporate-en/legal/copyright/index.epx
http://www.sap.com/corporate-en/legal/copyright/index.epx

	Transact-SQL Users Guide
	Content
	1 SQL Building Blocks
	1.1 Tables, Columns, and Rows
	1.2 Queries, Data Modification, and Commands
	1.3 Relational Operations
	1.4 Compiled Objects
	1.4.1 Save or Restore Source Text
	1.4.2 Verify and Encrypt Source Text
	1.4.3 Replacing Object Definitions

	1.5 Compliance to ANSI Standards
	1.5.1 Federal Information Processing Standards (FIPS) Flagger
	1.5.2 Chained Transactions and Isolation Levels
	1.5.3 Identifier Compliance to ANSI Standards
	1.5.4 SQL Standard-Style Comments
	1.5.5 Right Truncation of Character Strings
	1.5.6 Permissions Required for update and delete Statements
	1.5.7 Arithmetic Errors
	1.5.8 Synonymous Keywords
	1.5.9 Treatment of Nulls

	1.6 Data and Language Characters
	1.6.1 Naming Convention Identifiers
	1.6.1.1 Multibyte Character Sets
	1.6.1.2 Delimited Identifiers
	1.6.1.3 Uniqueness and Qualification Conventions
	1.6.1.4 Remote Servers

	1.7 Expressions in SAP ASE
	1.7.1 Arithmetic Operators
	1.7.2 Bitwise Operators
	1.7.3 The String Concatenation Operator
	1.7.4 The Comparison Operators
	1.7.5 Nonstandard Operators
	1.7.6 Character Expression Comparisons
	1.7.7 Empty Strings
	1.7.8 Quotation Marks
	1.7.9 Relational and Logical Expressions

	1.8 Transact-SQL Extensions
	1.8.1 compute Clause
	1.8.2 Control-of-Flow Language
	1.8.3 Stored Procedures
	1.8.4 Extended Stored Procedures
	1.8.5 Triggers
	1.8.6 Defaults and Rules
	1.8.7 Error Handling and set Options
	1.8.8 Additional SAP ASE Extensions to SQL

	1.9 SAP ASE Login Accounts
	1.10 isql Utility
	1.10.1 Default Databases
	1.10.2 Network-Based Security Services with isql

	1.11 Displaying SQL Text

	2 Databases and Tables
	2.1 Databases
	2.2 Create a User Database
	2.2.1 The on Clause
	2.2.2 The log on Clause
	2.2.3 for load Option

	2.3 Choose a Database
	2.4 Permissions Within Databases
	2.5 Initialize Databases Asynchronously
	2.5.1 Determine If There is Space to be Initialized
	2.5.2 Restrictions for Initializing Databases Asynchronously

	2.6 Drop Databases
	2.7 Change the Database Size
	2.8 Enforce Data Integrity in Databases
	2.9 quiesce database Command
	2.10 Tables
	2.11 Designing and Creating a Table
	2.11.1 Table Names
	2.11.2 Create the User-Defined Datatypes
	2.11.3 Choose Columns That Accept Null Values
	2.11.4 Sample Table Design Sketch
	2.11.4.1 Define the Sample Table

	2.12 Create Tables in Different Databases
	2.13 Create New Tables from Query Results: select into
	2.13.1 Check for Errors

	2.14 Temporary Tables Usage
	2.14.1 Unique Temporary Table Names
	2.14.2 Manipulate Temporary Tables in Stored Procedures
	2.14.3 General Rules for Temporary Tables

	2.15 Deferred Table Creation
	2.15.1 Deferred Table Creation at the Database Level
	2.15.2 Create Deferred Tables
	2.15.3 Explicitly Materialize Deferred Tables
	2.15.4 Identify Deferred Tables
	2.15.5 Roll Back for Deferred Tables
	2.15.6 Command Behavior in Deferred Tables

	2.16 IDENTITY Columns Usage
	2.16.1 Create IDENTITY Columns with User-Defined Datatypes
	2.16.2 Reference IDENTITY Columns
	2.16.3 Refer to IDENTITY Columns with syb_identity
	2.16.4 Automatically Create “hidden” IDENTITY Columns
	2.16.5 Using select into with IDENTITY Columns
	2.16.5.1 Select an IDENTITY Column into a New Table
	2.16.5.2 Select the IDENTITY Column More Than Once
	2.16.5.3 Add a New IDENTITY Column with select into
	2.16.5.4 Define a Column for Which the Value Must Be Computed
	2.16.5.5 IDENTITY Columns Selected into Tables with Unions or Joins

	2.17 Allow Null Values in a Column
	2.17.1 Constraints and Rules Used with Null Values
	2.17.2 Defaults and Null Values
	2.17.3 Nulls Require Variable-Length Datatypes
	2.17.4 text, unitext, and image Columns

	2.18 Alter Existing Tables
	2.18.1 Objects Using select * Do Not List Changes to Table
	2.18.2 Use alter table on Remote Tables
	2.18.3 Add Columns
	2.18.3.1 Add Columns Appends Column IDs
	2.18.3.2 Add NOT NULL Columns
	2.18.3.3 Add Constraints

	2.18.4 Drop Columns
	2.18.4.1 Drop Columns Renumbers the Column ID
	2.18.4.2 Drop Columns Without Performing a Data Copy
	2.18.4.2.1 Restrictions for no datacopy Parameter

	2.18.4.3 Drop Constraints

	2.18.5 Modify Columns
	2.18.5.1 Convert Datatypes
	2.18.5.2 Modifying Tables and Using Bulk Copy
	2.18.5.3 Decreased Column Length May Truncate Data
	2.18.5.4 Modify datetime Columns
	2.18.5.5 Modify the NULL Default Value of a Column
	2.18.5.6 Check Columns That Have Precision or Scale
	2.18.5.7 Modify text, unitext, and image Columns

	2.18.6 Add IDENTITY Columns
	2.18.7 Drop IDENTITY Columns
	2.18.8 Modify IDENTITY Columns
	2.18.9 Data Copying
	2.18.9.1 Change exp_row_size

	2.18.10 Modifying Locking Schemes and Table Schema
	2.18.11 Add, Drop, or Modify Columns with User-Defined Datatypes
	2.18.12 Errors and Warnings from alter table
	2.18.12.1 Errors and Warnings Generated by alter table modify
	2.18.12.2 Scripts Generated by if exists()...alter table

	2.18.13 Rename Tables and Other Objects
	2.18.13.1 Rename Dependent Objects

	2.19 Drop Tables
	2.20 Manage Identity Gaps in Tables
	2.20.1 Parameters for Controlling Identity Gaps
	2.20.2 Comparison of identity burning set factor and identity_gap
	2.20.3 Set the Table-Specific Identity Gap
	2.20.4 Change the Table-Specific Identity Gap
	2.20.5 Display Table-Specific Identity Gap Information
	2.20.6 Gaps from Other Causes
	2.20.7 IDENTITY Column Maximum Value

	2.21 Define Integrity Constraints for Tables
	2.21.1 Table and Column Level Constraints
	2.21.2 Create Error Messages for Constraints
	2.21.3 Check Constraints
	2.21.4 Default Column Values
	2.21.5 unique and primary key Constraints
	2.21.6 Referential Integrity Constraints
	2.21.6.1 Table and Column Level Referential Integrity Constraints
	2.21.6.2 Using Create Schema for Cross-Referencing Constraints
	2.21.6.3 General Rules for Creating Referential Integrity Constraints
	2.21.6.4 Designing Applications That Use Referential Integrity

	2.22 Computed Columns
	2.22.1 Computed Columns Usage
	2.22.1.1 Computed Columns Example

	2.22.2 Indexes on Computed Columns
	2.22.3 Deterministic Property
	2.22.3.1 Effects of Deterministic Property on Computed Columns
	2.22.3.2 Effects of Deterministic Property on Materialized Computed Columns
	2.22.3.3 Effects of Deterministic Property on Virtual Computed Columns
	2.22.3.4 Effects of Deterministic Property on Function-Based Indexes
	2.22.3.5 Examples of Nondeterministic Computed Columns

	2.23 Retrieve Information About Databases and Tables
	2.23.1 Help on Databases
	2.23.2 Help on Database Objects
	2.23.2.1 sp_help Usage on Database Objects
	2.23.2.2 Use sp_helpconstraint to Find Table Constraint Information
	2.23.2.3 Determining Much Space a Table Uses
	2.23.2.4 List Tables, Columns, and Datatypes
	2.23.2.5 Find an Object Name and ID

	3 SQL-Derived Tables
	3.1 SQL-Derived Tables and Optimization
	3.2 SQL-Derived Table Syntax
	3.2.1 Derived Column Lists
	3.2.2 Correlated SQL-Derived Tables Are Not Supported

	3.3 SQL-Derived Tables Usage
	3.3.1 Nesting
	3.3.2 Subqueries Using SQL-Derived Tables
	3.3.3 Unions in Derived-Table Expressions
	3.3.4 Unions in Subqueries
	3.3.5 Rename Columns with SQL-Derived Tables
	3.3.6 Constant Expressions
	3.3.7 Aggregate Functions
	3.3.8 Joins with SQL-Derived Tables
	3.3.9 Create a Table From a SQL-Derived Table
	3.3.10 Views with SQL-Derived Tables
	3.3.11 Correlated Attributes

	4 Partition Tables and Indexes
	4.1 Partitioning Types
	4.1.1 Range Partitioning
	4.1.2 Hash Partitioning
	4.1.3 List Partitioning
	4.1.4 Round-Robin Partitioning

	4.2 Partition Pruning
	4.3 Composite Partitioning Keys
	4.4 Indexes and Partitions
	4.4.1 Global Indexes
	4.4.2 Local Indexes
	4.4.3 Guarantee a Unique Index

	4.5 Create and Manage Partitions
	4.5.1 Partitioning Tasks
	4.5.2 Create a Range-Partitioned Table
	4.5.2.1 Restrictions on Partition Keys and Bound Values for Range-Partitioned Tables

	4.5.3 Create a Hash-Partitioned Table
	4.5.4 Create a List-Partitioned Table
	4.5.5 Create a Round-Robin–Partitioned Table
	4.5.6 Create Partitioned Indexes
	4.5.7 Create a Partitioned Table From an Existing Table

	4.6 Change Data Partitions
	4.6.1 Split, Merge, and Move Partitions
	4.6.1.1 Partition Schemes Available for Splitting or Merging
	4.6.1.2 Split Partitions
	4.6.1.3 Merge Partitions
	4.6.1.4 Move Partitions
	4.6.1.5 Effect of Split or Merged Partitions on Indexes

	4.6.2 Add Partitions to a Partitioned Table
	4.6.3 Change the Partitioning Type or Key
	4.6.4 Unpartition Round-Robin–Partitioned Tables
	4.6.5 partition Parameter Usage
	4.6.6 Change Partition-Key Columns

	4.7 Configure Partitions
	4.8 update, delete, and insert in Partitioned Tables
	4.9 Update Values in Partition-Key Columns
	4.10 Display Information About Partitions
	4.10.1 Function Usage

	4.11 Truncate a Partition
	4.12 Using Partitions to Load Table Data
	4.13 Update Partition Statistics
	4.14 Improved Concurrency for Partition-Level Online Operations
	4.14.1 Partition-Level Online Operation Syntax
	4.14.2 Concurrency with Partition-Level Online Operations
	4.14.3 Partition-Level Online Operations with Global Index

	5 Virtually Hashed Tables
	5.1 Structure of a Virtually Hashed Table
	5.2 Create a Virtually Hashed Table
	5.3 Limitations for Virtually Hashed Tables
	5.4 Commands that Support Virtually Hashed Tables
	5.5 Query Processor Support
	5.6 Monitor Counter Support
	5.7 System Procedure Support

	6 Create Indexes on Tables
	6.1 Guidelines for Using Indexes
	6.2 Methods of Creating Indexes
	6.3 Create Indexes
	6.3.1 Issue create index in Parallel
	6.3.1.1 Configuring Enhanced Parallel create index
	6.3.1.2 Enhanced Parallel create index Usage
	6.3.1.3 View Parallel create index Commands with showplan

	6.3.2 Function-Based Indexes
	6.3.3 Create Indexes Without Blocking Access to Data
	6.3.4 Unique Indexes
	6.3.5 IDENTITY Columns in Nonunique Indexes
	6.3.6 Ascending and Descending Index-Column Values
	6.3.7 Using fillfactor, max_rows_per_page, and reservepagegap

	6.4 Indexes on Computed Columns
	6.5 Clustered or Nonclustered Index Usage
	6.5.1 Create Clustered Indexes on Segments

	6.6 Deferred Recovery of create index Commands
	6.6.1 Manually Re-creating Deferred Recovery Indexes
	6.6.2 Interactions Between Deferred Recovery and Database Options

	6.7 Index Options
	6.7.1 ignore_dup_key Option
	6.7.2 ignore_dup_row and allow_dup_row
	6.7.3 sorted_data Option
	6.7.4 on segment_name Option

	6.8 Drop Indexes
	6.9 Identifying the Indexes on a Table
	6.10 Update Statistics for Indexes

	7 Datatypes
	7.1 System-Supplied Datatypes
	7.1.1 Exact Numeric Types: Integers
	7.1.2 Exact Numeric Types: Decimal Numbers
	7.1.3 Approximate Numeric Datatypes
	7.1.4 Money Datatypes
	7.1.5 Date and Time Datatypes
	7.1.6 Character Datatypes
	7.1.6.1 unichar Datatype
	7.1.6.1.1 Relational Expressions
	7.1.6.1.2 Join Operators
	7.1.6.1.3 Union Operators
	7.1.6.1.4 Clauses and Modifiers

	7.1.6.2 text Datatype
	7.1.6.3 unitext Datatype

	7.1.7 Binary Datatypes
	7.1.7.1 image Datatype

	7.1.8 bit Datatype
	7.1.9 timestamp Datatype
	7.1.10 sysname and longsysname Datatype

	7.2 LOB Locators in Transact-SQL Statements
	7.2.1 Implicitly Create a Locator
	7.2.2 Explicitly Create a Locator
	7.2.3 Convert the Locator Value to the LOB Value
	7.2.4 Locator Scope

	7.3 Convert Between Datatypes
	7.4 Mixed-Mode Arithmetic and Datatype Hierarchy
	7.4.1 Working with money Datatypes
	7.4.2 Determine Precision and Scale

	7.5 User-Defined Datatypes
	7.5.1 Length, Precision, and Scale
	7.5.2 Null Type
	7.5.3 Associate Rules and Defaults with User-Defined Datatypes
	7.5.4 Create User-Defined Datatype with IDENTITY Property
	7.5.5 Create IDENTITY Columns from User-Defined Datatypes
	7.5.6 Drop a User-Defined Datatype

	7.6 Datatype Entry Rules
	7.6.1 char, nchar, unichar, univarchar, varchar, nvarchar, unitext, and text
	7.6.2 Date and Time
	7.6.2.1 Enter Times
	7.6.2.2 Enter Dates
	7.6.2.2.1 Date Formats

	7.6.2.3 Search Dates and Times

	7.6.3 binary, varbinary, and image
	7.6.4 money and smallmoney
	7.6.5 float, real, and double precision
	7.6.6 decimal and numeric
	7.6.7 Integer Types and Their Unsigned Counterparts
	7.6.8 timestamp

	7.7 Get Information About Datatypes

	8 Queries: Selecting Data from a Table
	8.1 select Syntax
	8.1.1 Check for Identifiers in a select Statement

	8.2 Choose Columns Using the select Clause
	8.2.1 Choose all Columns Using select *
	8.2.2 Choose Specific Columns
	8.2.3 Rearrange the Column Order
	8.2.4 Rename Columns in Query Results
	8.2.5 Expressions
	8.2.5.1 Quoted Strings in Column Headings
	8.2.5.2 Character Strings in Query Results
	8.2.5.3 Computed Values in the select List
	8.2.5.4 Arithmetic Operator Precedence

	8.2.6 Select Text, Unitext, and Image Values
	8.2.6.1 readtext Usage

	8.2.7 select List Summary

	8.3 select for update
	8.3.1 Use select for update in Cursors and DML
	8.3.2 Concurrency Issues

	8.4 Eliminate Duplicate Query Results with Distinct
	8.5 Specify Tables with the from Clause
	8.6 Select Rows Using the where Clause
	8.6.1 Comparison Operators in where Clauses
	8.6.2 Ranges (between and not between)
	8.6.3 Lists (in and not in)
	8.6.4 Matching Character Strings: like
	8.6.4.1 not like Usage
	8.6.4.2 Different Results Using not like and ^
	8.6.4.3 Use Wildcard Characters as Literal Characters
	8.6.4.4 Interaction of Wildcard Characters and Square Brackets
	8.6.4.5 Use Trailing Blanks and %
	8.6.4.6 Use Wildcard Characters in Columns

	8.6.5 “Unknown” Values: NULL
	8.6.5.1 SQL Standard for NULL Concatenation
	8.6.5.2 Test a Column for Null Values
	8.6.5.3 Difference Between False and Unknown
	8.6.5.4 Substitute a Value for NULLs
	8.6.5.5 Expressions that Evaluate to NULL
	8.6.5.6 Concatenate Strings and NULL
	8.6.5.7 System-Generated NULLs

	8.6.6 Connect Conditions with Logical Operators
	8.6.6.1 Logical Operator Precedence

	8.7 Multiple select Items in a Nested exists Query
	8.8 Use a Column Alias in Nested select Statements

	9 Subqueries: Queries Within Other Queries
	9.1 Subquery Restrictions
	9.2 Qualify Column Names
	9.3 Subqueries with Correlation Names
	9.4 Multiple Levels of Nesting
	9.5 Using an Asterisk in Nested select Statements
	9.5.1 Use Table-Name Qualifiers
	9.5.2 Use Nested Queries with group by
	9.5.3 Usage and Examples of Asterisks in select Statements

	9.6 Subqueries in update, delete, and insert Statements
	9.7 Subqueries in Conditional Statements
	9.8 Subqueries Instead of Expressions
	9.9 Types of Subqueries
	9.9.1 Expression Subqueries
	9.9.1.1 Use Scalar Aggregate Functions to Guarantee a Single Value
	9.9.1.2 Use group by and having in Expression Subqueries
	9.9.1.3 Use distinct with Expression Subqueries

	9.9.2 Quantified Predicate Subqueries
	9.9.2.1 Subqueries with any and all
	9.9.2.1.1 > all Means Greater Than All Values
	9.9.2.1.2 = all Means Equal to Every Value
	9.9.2.1.3 > any Means Greater Than at Least One Value
	9.9.2.1.4 = any Means Equal to Some Value

	9.9.3 Subqueries Used with in
	9.9.4 Subqueries Used with not in
	9.9.5 Subqueries Using not in with NULL
	9.9.6 Subqueries Used with exists
	9.9.7 Subqueries Used with not exists
	9.9.8 Find Intersection and Difference with exists
	9.9.9 Subqueries Using SQL Derived Tables

	9.10 Correlated Subqueries
	9.10.1 Correlated Subqueries with Correlation Names
	9.10.2 Correlated Subqueries with Comparison Operators
	9.10.3 Correlated Subqueries in a having Clause

	10 Aggregates, Grouping, and Sorting
	10.1 Aggregate Functions and Datatypes
	10.2 count versus count (*)
	10.3 Aggregate Functions with distinct
	10.4 Null Values and the Aggregate Functions
	10.5 Using Statistical Aggregates
	10.6 Organize Query Results into Groups: the group by Clause
	10.6.1 group by and SQL Standards
	10.6.2 Nest Groups with group by
	10.6.3 Reference Other Columns in Queries Using group by
	10.6.4 Expressions and group by
	10.6.5 group by in Nested Aggregates
	10.6.6 Null Values and group by
	10.6.7 where Clause and group by
	10.6.8 group by and all
	10.6.9 Aggregates Without group by

	10.7 Select Groups of Data: the having Clause
	10.7.1 Interactions between having, group by, and where Clauses
	10.7.2 having Without group by

	10.8 Sort Query Results: the order by Clause
	10.8.1 order by and group by
	10.8.2 order by and group by Used with select distinct

	10.9 Summarize Groups of Data: the compute Clause
	10.9.1 Row Aggregates and compute
	10.9.1.1 Rules for compute Clauses

	10.9.2 Specify More Than One Column After compute
	10.9.3 Use More Than One compute Clause
	10.9.4 Apply an Aggregate to More Than One Column
	10.9.5 Use Different Aggregates in the Same compute Clause
	10.9.6 Generate Totals: compute Without by

	10.10 Combine Queries: the union Operator
	10.10.1 Guidelines for union Queries

	11 Joins: Retrieve Data from Several Tables
	11.1 Join Syntax
	11.2 Joins and the Relational Model
	11.3 How Joins are Structured
	11.3.1 The from Clause
	11.3.2 The where Clause
	11.3.2.1 Join Operators
	11.3.2.2 Datatypes in Join Columns
	11.3.2.3 Joins and Text and Image Columns

	11.4 How Joins are Processed
	11.5 Equijoins and Natural Joins
	11.6 Joins with Additional Conditions
	11.7 Joins Not Based on Equality
	11.8 Self-Joins and Correlation Names
	11.9 The Not-Equal Join
	11.9.1 Not-Equal Joins and Subqueries

	11.10 Join More Than Two Tables
	11.11 Star Joins
	11.12 Outer Joins
	11.12.1 Inner and Outer Tables
	11.12.2 Outer Join Restrictions
	11.12.3 Views Used with Outer Joins
	11.12.4 ANSI Inner and Outer Joins
	11.12.4.1 Correlation Name and Column Referencing Rules for ANSI Joins
	11.12.4.2 ANSI Inner Joins
	11.12.4.2.1 The Join Table of an Inner Join
	11.12.4.2.2 The on Clause of an ANSI Inner Join

	11.12.5 ANSI outer joins
	11.12.5.1 Placement of the Predicate in the on or where Clause
	11.12.5.2 Nested ANSI Outer Joins

	11.12.6 Transact-SQL Outer Joins
	11.12.6.1 Outer Joins and Aggregate Extended Columns

	11.13 Relocated Joins
	11.13.1 Configuring Relocated Joins

	11.14 How Null Values Affect Joins
	11.15 Determine Which Table Columns to Join

	12 Managing Data
	12.1 Referential Integrity
	12.2 Transactions
	12.3 Sample Databases
	12.4 Add New Data
	12.4.1 Add New Rows with Values
	12.4.2 Insert Data into Specific Columns
	12.4.2.1 Restrict Column Data: Rules
	12.4.2.2 The NULL Character String
	12.4.2.3 Insert NULLs into Columns That Do Not Allow Them
	12.4.2.4 Add Rows Without Values in All Columns
	12.4.2.5 Change a Column’s Value to NULL
	12.4.2.6 SAP ASE-generated values for IDENTITY columns
	12.4.2.7 Explicitly Insert Data into an IDENTITY Column
	12.4.2.8 Retrieve IDENTITY Column Values with @@identity
	12.4.2.9 Reserve a Block of IDENTITY Column Values
	12.4.2.10 Maximum Value of the IDENTITY Column
	12.4.2.10.1 Modify the Maximum Value of the IDENTITY Column
	12.4.2.10.2 Creating a New Table with a Larger Precision
	12.4.2.10.3 Renumbering the Table IDENTITY Columns with bcp

	12.4.3 Add New Rows with select
	12.4.3.1 Use Computed Columns
	12.4.3.2 Insert Data into Some Columns
	12.4.3.3 Insert Data from the Same Table

	12.5 Create Nonmaterialized, Non-Null Columns
	12.5.1 Add Nonmaterialized Columns
	12.5.2 Tables That Already Have Nonmaterialized Columns
	12.5.3 Nonmaterialized Column Storage
	12.5.4 Alter Nonmaterialized Columns
	12.5.5 Limitations for Nonmaterialized Columns

	12.6 Change Existing Data
	12.6.1 Use the set Clause with Update
	12.6.1.1 Assign Variables in the set Clause

	12.6.2 Use the where Clause with update
	12.6.3 Use the from Clause with update
	12.6.4 Perform updates with joins
	12.6.5 Update IDENTITY Columns

	12.7 Change text, unitext, and image data
	12.8 Truncate Trailing Zeros
	12.9 Transfer Data Incrementally
	12.9.1 Mark Tables for Incremental Transfer
	12.9.2 Transfer Tables from a Destination File
	12.9.3 Convert SAP ASE Datatypes to SAP IQ
	12.9.4 Store Transfer Information
	12.9.5 Exceptions and Errors
	12.9.6 Sample Incremental Transfer
	12.9.6.1 Replacing Data with New Rows

	12.10 Delete Data
	12.10.1 Use the from Clause with delete
	12.10.2 Delete from IDENTITY Columns

	12.11 Delete All Rows from a Table
	12.11.1 truncate table Syntax

	13 Views: Limit Access to Data
	13.1 Advantages of Views
	13.2 Security
	13.3 Logical Data Independence
	13.4 Create Views
	13.4.1 create view Syntax
	13.4.2 select Statement Usage with create view
	13.4.2.1 View Definition with Projection
	13.4.2.2 View Definition with a Computed Column
	13.4.2.3 View Definition with an Aggregate or Built-In Function
	13.4.2.4 View Definition with a Join
	13.4.2.5 Views Used with Outer Joins
	13.4.2.6 Views Derived From Other Views
	13.4.2.7 Distinct Views
	13.4.2.8 Views That Include IDENTITY Columns

	13.4.3 Validate a View’s Selection Criteria
	13.4.3.1 Views Derived from Other Views

	13.5 Retrieve Data Through Views
	13.5.1 View Resolution
	13.5.2 Redefine Views
	13.5.3 Rename Views
	13.5.4 Alter or Drop Underlying Objects

	13.6 Modify Data Through Views
	13.6.1 Restrictions on Updating Views

	13.7 Drop Views
	13.8 Use Views as Security Mechanisms
	13.9 Get Information About Views

	14 Defining Defaults and Rules for Data
	14.1 Create Defaults
	14.1.1 Bind Defaults
	14.1.2 Unbind Defaults
	14.1.3 How Defaults Affect NULL Values

	14.2 Drop Defaults
	14.3 Create Rules
	14.3.1 Bind Rules
	14.3.1.1 Rules Bound to Columns
	14.3.1.2 Rules Bound to User-Defined Datatypes
	14.3.1.3 Precedence of Rules

	14.3.2 Rules and NULL Values
	14.3.3 Unbind Rules

	14.4 Drop Rules
	14.5 Retrieve Information About Defaults and Rules
	14.6 Share Inline Defaults
	14.6.1 Create an Inline Shared Default
	14.6.2 Unbind a Shared Inline Default
	14.6.3 Limitations for Shared Inline Defaults

	15 Precomputed Result Sets
	15.1 Benefits of Precomputed Result Sets
	15.2 Configuring SAP ASE for Precomputed Result Sets
	15.3 Creating Precomputed Result Sets
	15.4 Identifying Precomputed Result Sets
	15.5 Refreshing Precomputed Result Sets
	15.6 Altering Precomputed Result Sets
	15.7 Dropping or Truncating Precomputed Result Sets
	15.8 Configuring Staleness
	15.9 Querying Precomputed Result Sets
	15.10 Rewriting Queries
	15.11 Replicating Precomputed Result Sets
	15.12 Restrictions for Precomputed Result Sets

	16 Batches and Control-of-Flow Language
	16.1 Rules Associated with Batches
	16.1.1 Examples of Using Batches
	16.1.2 Batches Submitted as Files

	16.2 Control-of-Flow Language Usage
	16.2.1 if...else
	16.2.2 case Expression
	16.2.2.1 case Expression for Alternative Representation
	16.2.2.2 case and Division by Zero
	16.2.2.3 rand Functions in case Expressions
	16.2.2.4 case Expression Results
	16.2.2.5 case Expressions and set ansinull
	16.2.2.6 case Expression Requires at Least one Non-Null Result
	16.2.2.7 Determining the Result Set
	16.2.2.8 case and Value Comparisons
	16.2.2.9 coalesce
	16.2.2.10 nullif

	16.2.3 begin...end
	16.2.4 while and break...continue
	16.2.5 declare and Local Variables
	16.2.6 goto
	16.2.7 return
	16.2.8 print
	16.2.9 raiserror
	16.2.10 Create Messages for print and raiserror
	16.2.11 waitfor
	16.2.12 Comments
	16.2.12.1 Slash-Asterisk Style Comments
	16.2.12.2 Double-Hyphen Style Comments

	16.3 Local Variables
	16.3.1 Local Variables and select Statements
	16.3.2 Local Variables and update Statements
	16.3.3 Local Variables and Subqueries
	16.3.4 Local Variables and while Loops and if…else Blocks
	16.3.5 Variables and Null Values
	16.3.6 Declaring a Table as a Variable

	16.4 Global Variables
	16.4.1 Transactions and Global Variables
	16.4.1.1 Check for Errors with @@error
	16.4.1.2 Check IDENTITY Values with @@identity
	16.4.1.3 Check the Transaction Nesting Level with @@trancount
	16.4.1.4 Check the Transaction State with @@transtate
	16.4.1.5 Check the Nesting Level with @@nestlevel
	16.4.1.6 Check the Status From the Last Fetch

	17 Transact-SQL Functions
	17.1 Built-In Functions
	17.1.1 System Functions
	17.1.2 String Functions
	17.1.2.1 Concatenating Expressions
	17.1.2.1.1 Concatenation Operators and LOB Locators

	17.1.2.2 Nest String Functions
	17.1.2.3 Limits on String Functions

	17.1.3 Text and Image Functions
	17.1.3.1 readtext on unitext Columns Usage

	17.1.4 Aggregate Functions
	17.1.4.1 Aggregate Functions Used with the group by Clause
	17.1.4.2 Aggregate Functions and Null Values
	17.1.4.3 Vector and Scalar Aggregates
	17.1.4.4 Aggregate Functions as Row Aggregates

	17.1.5 Statistical Aggregate Functions
	17.1.5.1 Formulas for Computing Standard Deviations

	17.1.6 Mathematical Functions
	17.1.7 Date Functions
	17.1.8 Datatype Conversion Functions
	17.1.8.1 convert Function Usage for Explicit Conversions
	17.1.8.2 Datatype Conversion Guidelines and Constraints
	17.1.8.2.1 Convert Character Data to a Noncharacter Type
	17.1.8.2.2 Convert from One Character Type to Another
	17.1.8.2.3 Convert Numbers to a Character Type
	17.1.8.2.4 Convert to or from unitext
	17.1.8.2.5 Rounding During Conversion To and From Money Types
	17.1.8.2.6 Convert Date and Time Information
	17.1.8.2.7 Convert Between Numeric Types
	17.1.8.2.8 Convert Between Binary and Integer Types
	17.1.8.2.9 Convert Between Binary and Numeric or Decimal Types
	17.1.8.2.10 Convert Image Columns to Binary Types
	17.1.8.2.11 Convert Other Types to bit
	17.1.8.2.12 Convert Hexadecimal Data
	17.1.8.2.13 Convert bigtime and bigdatetime Data
	17.1.8.2.14 Convert NULL Value

	17.1.8.3 Change the Date Format
	17.1.8.4 Conversion Error Handling

	17.1.9 Security Functions
	17.1.10 XML Functions

	17.2 User-Created Functions
	17.2.1 Table User-Defined Functions

	18 Stored Procedures
	18.1 Examples
	18.2 Permissions
	18.3 Performance
	18.4 Create and Execute Stored Procedures
	18.4.1 Deferred Name Resolution Usage
	18.4.2 Parameters
	18.4.3 Default Parameters
	18.4.3.1 Default Parameters Usage
	18.4.3.2 NULL as the Default Parameter
	18.4.3.3 Wildcard Characters in the Default Parameter

	18.4.4 Using Multiple Parameters
	18.4.5 LOB Datatypes in Stored Procedures
	18.4.6 Procedure Groups
	18.4.7 Compiling Individual Statements in a Stored Procedure
	18.4.8 with recompile in create procedure
	18.4.9 with recompile in execute
	18.4.10 Nesting Procedures
	18.4.11 Temporary Tables in Stored Procedures
	18.4.12 Set Options in Stored Procedures
	18.4.12.1 Query Optimization Settings
	18.4.12.2 Maximum Number of Arguments
	18.4.12.3 Maximum Size for Expressions, Variables, and Arguments

	18.4.13 Execution of Stored Procedures
	18.4.13.1 Execute Procedures After a Time Delay
	18.4.13.2 Execute Procedures Remotely
	18.4.13.3 Execute a Procedure with execute as owner or execute as caller
	18.4.13.3.1 Example with execute as Omitted
	18.4.13.3.2 Example of Procedure with execute as

	18.5 Deferred Compilation in Stored Procedures
	18.6 Information Returned From Stored Procedures
	18.6.1 Return Status
	18.6.1.1 Reserved Return Status Values
	18.6.1.2 User-Generated Return Values

	18.6.2 Check Roles in Procedures
	18.6.3 Return Parameters
	18.6.3.1 Pass Values in Parameters
	18.6.3.2 The Output Keyword

	18.7 Restrictions Associated with Stored Procedures
	18.7.1 Qualify Names Inside Procedures

	18.8 Rename Stored Procedures
	18.8.1 Rename Objects Referenced by Procedures

	18.9 Stored Procedures as Security Mechanisms
	18.10 Dropping Stored Procedures
	18.11 System Procedures
	18.11.1 Execute System Procedures
	18.11.2 Permissions on System Procedures
	18.11.3 Types of System Procedures
	18.11.4 Other SAP ASE-Supplied Stored Procedures

	18.12 Get Information About Stored Procedures
	18.12.1 Get a Report with sp_help
	18.12.2 View the Source Text of a Procedure with sp_helptext
	18.12.3 Identify Dependent Objects with sp_depends
	18.12.3.1 Use sp_depends with deferred_name_resolution

	18.12.4 Identify Permissions with sp_helprotect

	19 Extended Stored Procedures Usage
	19.1 XP Server
	19.1.1 sybesp_dll_version

	19.2 Dynamic Link Library Support
	19.3 Open Server API
	19.4 ESPs and Permissions
	19.5 ESPs and Performance
	19.6 Create Functions for ESPs
	19.6.1 Files for ESP Development
	19.6.2 Open Server Data Structures
	19.6.3 Open Server Return Codes
	19.6.4 Outline of a Simple ESP Function
	19.6.5 ESP Function Example
	19.6.6 Building the DLL

	19.7 Registering ESPs
	19.7.1 create procedure Usage
	19.7.2 sp_addextendedproc Usage

	19.8 Remove ESPs
	19.8.1 Renaming ESPs

	19.9 Execute ESPs
	19.10 System ESPs
	19.11 Get Information About ESPs
	19.12 ESP Exceptions and Messages

	20 Cursors: Accessing Data
	20.1 Types of Cursors
	20.2 Cursor Scope
	20.3 Cursor Scans and the Cursor Result Set
	20.4 Make Cursors Updatable
	20.4.1 Determine Which Columns Can Be Updated

	20.5 How SAP ASE Processes Cursors
	20.6 Monitor Cursor Statements
	20.7 declare cursor
	20.7.1 cursor_scrollability
	20.7.2 Cursor Sensitivity
	20.7.3 read_only Option

	20.8 Open Cursors
	20.9 Fetch Data Rows Using Cursors
	20.9.1 fetch Syntax
	20.9.2 into Clause Usage
	20.9.3 Check Cursor Status
	20.9.4 Get Multiple Rows With Each Fetch
	20.9.5 Check the Number of Rows Fetched

	20.10 Update and Delete Rows Using Cursors
	20.10.1 Update Cursor Result Set Rows
	20.10.2 Delete Cursor Result Set Rows

	20.11 Close and Deallocate Cursors
	20.12 Cursor Examples
	20.13 Cursors in Stored Procedures
	20.14 Cursors and Locking
	20.14.1 Cursor-Locking Options

	20.15 Transaction Support for Updatable Cursors
	20.16 Get Information About Cursors
	20.17 Browse Mode Versus Cursors

	21 Triggers: Enforce Referential Integrity
	21.1 Use Triggers Versus Integrity Constraints
	21.2 Create Triggers
	21.2.1 create trigger Syntax

	21.3 Use Triggers to Maintain Referential Integrity
	21.3.1 Test Data Modifications Against the Trigger Test Tables
	21.3.2 Insert Trigger Example
	21.3.3 Delete Trigger Examples
	21.3.4 Update Trigger Examples

	21.4 Multirow Considerations
	21.4.1 Insert Trigger Example Using Multiple Rows
	21.4.2 Delete Trigger Example Using Multiple Rows
	21.4.3 Update Trigger Example Using Multiple Rows
	21.4.4 Conditional Insert Trigger Example Using Multiple Rows

	21.5 Roll Back Triggers
	21.6 Global Login Triggers
	21.7 Nesting Triggers
	21.7.1 Trigger Self-Recursion

	21.8 Rules Associated with Triggers
	21.8.1 Triggers and Permissions
	21.8.2 Trigger Restrictions
	21.8.3 Implicit and Explicit Null Values
	21.8.4 Triggers and Performance
	21.8.5 set Commands in Triggers
	21.8.6 Renaming and triggers

	21.9 Disable Triggers
	21.10 Drop Triggers
	21.11 Multiple Triggers
	21.11.1 Changing the Order of When a Trigger Is Fired
	21.11.2 Order of Triggers in Merge Statements
	21.11.3 Transactional Behavior with Multiple Triggers
	21.11.4 Disabling and Reenabling Triggers

	21.12 Get Information About Triggers
	21.12.1 sp_help
	21.12.2 sp_helptext
	21.12.3 sp_depends

	21.13 instead of Triggers
	21.13.1 Inserted and Deleted Logical Tables
	21.13.2 Triggers and Transactions
	21.13.3 Nesting
	21.13.4 Recursion
	21.13.5 instead of insert Triggers
	21.13.6 instead of update Trigger
	21.13.7 instead of delete Trigger
	21.13.8 Searched and Positioned update and delete
	21.13.9 Get Information About instead of Triggers

	22 In-Row Off-Row LOB
	22.1 In-Row LOB Columns Compression
	22.2 Migrate Off-Row LOB Data to In-Row Storage
	22.2.1 In-Row LOB Columns and Bulk Copy
	22.2.2 Methods for Migrating Existing Data
	22.2.2.1 Set Up the mymsgs Example Table
	22.2.2.2 Migrate Using Update Statement
	22.2.2.3 Use reorg rebuild
	22.2.2.4 Migrate Using alter table with Data Copy

	22.2.3 Guidelines for Selecting the In-Row LOB Length
	22.2.4 Identifying In-Row LOB Length Selection

	22.3 Downgrading Tables Containing In-Row LOB Columns

	23 Transactions: Maintain Data Consistency and Recovery
	23.1 Transactions and Consistency
	23.2 Transactions and Recovery
	23.3 Transaction Usage
	23.3.1 Allow Data Definition Commands in Transactions
	23.3.2 System Procedures That Are Not Allowed in Transactions
	23.3.3 Begin and Commit Transactions
	23.3.4 Roll Back and Save Transactions
	23.3.5 Transaction States
	23.3.6 Nested Transactions
	23.3.7 Example of a Transaction

	23.4 Transaction Mode and Isolation Level
	23.4.1 Choose a Transaction Mode
	23.4.1.1 Transaction Modes and Nested Transactions
	23.4.1.2 Find the Status of the Current Transaction Mode

	23.4.2 Choose an Isolation Level
	23.4.2.1 Default Isolation Levels for SAP ASE and ANSI SQL
	23.4.2.2 Dirty Reads
	23.4.2.3 Repeatable Reads
	23.4.2.4 Find the Status of the Current Isolation Level
	23.4.2.5 Change the Isolation Level for a Query
	23.4.2.6 Isolation Level Precedences
	23.4.2.7 Cursors and Isolation Levels
	23.4.2.8 Stored Procedures and Isolation Levels
	23.4.2.9 Triggers and Isolation Levels

	23.4.3 Compliance with SQL Standards
	23.4.4 Use the Lock Table Command to Improve Performance

	23.5 Transactions in Stored Procedures and Triggers
	23.5.1 Errors and Transaction Rollbacks
	23.5.2 Transaction Modes and Stored Procedures
	23.5.2.1 Run System Procedures in Chained Mode
	23.5.2.2 Set Transaction Modes for Stored Procedures

	23.6 Use Cursors in Transactions
	23.7 Issues to Consider When Using Transactions
	23.8 Backup and Recovery of Transactions
	23.9 Using select into in Multistatement Transactions

	24 Locking Commands and Options
	24.1 wait/nowait Option of the Lock Table Command
	24.2 Session-Level Lock-Wait Limit
	24.3 Server-Wide Lock-Wait Limit
	24.4 Information on the Number of Lock-Wait Timeouts
	24.5 Readpast Locking for Queue Processing
	24.5.1 Incompatible Locks During readpast Queries
	24.5.2 Allpages-Locked Tables and readpast Queries
	24.5.3 Effects of Isolation Levels Select Queries with readpast
	24.5.4 Data Modification Commands with readpast and Isolation Levels
	24.5.5 text, unitext, and image columns and readpast

	25 The pubs2 Database
	25.1 Tables in the pubs2 Database
	25.1.1 publishers Table
	25.1.2 authors Table
	25.1.3 titles Table
	25.1.4 titleauthor Table
	25.1.5 salesdetail Table
	25.1.6 sales Table
	25.1.7 stores Table
	25.1.8 roysched Table
	25.1.9 discounts Table
	25.1.10 blurbs Table
	25.1.11 au_pix Table

	25.2 Diagram of the pubs2 Database

	26 The pubs3 Database
	26.1 Tables in the pubs3 Database
	26.1.1 publishers Table
	26.1.2 authors Table
	26.1.3 titles Table
	26.1.4 titleauthor Table
	26.1.5 salesdetail Table
	26.1.6 sales Table
	26.1.7 stores Table
	26.1.8 store_employees Table
	26.1.9 roysched Table
	26.1.10 discounts Table
	26.1.11 blurbs Table

	26.2 Diagram of the pubs3 Database

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

